Neuronale Netze u. Anwendungen, 17. Jan. 2012

Größe: px
Ab Seite anzeigen:

Download "Neuronale Netze u. Anwendungen, 17. Jan. 2012"

Transkript

1 Neuronale Netze u. Anwendungen, 17. Jan. 2012

2 Backpropagation Implementation Speed, Training Generalization Choice of Architecture Algorithms

3 Backpropagation is Computer Intenstive during Training very efficient during evaluation/testing How to Improve Training Time Parallel Hardware (?) Efficient Implementation Faster Gradient Descent Search Selective Choice of Patterns Efficient Architectures

4 1). 2). x j y j 3). 4).

5 Momentum 0...1

6 Kein BP für Trainingsbeispiele, die bereits gut gelernt sind Vorwärts-Durchlauf des Beispiels X durch das Netzwerk Fehler am Ausgang > Schwellenwert? Ja: Back-Propagation Nein: nächstes Trainingsbeispiel

7 A B C D E F A 1 B 1 C 1 D 1 E 1 F 1 A 2 B 2 C 2 D 2 E 2 F 2 A 3 B 3 C 3 D 3 E 3 F 3 A n B n C n D n E n F n (A 1, B 1,... E n, F n ) 1 weight update langsam aber sicher!

8 A 1 1 weight update B 1 1 E n 1 F n 1 schnell, aber riskant! (A 1... F 1 ) 1 weight update (A 2... F 2 ) 1 weight update

9 (Franzini) ok! schlecht! (Θ = 0 o, 360 o,...) (Θ = 180 o ) => ε größer machen => ε kleiner machen

10 BP: output i-tes unit f 0,5 input j f f sehr klein => Δw ij sehr klein

11 Lösung: (S. Fahlmann) f * = f + const. f * const i.a. schnelle Konvergenz besonders wirksam bei hochgradig nichtlinearen Klassifizierungsproblemen (XOR) manchmal schlechtere Generalisierung auf den Test-Daten?

12 Ziel: schnelles Training eines MLP Zwei riskante Annahmen: 1.) die Fehler/weight Kurve hat die Form einer Parabel 2.) die Parabeln für jedes weight w ij sind unabhängig voneinander E mit w ij optimal w ij

13 Annahme 2 ist nicht richtig, aber: durch das iterative Einstellen der weights werden die gemachten Fehler aufgehoben funktioniert sehr gut für hochgradig nichtlineare Probleme wie z.b. XOR, die sich so verhalten: E BP Training E epochs QP Training epochs

14 Output units Hidden units Input units 0,5 input eines units

15 Einfachst mögliche Ausgangsrepräsentation: Klasse A Klasse B Klasse C Klasse D Klasse A B C D NN Daten Vorteile: - die wahrscheinlichste Klasse ist leicht zu finden (Maximum suchen) - Abschätzung der Verläßlichkeit der Klassifikation ist möglich

16 Angenommen: Alphabet-Erkenner => 26 Klassen NN G am einfachsten, wenn alle output units Null gesetzt werden!

17 E = MSE = angenommen: => großer Beitrag zu E aber: Ableitung klein => klein => langsames Lernen, obwohl E groß ist

18 f input eines units stetig beschränkt Ableitung sollte einfach auszurechnen sein monoton

19 (z.b. Mc Clelland) Multiplikation mit Falls target j = 1 Falls target j = 0 => maximal, wenn y j - target j = 1

20 Backpropagate on Error from Best and Correct output

21 Fähigkeit, das aus den Trainingsdaten Erlernte auf neue Daten (Testdaten) anzuwenden. Angenommen: Klassifikation 100% Trainingsdaten Beste Testperformance Testdaten 30 Lernzyklen Auswendiglernen Overfitting Eine einfache Lösung: Validation Data Trainingsdaten Training Validierung

22 1.) Overfitting/Overtraining (zu lange trainiert) 2.) Zu viele Parameter (weights) bzw. zu wenig Trainingsmaterial 3.) falsche Netzwerkstruktur (neu) perf. perf. - Training - Test epochs 1000 weights 3000 weights epochs

23 Für lineare Systeme gilt: (Akaike, 1970: Statistical Predicator Identification Ann. Inst. Stat. Math., 22:203 oder Barron oder Eubank) ξ : Training Set ζ : Test Set p : # Parameter n : # Trainingsbeispiele Effektive Varianz des Rauschens

24 (Moody, 1992) σ 2 eff : effektive Varianz des Rauschens p eff : effektive Anzahl der Parameter p eff p λ: Regulierungsparameter

25 1.) Reduzierung der Kompexität des Netzwerkes durch Regularisierung - Weight Decay - Weight Elimination - Optimal Brain Damage - Optimal Brain Surgeon * Ein großes Netzwerk wird daran gehindert, die Daten auswendig zu lernen.

26 2.) Schrittweises Vergrößern eines zu kleinen Netzes (konstruktiv) - Cascade Correlation - Meiosis Netzwerke - ASO (Automativ Structure Optimization) * Ein zu kleines Netzwerk wird solange erweitert, bis es die Daten lernen kann.

27 - soll das Overfitting verhindern z.b. Weight-Elimination (Rumelhart, Chauvin, Denker,...) E = MSE + λ: Parameter Kosten eines weights Kosten eines weights Ableitung Interpretation : das Netzwerk wird für große w bestraft!

28 The average relative single-step prediction variance are given for the training sets (solid lines) and the early (low gray lines) and the late prediction set (upper gray lines) (as well as for the cross-validation set for the network trained without weight-elimination on the left side). The vertical lines A, B, a, b) indicate different stopping points

29 perf. λ= 0 perf. λ= langsameres Lernen - schlechtere Performanz auf den Trainingsdaten - bessere Generalisierung Einfachste Form: Weight Decay

30 Idee: bestimmte Verbindungen werden aus dem Netzwerk entfernt um die Komplexität des Netzes zu beschränken und so Overfitting zu vermeiden. Einfachste Form: Es werden diejenigen Verbindungen entfernt, die nach dem Training sehr kleine Beträge w ij haben. Richtig: Es werden diejenigen Verbindungen entfernt, die dabei den geringsten Einfluß auf den Fehler (MSE oder ä.) haben, d.h. die unwichtigsten Verbindungen. dazu: berechnen -> zeitaufwendig (schwierig)

31 (Fahlman, Lebiere) Initial configuration: Outputs Initial State No Hidden Units Inputs +1

32 (Fahlman, Lebiere) After adding one unit: Outputs Add Hidden Unit 1 Inputs +1

33 (Fahlman, Lebiere) After adding a second unit: Outputs Add Hidden Unit 2 Inputs +1

34 Hinzufügen eines hidden units: - input connections von allen input units und allen bisherigen hidden units - Zunächst werden nur diese Verbindungen adaptiert. Ziel: Maximieren der Funktion p: Trainingsmuster o: Index der output units Vorzeichen der Correlation zwischen der Aktivierung des candidate units und output o Ableitung der sigmoid Funktion Input des candidate units

35 Nicht noetig, die Anzahl Hidden Units oder Hidden Layers empirisch zu bestimmen. Kann tiefe Netze erzeugen ohne dramatischen Slowdown. Zu jedem Zeitpunkt wird nur eine Ebene von Verbindungen trainiert. Lernt sehr schnell. Inkrementelles Training.

36 black: strong negative white: strong positive

37 black: strong negative white: strong positive

38 (Hanson, 1990) Idee: Hinzufügen von hidden units abhängig von der Unsicherheit der weights w ij σ(w ij ) µ(w ij ) Gauss Noise mit Mittelwert 0 und Varianz 1 - der Mittelwert eines Gewichts µ(w ij ) und die Varianz σ (w ij ) werden gelernt

39 - Start mit einem hidden unit - ein hidden unit wird aufgespalten, falls und output units hidden unit input units Verbindung zu den Input Units Verbindung zu den Output Units Probleme: 1.) Zusätzliche Parameter der Verbindungen (σ) 2.) Rausch-Generator 3.) Instabilitäten beim Hinzufügen von neuen hidden units

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Technische Universität. Fakultät für Informatik

Technische Universität. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik VI Neuronale Netze - Supervised Learning Probleme des Backpropagation-Algorithmus und Alternativen Seminar

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap

Mehr

Neuronale Netze Aufgaben 3

Neuronale Netze Aufgaben 3 Neuronale Netze Aufgaben 3 martin.loesch@kit.edu (0721) 608 45944 MLNN IN FLOOD3 2 Multi Layer Neural Network (MLNN) Netzaufbau: mehrere versteckte (innere) Schichten Lernverfahren: Backpropagation-Algorithmus

Mehr

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2 Tom Schelthoff 30.11.2018 Inhaltsverzeichnis Deep Learning Seed-Stabilität Regularisierung Early Stopping Dropout Batch Normalization

Mehr

Lineare Regression. Volker Tresp

Lineare Regression. Volker Tresp Lineare Regression Volker Tresp 1 Die Lernmaschine: Das lineare Modell / ADALINE Wie beim Perzeptron wird zunächst die Aktivierungsfunktion gewichtete Summe der Eingangsgrößen x i berechnet zu h i = M

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017 10.1 Sommersemester 2017 Problemstellung Welche Gerade? Gegeben sind folgende Messungen: Masse (kg) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Kraft (N) 1.6 2.2 3.2 3.0 4.9 5.7 7.1 7.3 8.1 Annahme: Es gibt eine Funktion

Mehr

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation Validation Oktober, 2013 1 von 20 Validation Lernziele Konzepte des maschinellen Lernens Validierungsdaten Model Selection Kreuz-Validierung (Cross Validation) 2 von 20 Validation Outline 1 Validation

Mehr

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen 6.4 Neuronale Netze zur Verarbeitung von Zeitreihen Aufgabe: Erlernen einer Zeitreihe x(t + 1) = f(x(t), x(t 1), x(t 2),...) Idee: Verzögerungskette am Eingang eines neuronalen Netzwerks, z.b. eines m-h-1

Mehr

Übersicht. Definition Daten Problemklassen Fehlerfunktionen

Übersicht. Definition Daten Problemklassen Fehlerfunktionen Übersicht 1 Maschinelle Lernverfahren Definition Daten Problemklassen Fehlerfunktionen 2 Entwickeln von maschinellen Lernverfahren Aufteilung der Daten Underfitting und Overfitting Erkennen Regularisierung

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Neuronale Netze Motivation Perzeptron Übersicht Multilayer Neural Networks Grundlagen

Mehr

So lösen Sie das multivariate lineare Regressionsproblem von Christian Herta

So lösen Sie das multivariate lineare Regressionsproblem von Christian Herta Multivariate Lineare Regression Christian Herta Oktober, 2013 1 von 34 Christian Herta Multivariate Lineare Regression Lernziele Multivariate Lineare Regression Konzepte des Maschinellen Lernens: Kostenfunktion

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Neuronale Netzwerke: Feed-forward versus recurrent (d.h. feed-back )

Neuronale Netzwerke: Feed-forward versus recurrent (d.h. feed-back ) Neuronale Netzwerke: Feed-forward versus recurrent (d.h. feed-back ) A: Schrittweise vorwärts-gerichtete Abbildung: Eingangssignal (Input) r in Ausgansgsignal (Output) r out Überwachtes Lernen (wie z.b.

Mehr

Die Datenmatrix für Überwachtes Lernen

Die Datenmatrix für Überwachtes Lernen Die Datenmatrix für Überwachtes Lernen X j j-te Eingangsvariable X = (X 0,..., X M 1 ) T Vektor von Eingangsvariablen M Anzahl der Eingangsvariablen N Anzahl der Datenpunkte Y Ausgangsvariable x i = (x

Mehr

Grundlagen neuronaler Netzwerke

Grundlagen neuronaler Netzwerke AUFBAU DES NEURONALEN NETZWERKS Enrico Biermann enrico@cs.tu-berlin.de) WS 00/03 Timo Glaser timog@cs.tu-berlin.de) 0.. 003 Marco Kunze makunze@cs.tu-berlin.de) Sebastian Nowozin nowozin@cs.tu-berlin.de)

Mehr

Bayesian updating in natural hazard risk assessment

Bayesian updating in natural hazard risk assessment International Forum on Engineering Decision Making, Third IFED Forum, Shoal Bay, Australia, 12-15 15 December 2007 1/23 Bayesian updating in natural hazard risk assessment Mathias Graf, Kazuyoshi Nishijima,

Mehr

Praktische Optimierung

Praktische Optimierung Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze

Mehr

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform. (hoffentlich kurze) Einführung: martin.loesch@kit.edu (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild

Mehr

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1 Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?

Mehr

Softwareprojektpraktikum Maschinelle Übersetzung

Softwareprojektpraktikum Maschinelle Übersetzung Softwareprojektpraktikum Maschinelle Übersetzung Jan-Thorsten Peter, Andreas Guta, Jan Rosendahl max.bleu@i6.informatik.rwth-aachen.de Vorbesprechung 5. Aufgabe 22. Juni 2017 Human Language Technology

Mehr

Nichtlineare Klassifikatoren

Nichtlineare Klassifikatoren Nichtlineare Klassifikatoren Mustererkennung und Klassifikation, Vorlesung No. 11 1 M. O. Franz 12.01.2008 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken, Häufige Mengen Nico Piatkowski und Uwe Ligges 09.05.2017 1 von 15 Überblick Was bisher geschah... Heute Modellklassen Verlustfunktionen Numerische Optimierung Regularisierung

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze Vorlesung Künstliche Intelligenz Wintersemester 2008/09 Teil III: Wissensrepräsentation und Inferenz Kap.5: Neuronale Netze Dieses Kapitel basiert auf Material von Andreas Hotho Mehr Details sind in der

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

6.2 Feed-Forward Netze

6.2 Feed-Forward Netze 6.2 Feed-Forward Netze Wir haben gesehen, dass wir mit neuronalen Netzen bestehend aus einer oder mehreren Schichten von Perzeptren beispielsweise logische Funktionen darstellen können Nun betrachten wir

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

Hidden Markov Model ein Beispiel

Hidden Markov Model ein Beispiel Hidden Markov Model ein Beispiel Gegeben: Folge von Beobachtungen O = o 1,..., o n = nass, nass, trocken, nass, trocken Menge möglicher Systemzustände: Z = {Sonne, Regen} Beobachtungswahrscheinlichkeiten:

Mehr

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Mustererkennung: Neuronale Netze D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Feed-Forward Netze y 1 y 2 y m...... x 1 x 2 x n Output Schicht i max... Zwischenschicht i... Zwischenschicht 1

Mehr

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14. Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen

Mehr

Automatische Spracherkennung

Automatische Spracherkennung Automatische Spracherkennung 3 Vertiefung: Drei wichtige Algorithmen Teil 3 Soweit vorhanden ist der jeweils englische Fachbegriff, so wie er in der Fachliteratur verwendet wird, in Klammern angegeben.

Mehr

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Ein Schwellenwertelement (Threshold Logic Unit, TLU) ist eine Verarbeitungseinheit für Zahlen mitneingängenx,...,x n und einem

Mehr

Was sind Neuronale Netze?

Was sind Neuronale Netze? Neuronale Netze Universität zu Köln SS 2010 Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Referenten: Aida Moradi, Anne Fleischer Datum: 23. 06. 2010 Was sind Neuronale Netze? ein Netzwerk

Mehr

Neuronale Netze. Automatische Hinderniserkennung Paul Fritsche

Neuronale Netze. Automatische Hinderniserkennung Paul Fritsche 1 Neuronale Netze Automatische Hinderniserkennung 2 Hintergrund Grundlagen Tensorflow Keras Fazit 3 TTBN 4 TTBN 5 TTBN 6 TTBN 7 Biological Neural Network By BruceBlaus - Own work, CC BY 3.0 8 Artificial

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

RL und Funktionsapproximation

RL und Funktionsapproximation RL und Funktionsapproximation Bisher sind haben wir die Funktionen V oder Q als Tabellen gespeichert. Im Allgemeinen sind die Zustandsräume und die Zahl der möglichen Aktionen sehr groß. Deshalb besteht

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

Thema 3: Radiale Basisfunktionen und RBF- Netze

Thema 3: Radiale Basisfunktionen und RBF- Netze Proseminar: Machine Learning 10 Juli 2006 Thema 3: Radiale Basisfunktionen und RBF- Netze Barbara Rakitsch Zusammenfassung: Aufgabe dieses Vortrags war es, die Grundlagen der RBF-Netze darzustellen 1 Einführung

Mehr

a) Name and draw three typical input signals used in control technique.

a) Name and draw three typical input signals used in control technique. 12 minutes Page 1 LAST NAME FIRST NAME MATRIKEL-NO. Problem 1 (2 points each) a) Name and draw three typical input signals used in control technique. b) What is a weight function? c) Define the eigen value

Mehr

Modell Komplexität und Generalisierung

Modell Komplexität und Generalisierung Modell Komplexität und Generalisierung Christian Herta November, 2013 1 von 41 Christian Herta Bias-Variance Lernziele Konzepte des maschinellen Lernens Targetfunktion Overtting, Undertting Generalisierung

Mehr

Neuronale Netze (Konnektionismus)

Neuronale Netze (Konnektionismus) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Daniel Göhring Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Wiederholung: Iterative Verfahren

Wiederholung: Iterative Verfahren Wiederholung: Iterative Verfahren Vorlesung Inverse Probleme 22.12.2011 Inhalt Landweber-Iteration Nichtlineare Probleme Konjugierte Gradientenmethoden Landweber-Iteration T Tx = T y äquivalente Fixpunktgleichung

Mehr

Lösungen zur letzten Stunde & Vorbereitung

Lösungen zur letzten Stunde & Vorbereitung Wiederholung und Vorbereitung: Lösungen zur letzten Stunde & Vorbereitung martin.loesch@kit.edu (0721) 608 45944 Besprechung XOR-Aufgabe Übersicht Besprechung 3-Klassen-Aufgabe Framework für Perzeptron-Lernen

Mehr

Computational Models

Computational Models - University of Applied Sciences - Computational Models - CSCI 331 - Friedhelm Seutter Institut für Angewandte Informatik Part I Automata and Languages 0. Introduction, Alphabets, Strings, and Languages

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?

Mehr

12. Potentialflächen und Optimierung

12. Potentialflächen und Optimierung Dr. Jens Döbler Computeranwendung in der Chemie Informatik für Chemiker(innen) 12. Potentialflächen und Optimierung Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL12 Folie

Mehr

Backpropagation. feedforward Netze

Backpropagation. feedforward Netze Backpropagation Netze ohne Rückkopplung, überwachtes Lernen, Gradientenabstieg, Delta-Regel Datenstrom (Propagation) Input Layer hidden Layer hidden Layer Output Layer Daten Input Fehler Berechnung Fehlerstrom

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Künstliche Neuronale Netze als Möglichkeit, einer Maschine das Lesen beizubringen Anja Bachmann 18.12.2008 Gliederung 1. Motivation 2. Grundlagen 2.1 Biologischer Hintergrund 2.2 Künstliche neuronale Netze

Mehr

Lineare Regression 2: Gute Vorhersagen

Lineare Regression 2: Gute Vorhersagen Lineare Regression 2: Gute Vorhersagen Markus Kalisch 23.09.2014 1 Big Picture: Statistisches Lernen Supervised Learning (X,Y) Unsupervised Learning X VL 7, 11, 12 Regression Y kontinuierlich VL 1, 2,

Mehr

KALAHA. Erfahrungen bei der Implementation von neuronalen Netzen in APL. Dipl.Math. Ralf Herminghaus, April 2018

KALAHA. Erfahrungen bei der Implementation von neuronalen Netzen in APL. Dipl.Math. Ralf Herminghaus, April 2018 KALAHA Erfahrungen bei der Implementation von neuronalen Netzen in APL Dipl.Math. Ralf Herminghaus, April 2018 1. Die Schlagzeile 2. Die Idee APL ist eine Super-Sprache! Also: So schwierig kann das ja

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Modellevaluierung Niels andwehr ernen und Vorhersage Klassifikation, Regression: ernproblem Eingabe: Trainingsdaten Ausgabe: Modell

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training eines Künstlich Neuronalen Netzes (KNN) zur Approximation einer Kennlinie in JavaNNS 28.01.2008

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren

KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren KNN-Methode zur Einschätzung von Veränderungen des Salzgehaltes in Ästuaren Holger Rahlf; Reiner Schubert www.baw.de Künstlich Neuronales Netz Gliederung Einleitung Grundlagen Möglichkeit und Grenzen Anwendung

Mehr

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1.

Lösungen Klausur. k k (n + 1) n. für alle n N. Lösung: IA: Für n = 1 ist 1. k k + (n + 1) n+1. k k = k=1. k=1 kk = 1 1 = 1 2 = 2 1. Lösungen Klausur Aufgabe (3 Punkte) Zeigen Sie, dass n k k (n + ) n k für alle n N. IA: Für n ist k kk 2 2. IV: Es gilt n k kk (n + ) n für ein n N. IS: Wir haben n+ k k k n k k + (n + ) n+ k IV (n + )

Mehr

Klassifikationsverfahren und Neuronale Netze

Klassifikationsverfahren und Neuronale Netze Klassifikationsverfahren und Neuronale Netze Hauptseminar - Methoden der experimentellen Teilchenphysik Thomas Keck 9.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Grundlagen Neuronaler Netze

Grundlagen Neuronaler Netze Grundlagen Neuronaler Netze Neuronen, Aktivierung, Output, Netzstruktur, Lernziele, Training, Grundstruktur Der Begriff neuronales Netz(-werk) steht immer für künstliche neuronale Netzwerke, wenn nicht

Mehr

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze Vorlesung Künstliche Intelligenz Wintersemester 2006/07 Teil III: Wissensrepräsentation und Inferenz Kap.5: Neuronale Netze Dieses Kapitel basiert auf Material von Andreas Hotho Mehr Details sind in der

Mehr

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading

Kapitel V. V. Ensemble Methods. Einführung Bagging Boosting Cascading Kapitel V V. Ensemble Methods Einführung Bagging Boosting Cascading V-1 Ensemble Methods c Lettmann 2005 Einführung Bewertung der Generalisierungsfähigkeit von Klassifikatoren R (c) wahre Missklassifikationsrate

Mehr

Leipziger Institut für Informatik. Wintersemester Seminararbeit. im Studiengang Informatik der Universität Leipzig

Leipziger Institut für Informatik. Wintersemester Seminararbeit. im Studiengang Informatik der Universität Leipzig Leipziger Institut für Informatik Wintersemester 2017 Seminararbeit im Studiengang Informatik der Universität Leipzig Forschungsseminar Deep Learning Begriffsbildung, Konzepte und Überblick Verfasser:

Mehr

Parametric Spectral Estimation

Parametric Spectral Estimation Parametric Spectral Estimation Exercises for Digital Signal Processing II Exercise 2.3.26 Stefan Goetze / Volker Mildner Infos about the examination Diploma students: Oral examinations on March, 29 th.-

Mehr

Projekt Maschinelles Lernen WS 06/07

Projekt Maschinelles Lernen WS 06/07 Projekt Maschinelles Lernen WS 06/07 1. Auswahl der Daten 2. Evaluierung 3. Noise und Pruning 4. Regel-Lernen 5. ROC-Kurven 6. Pre-Processing 7. Entdecken von Assoziationsregeln 8. Ensemble-Lernen 9. Wettbewerb

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren Lineare Regression Christian Herta Oktober, 2013 1 von 33 Christian Herta Lineare Regression Lernziele Lineare Regression Konzepte des Maschinellen Lernens: Lernen mittels Trainingsmenge Kostenfunktion

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt

Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Albayrak, Fricke (AOT) Oer, Thiel (KI) Wintersemester 2014 / 2015 8. Aufgabenblatt

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze. Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht Partielle Differentialgleichungen, Approximation der Lösung Finite Elemente, lineare und höhere Ansatzfunktionen Dünn

Mehr

Teil III: Wissensrepräsentation und Inferenz. Nachtrag zu Kap.5: Neuronale Netze. w i,neu = w i,alt + x i * (Output soll - Output ist ) Delta-Regel

Teil III: Wissensrepräsentation und Inferenz. Nachtrag zu Kap.5: Neuronale Netze. w i,neu = w i,alt + x i * (Output soll - Output ist ) Delta-Regel Einfaches Perzeptrn Delta-Regel Vrlesung Künstliche Intelligenz Wintersemester 2006/07 Teil III: Wissensrepräsentatin und Inferenz Nachtrag zu Kap.5: Neurnale Netze Beim Training werden die Beispiele dem

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Rückblick Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Ridge Regression vermeidet Überanpassung, indem einfachere Modelle mit

Mehr

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze. Was sind künstliche Neuronale Netze?

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze. Was sind künstliche Neuronale Netze? Was sind künstliche Neuronale Netze? Vorlesung Künstliche Intelligenz Wintersemester 2006/07 Teil III: Wissensrepräsentation und Inferenz Kap.5: Neuronale Netze Künstliche Neuronale Netze sind massiv parallel

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

Least Absolute Shrinkage And Seletion Operator (LASSO)

Least Absolute Shrinkage And Seletion Operator (LASSO) Least Absolute Shrinkage And Seletion Operator (LASSO) Peter von Rohr 20 März 2017 Lineare Modell und Least Squares Als Ausgangspunkt haben wir das Lineare Modell und Least Squares y = Xβ + ɛ (1) ˆβ =

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?

Mehr

Statistical Learning

Statistical Learning Statistical Learning M. Gruber KW 42 Rev.1 1 Neuronale Netze Wir folgen [1], Lec 10. Beginnen wir mit einem Beispiel. Beispiel 1 Wir konstruieren einen Klassifikator auf der Menge, dessen Wirkung man in

Mehr

ISEA RWTH Aachen Electric Bus Simulation

ISEA RWTH Aachen Electric Bus Simulation ISEA RWTH Aachen Electric Bus Simulation Finding the Optimal Technical Configuration 05.04.2017 Fabian Meishner Lehrstuhl für Elektrochemische Energiewandlung und 1 Speichersystemtechnik Electric Bus Simulation

Mehr

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In

Mehr

4. Multilayer perceptrons and backpropagation

4. Multilayer perceptrons and backpropagation 4. Multilayer perceptrons and backpropagation Multilayer feed-forward networks, or multilayer perceptrons (MLPs) have one or several hidden layers of nodes. This implies that they have two or more layers

Mehr

Adaptive Systeme. Mehrere Neuronen, Assoziative Speicher und Mustererkennung. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Mehrere Neuronen, Assoziative Speicher und Mustererkennung. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Mehrere Neuronen, Assoziative Speicher und Mustererkennung Prof. Dr. rer. nat. Nikolaus Wulff Modell eines Neuron x x 2 x 3. y y= k = n w k x k x n Die n binären Eingangssignale x k {,}

Mehr

From HiL to Test Vehicle:

From HiL to Test Vehicle: From HiL to Test Vehicle: Reuse of test cases with same test automation Agenda: Trailer Presentation Agenda: Movie about Tool Questions After presentation Live Demo Vehicle Meeting point: ETAS Stand 1642

Mehr

Musterlösung der Klausur vom 29. Juli 2003

Musterlösung der Klausur vom 29. Juli 2003 Statistik für Bioinformatiker SoSe 2003 Rainer Spang Musterlösung der Klausur vom 29. Juli 2003 Aufgabe 1. 10 Definieren Sie die folgenden statistischen Begriffe in einem Satz oder in einer Formel: 1.

Mehr

Rekurrente Neuronale Netze

Rekurrente Neuronale Netze Rekurrente Neuronale Netze Gregor Mitscha-Baude May 9, 2016 Motivation Standard neuronales Netz: Fixe Dimensionen von Input und Output! Motivation In viele Anwendungen variable Input/Output-Länge. Spracherkennung

Mehr

Einführung in NLP mit Deep Learning

Einführung in NLP mit Deep Learning Einführung in NLP mit Deep Learning Hans-Peter Zorn Minds mastering Machines, Köln, 26.4.2018 NLP ist auf einmal überall Zusammenfassung aggregated reviews Dokumentklassifikation Übersetzung Dialogsysteme

Mehr

Aufgabe (12 Punkte) Sei A A eine σ-algebra. (a) Man zeige: Ist X : Ω R A -messbar, dann ist X A-messbar. (b) Gilt die Umkehrung von (a)?

Aufgabe (12 Punkte) Sei A A eine σ-algebra. (a) Man zeige: Ist X : Ω R A -messbar, dann ist X A-messbar. (b) Gilt die Umkehrung von (a)? Am 5. Mai 2007 wurde zum dritten Mal eine stochastische Eingangsprüfung durchgeführt. Insgesamt konnten maximal 56 Punkte erreicht werden, zum Bestehen der Prüfung waren mindestens 26 Punkte notwendig.

Mehr

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH

Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung , Dr.-Ing. Steffen Herbort, A.R.T. GmbH Echtzeitfähige Algorithmen für markerloses Tracking und Umfelderkennung 26.10.2016, TP 2: Arbeiten von A.R.T. TP2: Tracking und Umfelderkennung Markerloses Tracking texturierte Objekte Umfelderkennung

Mehr

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp Optimal-trennende Hyperebenen und die Support Vector Machine Volker Tresp 1 (Vapnik s) Optimal-trennende Hyperebenen (Optimal Separating Hyperplanes) Wir betrachten wieder einen linearen Klassifikator

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr