So lösen Sie das multivariate lineare Regressionsproblem von Christian Herta

Größe: px
Ab Seite anzeigen:

Download "So lösen Sie das multivariate lineare Regressionsproblem von Christian Herta"

Transkript

1 Multivariate Lineare Regression Christian Herta Oktober, von 34 Christian Herta Multivariate Lineare Regression

2 Lernziele Multivariate Lineare Regression Konzepte des Maschinellen Lernens: Kostenfunktion (cost function) Gradientenabstiegsverfahren (gradient descent) Umskalieren der Input-Daten 2 von 34 Christian Herta Multivariate Lineare Regression

3 Outline 1 Problemstellung 2 Gradient Descent 3 Feature Scaling 4 Praxis 5 Basis Funktionen 3 von 34 Christian Herta Multivariate Lineare Regression

4 Multivariare Regression Überwachtes Lernen (supervised learning): m Beobachtungen (Trainingsbeispiele) mit n Merkmale (Features): 1 j n (bisher n = 1): Input-Features x (i) des i-ten Trainingsbeispiels: x (i) = x (i) 1, x (i) 2,..., x (i) n i-ten Zielwert y (i) x (i) : Wert des Features j für das i-te Trainingsbeispiel j Ziel: Vorhersage eines Wertes y für einen neuen Wert für x. 4 von 34 Christian Herta Multivariate Lineare Regression

5 Beispiel: Boston-Dataset zur Vorhersage der Hauspreise #l o a d d a t a from s k l e a r n. d a t a s e t s import load_boston b o s t o n = load_boston ( ) p r i n t b o s t o n. DESCR # f e a t u r e names b o s t o n. feature_names # f e a t u r e s b o s t o n. data # h o u s e p r i c e : b o s t o n. t a r g e t 5 von 34 Christian Herta Multivariate Lineare Regression

6 Multiple Features 6 von 34 Christian Herta Multivariate Lineare Regression

7 7 von 34 Christian Herta Multivariate Lineare Regression

8 Multivariare Lineare Regression Lineares Modell, d.h. linear bezüglich der Parameter Θ j auch (erstmal) linear bezüglich der x j n h Θ (x 1,..., x n ) = Θ 0 + Θ 1 x Θ n x n = Θ 0 + Θ j x j j=1 8 von 34 Christian Herta Multivariate Lineare Regression

9 Beispielplot Datenpunkte und beste Hypothese(Ebene). 9 von 34 Christian Herta Multivariate Lineare Regression

10 Vektor-Darstellung h Θ ( x) = Θ 0 + Θ 1 x 1 + Θ 2 x Θ n x n = Θ T x = x T Θ mit x = x 0 = 1 x 1 x 2... x n Θ = Θ 0 Θ 1 Θ 2... Θ n 10 von 34 Christian Herta Multivariate Lineare Regression

11 Outline 1 Problemstellung 2 Gradient Descent 3 Feature Scaling 4 Praxis 5 Basis Funktionen 11 von 34 Christian Herta Multivariate Lineare Regression

12 Problemstellung Hypothese: h Θ ( x) = Θ T x = Θ 0 x 0 + Θ 1 x Θ n x n mit x 0 = 1 n + 1 Parameter: Θ T = (Θ 0, Θ 1,..., Θ n ) Minimierung der Kostenfunktion J: J( Θ) = 1 m (h Θ ( x (i) ) y (i) ) 2 2m i=1 12 von 34 Christian Herta Multivariate Lineare Regression

13 Gradient Descent Wiederhole bis Konvergenz erreicht ist: Θ j Θ j α Θ j J(Θ) Beachte bei Implementierung: Simultanes Update für alle Θ j 13 von 34 Christian Herta Multivariate Lineare Regression

14 Vektorform: Gradient Descent Mit der Denition des Gradienten: grad(j(θ)) = J(Θ) = J(Θ) Θ 0 J(Θ) Θ 1... J(Θ) Θ n Θ neu Θ alt α grad(j(θ alt )) 14 von 34 Christian Herta Multivariate Lineare Regression

15 Update Rule Θ j J(Θ) = Θ j 1 2m = Θ j 1 2m m (h Θ ( x (i) ) y (i) ) 2 i=1 m ( Θ T x (i) y (i) ) 2 Ergibt folgende Update Rules für alle n + 1 Θ j mit 0 j n: i=1 Θ j Θ j α 1 m m i=1 ( Θ T x (i) y (i) )x (i) j 15 von 34 Christian Herta Multivariate Lineare Regression

16 Vektorform der Update Rule Θ neu Θ alt α 1 m m ( Θ T x (i) y (i) ) x (i) i=1 16 von 34 Christian Herta Multivariate Lineare Regression

17 Outline 1 Problemstellung 2 Gradient Descent 3 Feature Scaling 4 Praxis 5 Basis Funktionen 17 von 34 Christian Herta Multivariate Lineare Regression

18 Feature-Scaling: Skalieren der x-werte Idee: Werte aller Features (Merkmale), d.h. alle x j, sollen etwa im Bereich 1 x j 1 liegen. Wie könnte dies erreicht werden?? 18 von 34 Christian Herta Multivariate Lineare Regression

19 Feature-Scaling: Skalieren der Features Berechnen der umskalierten Features x j mittels Standardisierung (z-transformation): mit x j = x j µ j std(x j ) µ j = x j = i x (i) /m: Mittelwert für x j j std(x j ) = var(x j ): Standardabweichung von x j var(x j ) = (x j µ j ) 2 = x 2 j µ 2 j : Varianz von x j Für die transformierten Daten x ist der Mittelwert 0 und die Standardabweichung von 34 Christian Herta Multivariate Lineare Regression

20 Outline 1 Problemstellung 2 Gradient Descent 3 Feature Scaling 4 Praxis 5 Basis Funktionen 20 von 34 Christian Herta Multivariate Lineare Regression

21 Implementierung mit Vektoren und Matrizen Daten als Matrix X mit X ij x (i) j Zeilen i: einzelnen Datensätze x (i) Spalten j: für die einzelnen Features mit x (i) 0 = 1 Vorhersagen für alle Datensätze in Matrix X : h(x) = X Θ z.b: bei 3 Features und 700 Trainingsdaten mit numpy: I n [ 9 ] : X. s h a p e Out [ 9 ] : ( 7 0 0, 4) I n [ 1 0 ] : t h e t a. s h a p e Out [ 1 0 ] : ( 4, ) I n [ 1 1 ] : h = X. dot ( t h e t a ) Out [ 1 1 ] : a r r a y ( [ 1. 3,... I n [ 1 2 ] : h. s h a p e Out [ 1 2 ] : ( 7 0 0, ) 21 von 34 Christian Herta Multivariate Lineare Regression

22 Vektorisierte Form der Update Rule mit Daten-Matrix X aus der vektorisierten Form der Update Rule Θ neu Θ alt α 1 m m (h( x (i) ) y (i) ) x (i) i=1 ergibt sich mit der Daten-Matrix X Θ neu Θ alt α 1 m XT ( h(x) y) in Python: theta = theta alpha ( 1. 0 / m) X.T. dot ( h y ) 22 von 34 Christian Herta Multivariate Lineare Regression

23 Oene Fragen Update Rules: Θ j Θ j α Θ j J(Θ) Debuggen: Wie kann man überprüfen, ob die Gradient Descent Implementierung funktioniert? Wie soll man die Lernrate α wählen? 23 von 34 Christian Herta Multivariate Lineare Regression

24 Funktioniert Gradient Descent? Ziel: min Θ J(Θ) Auftragen von J(Θ) über den Interationen (Epochen): J(Θ) muss in jeder Iteration kleiner werden. 24 von 34 Christian Herta Multivariate Lineare Regression

25 Lernrate α - zu kleine Werte Beispieldatensatz: Boston house-price data 25 von 34 Christian Herta Multivariate Lineare Regression

26 Lernrate α - zu groÿe Werte Beispieldatensatz: Boston house-price data 26 von 34 Christian Herta Multivariate Lineare Regression

27 Wahl von α Wenn α zu klein ist langsame Konvergenz Wenn α zu groÿ ist, eventuell keine Konvergenz: J wächst (oder oszilliert) Versuche mit verschiedenen α, z.b.: 0.001, 0.003, 0.01, 0.03, 0.1, 27 von 34 Christian Herta Multivariate Lineare Regression

28 Feature-Scaling: Θ für unskalierte Features x x = x mean(x) std(x) = x µ σ x Lernen ergibt modizierte Parameter : Θ 0 und Θ 1 d.h. h(x) = Θ 0 + Θ 1 x = Θ 0 + Θ 1 x µ = (Θ 0 Θ 1 µ ) + Θ 1 σ x σ x Θ 0 = Θ 0 Θ 1 µ σ x Θ 1 = Θ 1 σ x σ x x 28 von 34 Christian Herta Multivariate Lineare Regression

29 Outline 1 Problemstellung 2 Gradient Descent 3 Feature Scaling 4 Praxis 5 Basis Funktionen 29 von 34 Christian Herta Multivariate Lineare Regression

30 Multivariare Lineare Regression Bisher: Linearität bezüglich der Inputs x i (starke Einschränkung) n h Θ ( x) = Θ 0 + Θ j x j j=1 Erweiterung: Ersetzen der x j mit Basisfunktionen φ j ( x): n h Θ ( x) = Θ 0 + Θ j φ j ( x) Immer noch lineares Modell, da linear bezüglich der Parameter Θ j j=1 30 von 34 Christian Herta Multivariate Lineare Regression

31 Beispiele für Basisfunktionen Polynome: φ j ( x) = x 2 1 φ j ( x) = x 1 x 3 Gaussian Basis Funktion φ j ( x) = exp{ (x µ j) 2 } 2σ 2 j 31 von 34 Christian Herta Multivariate Lineare Regression

32 Features Transformation der Rohdaten x i in Features φ( x i ) Beispiel: Vorhersage des Preises von rechteckigen Grundstücken: Rohdaten: Länge x 1 und Breite x 2. statt: h θ = Θ 0 + Θ 1 laenge + Θ 2 breite mit der Fläche als Feature φ 1 : aeche = laenge breite h θ = Θ 0 + Θ 1 aeche 32 von 34 Christian Herta Multivariate Lineare Regression

33 Polynominale Regression siehe Bild Lsf.gif 33 von 34 Christian Herta Multivariate Lineare Regression

34 Literaturangabe Andrew Ng: Machine Learning (Stanford OpenClassroom) Weiterführende Literatur: C. Bishop: Pattern recognition and Machine Learning, Springer Verlag von 34 Christian Herta Multivariate Lineare Regression

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren

Lineare Regression. Christian Herta. Oktober, Problemstellung Kostenfunktion Gradientenabstiegsverfahren Lineare Regression Christian Herta Oktober, 2013 1 von 33 Christian Herta Lineare Regression Lernziele Lineare Regression Konzepte des Maschinellen Lernens: Lernen mittels Trainingsmenge Kostenfunktion

Mehr

Logistische Regression

Logistische Regression Logistische Regression Christian Herta August, 2013 1 von 45 Christian Herta Logistische Regression Lernziele Logistische Regression Konzepte des maschinellen Lernens (insb. der Klassikation) Entscheidungsgrenze,

Mehr

Modell Komplexität und Generalisierung

Modell Komplexität und Generalisierung Modell Komplexität und Generalisierung Christian Herta November, 2013 1 von 41 Christian Herta Bias-Variance Lernziele Konzepte des maschinellen Lernens Targetfunktion Overtting, Undertting Generalisierung

Mehr

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation

Validation Model Selection Kreuz-Validierung Handlungsanweisungen. Validation. Oktober, von 20 Validation Validation Oktober, 2013 1 von 20 Validation Lernziele Konzepte des maschinellen Lernens Validierungsdaten Model Selection Kreuz-Validierung (Cross Validation) 2 von 20 Validation Outline 1 Validation

Mehr

Präsentation: Vorname, Nachname. Lizenz:

Präsentation: Vorname, Nachname. Lizenz: Machine Learning: Lineare Regression Präsentation: Vorname, Nachname Lizenz: HTW Berlin Informatik und Wirtschaft Aktuelle Trends der Informations- und Kommunikationstechnik Machine Learning: Lineare Regression

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Dr. Dominik Grimm Probelehrveranstaltung Fakultät für Informatik und Mathematik Hochschule

Mehr

5 Allgemeine Verfahren zum Testen von Hypothesen

5 Allgemeine Verfahren zum Testen von Hypothesen 5 Allgemeine Verfahren zum Testen von Hypothesen 5.1 Likelihood Schätzung für multivariate Daten Statistisches Modell: Einfache Zufallsstichprobe X 1,..., X n (unabhängige Wiederholungen von X IR d ).

Mehr

D-CHAB Frühlingssemester 2017 T =

D-CHAB Frühlingssemester 2017 T = D-CHAB Frühlingssemester 17 Grundlagen der Mathematik II Dr Marcel Dettling Lösung 13 1) Die relevanten Parameter sind n = 3, x = 1867, σ x = und µ = 18 (a) Die Teststatistik T = X µ Σ x / n ist nach Annahme

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap

Mehr

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines Mustererkennung R. Neubecker, WS 018 / 019 (SVM) kommen aus der statistischen Lerntheorie gehören zu den optimalen Klassifikatoren = SVMs minimieren nicht nur den Trainingsfehler, sondern auch den (voraussichtlichen)

Mehr

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017 10.1 Sommersemester 2017 Problemstellung Welche Gerade? Gegeben sind folgende Messungen: Masse (kg) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Kraft (N) 1.6 2.2 3.2 3.0 4.9 5.7 7.1 7.3 8.1 Annahme: Es gibt eine Funktion

Mehr

2 Alle Standardabweichungen σ i sind bekannt, bzw. die Kovarianzmatrix der Daten ist bekannt: Minimieren der χ 2 - Funktion.

2 Alle Standardabweichungen σ i sind bekannt, bzw. die Kovarianzmatrix der Daten ist bekannt: Minimieren der χ 2 - Funktion. 2 Alle Standardabweichungen σ i sind bekannt, bzw. die Kovarianzmatrix der Daten ist bekannt: Minimieren der χ 2 - Funktion. 2.1 Allgemeine Behandlung Definition der χ 2 -Funktion. Hier definieren wir

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Motivation. Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus

Motivation. Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus 3. Klassifikation Motivation Klassifikationsverfahren sagen ein abhängiges nominales Merkmal anhand einem oder mehrerer unabhängiger metrischer Merkmale voraus Beispiel: Bestimme die Herkunft eines Autos

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Modellklassen, Verlustfunktionen Nico Piatkowski und Uwe Ligges 02.05.2017 1 von 15 Literatur Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical

Mehr

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte

R 3 und U := [e 2, e 3 ] der von e 2, e 3 erzeugte Aufgabe ( Es seien e =, e = Untervektorraum (, e = ( R und U := [e, e ] der von e, e erzeugte Weiter sei G := {A GL(, R A e = e und A U U} (a Zeigen Sie, dass G eine Untergruppe von GL(, R ist (b Geben

Mehr

Matrix. Unter einer (m n)-matrix (m, n N) über einem Körper K versteht man ein Rechteckschema. a m,1 a m,2 a m,n. A = (a i,j ) = Matrix 1-1

Matrix. Unter einer (m n)-matrix (m, n N) über einem Körper K versteht man ein Rechteckschema. a m,1 a m,2 a m,n. A = (a i,j ) = Matrix 1-1 Matrix Unter einer (m n)-matrix (m, n N) über einem Körper K versteht man ein Rechteckschema a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = (a i,j ) =.... a m,1 a m,2 a m,n Matrix 1-1 Matrix Unter einer (m n)-matrix

Mehr

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134 Training von RBF-Netzen Rudolf Kruse Neuronale Netze 34 Radiale-Basisfunktionen-Netze: Initialisierung SeiL fixed ={l,...,l m } eine feste Lernaufgabe, bestehend ausmtrainingsbeispielenl=ı l,o l. Einfaches

Mehr

RL und Funktionsapproximation

RL und Funktionsapproximation RL und Funktionsapproximation Bisher sind haben wir die Funktionen V oder Q als Tabellen gespeichert. Im Allgemeinen sind die Zustandsräume und die Zahl der möglichen Aktionen sehr groß. Deshalb besteht

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp Optimal-trennende Hyperebenen und die Support Vector Machine Volker Tresp 1 (Vapnik s) Optimal-trennende Hyperebenen (Optimal Separating Hyperplanes) Wir betrachten wieder einen linearen Klassifikator

Mehr

2.4 Gradientenabstiegsverfahren

2.4 Gradientenabstiegsverfahren 2.4 Gradientenabstiegsverfahren Optimale Parameter lassen sich bei linearer Regression analytisch bestimmen, dennoch verwendet man in der Regel das sogenannte Gradientenabstiegsverfahren, um diese (näherungsweise)

Mehr

Statistical Learning

Statistical Learning Statistical Learning M. Gruber KW 42 Rev.1 1 Neuronale Netze Wir folgen [1], Lec 10. Beginnen wir mit einem Beispiel. Beispiel 1 Wir konstruieren einen Klassifikator auf der Menge, dessen Wirkung man in

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Lineare Klassifikationsmethoden

Lineare Klassifikationsmethoden Verena Krieg Fakultät für Mathematik und Wirtschaftswissenschaften 08. Mai 2007 Inhaltsverzeichnis 1. Einführung 2. Lineare Regression 3. Lineare Diskriminanzanalyse 4. Logistische Regression 4.1 Berechnung

Mehr

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min Klausur, Analyse mehrdimensionaler Daten, WS 2010/2011, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 21.02.2011 Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte,

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Niels Landwehr, Silvia Makowski, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Di 10:00-11:30

Mehr

Data Mining 8-1. Kapitel 8: Recommendation Systems. Johannes Zschache Wintersemester 2018/19

Data Mining 8-1. Kapitel 8: Recommendation Systems. Johannes Zschache Wintersemester 2018/19 Data Mining Kapitel 8: Recommendation Systems Johannes Zschache Wintersemester 08/9 Abteilung Datenbanken, Universität Leipzig http://dbs.uni-leipzig.de Data Mining 8- 8- Data Mining Übersicht Hochdimension.

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen. Tobias Scheffer Michael Brückner Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Tobias Scheffer Michael Brückner Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Mo 10:00-11:30

Mehr

2. Übung: Lineare dynamische Systeme

2. Übung: Lineare dynamische Systeme 2. Übung: Lineare dynamische Systeme Aufgabe 2.. Gegeben sind die beiden autonomen Systeme und x (2.) {{ A 2 2 x. (2.2) {{ A 2 Berechnen Sie die regulären Zustandstransformationen x = V z und x = V 2 z,

Mehr

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung Kernel, Perceptron, Regression Erich Schubert, Arthur Zimek Ludwig-Maximilians-Universität München 2014-07-20 KDD Übung Kernel-Fukctionen Kernel kann mehrdeutig sein! Unterscheidet zwischen: Kernel function

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht Partielle Differentialgleichungen, Approximation der Lösung Finite Elemente, lineare und höhere Ansatzfunktionen Dünn

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Klassifikation und Regression: nächste Nachbarn Katharina Morik, Uwe Ligges 14.05.2013 1 von 24 Gliederung Funktionsapproximation 1 Funktionsapproximation Likelihood 2 Kreuzvalidierung

Mehr

Data Mining Kapitel 11: Machine Learning. Johannes Zschache Wintersemester 2018/19

Data Mining Kapitel 11: Machine Learning. Johannes Zschache Wintersemester 2018/19 Data Mining Kapitel 11: Machine Learning Johannes Zschache Wintersemester 2018/19 Abteilung Datenbanken, Universität Leipzig http://dbs.unileipzig.de Data Mining 111 112 Data Mining Übersicht Hochdimension.

Mehr

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume

Inhalt. 4.1 Motivation. 4.2 Evaluation. 4.3 Logistische Regression. 4.4 k-nächste Nachbarn. 4.5 Naïve Bayes. 4.6 Entscheidungsbäume 4. Klassifikation Inhalt 4.1 Motivation 4.2 Evaluation 4.3 Logistische Regression 4.4 k-nächste Nachbarn 4.5 Naïve Bayes 4.6 Entscheidungsbäume 4.7 Support Vector Machines 4.8 Neuronale Netze 4.9 Ensemble-Methoden

Mehr

1 (2π) m/2 det (Σ) exp 1 ]

1 (2π) m/2 det (Σ) exp 1 ] Multivariate Normalverteilung: m=1: Y N(µ; σ 2 ) Erwartungswert: µ Varianz: σ 2 f Y (y) = f Y1 Y 2...Y m (y 1,y 2,...,y m ) = [ 1 exp 1 ] 2πσ 2 2 (y µ)2 /σ 2 Σ: m m-matrix, symmetrisch, positiv definit.

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

6.2 Lineare Regression

6.2 Lineare Regression 6.2 Lineare Regression Einfache lineare Regression (vgl. Kap. 4.7) Y i = θ 0 + θ 1 X i + ǫ i ǫ i (0, σ 2 ) ˆθ 1 ˆθ 0 = S XY S 2 X = 1 ( Yi n ˆθ ) 1 Xi als Lösung der Minimumaufgabe n (Y i θ 1 X 1 θ 0 )

Mehr

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Rückblick Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Ridge Regression vermeidet Überanpassung, indem einfachere Modelle mit

Mehr

Nutzung maschinellen Lernens zur Extraktion von Paragraphen aus PDF-Dokumenten

Nutzung maschinellen Lernens zur Extraktion von Paragraphen aus PDF-Dokumenten Nutzung maschinellen Lernens zur Extraktion von Paragraphen aus PDF-Dokumenten Albert-Ludwigs-Universität zu Freiburg 13.09.2016 Maximilian Dippel max.dippel@tf.uni-freiburg.de Überblick I Einführung Problemstellung

Mehr

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben

6. f : Abb(R, R) R mit ϕ f(ϕ) := ϕ(1) Hinweis:f :V W über K bedeutet Abbildung f zwischen den Vektorräumen V und W über demselben Aufgabe 74. Untersuchen Sie die folgenden Abbildungen auf Linearität. 1. f : R 2 R 2 mit (x, y) f(x, y) := (3x + 2y, x) 2. f : R R mit x f(x) := ϑx + ζ für feste ϑ, ζ R 3. f : Q 2 R mit (x, y) f(x, y)

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 018 / 019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen 1 Optimierung Optimierungsprobleme Suche nach dem Maximum oder Minimum

Mehr

Reduced-Rank Least Squares Modelle

Reduced-Rank Least Squares Modelle 16.12.2008 Wiederholung Gegeben: Matrix A m n Paar Rechter Eigenvektor x, Eigenwert λ: A x = λ x mit x R n \ 0, λ N Paar Linker Eigenvektor y, Eigenwert λ: y T A = λ y T Singulärwertzerlegung (SVD): A

Mehr

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2 Tom Schelthoff 30.11.2018 Inhaltsverzeichnis Deep Learning Seed-Stabilität Regularisierung Early Stopping Dropout Batch Normalization

Mehr

Data Mining & Machine Learning Dipl.-Inf. Christoph Carl Kling

Data Mining & Machine Learning Dipl.-Inf. Christoph Carl Kling Web Science & Technologies University of Koblenz Landau, Germany Data Mining & Machine Learning Dipl.-Inf. Christoph Carl Kling Mündliche Prüfung Welche Methoden gibt es? Wie sind die Annahmen für die

Mehr

Lineare Regression. Volker Tresp

Lineare Regression. Volker Tresp Lineare Regression Volker Tresp 1 Die Lernmaschine: Das lineare Modell / ADALINE Wie beim Perzeptron wird zunächst die Aktivierungsfunktion gewichtete Summe der Eingangsgrößen x i berechnet zu h i = M

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Algorithmen für geographische Informationssysteme. 6. Vorlesung: 14. Mai 2014

Algorithmen für geographische Informationssysteme. 6. Vorlesung: 14. Mai 2014 Algorithmen für geographische Informationssysteme 6. Vorlesung: 14. Mai 2014 Ausgleichung bei linearem funktionalen Modell Beispiel 2: Ausgleichung von Höhendifferenzen P 2 Δh 2,3 = 7.0 m P 3 Δh 1,2 =

Mehr

Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann. 8. Übungsblatt zur Vorlesung Ökonometrie

Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann. 8. Übungsblatt zur Vorlesung Ökonometrie Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann 8. Übungsblatt zur Vorlesung Ökonometrie Aufgabe 1: In der Vorlesung haben wir das lineare Regressionsproblem als statistisches Problem formuliert:

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Nichtlineare Ausgleichsrechnung

Nichtlineare Ausgleichsrechnung 10. Großübung Nichtlineare Ausgleichsrechnung Allgemeines Problem: Wir betrachten ein nichtlineares System F : R n R m mit (m > n, d.h. das System ist überbestimmt und F i (x g(t i ; x g i! 0 i 1,.., m.

Mehr

Kalman-Filter und Target Tracking

Kalman-Filter und Target Tracking Kalman-Filter und Target Tracking Peter Poschmann Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik/Mathematik 23. März 2016 Inhalt 1 Kalman-Filter Einleitung Eindimensionaler Kalman-Filter

Mehr

Das Perzeptron. Volker Tresp

Das Perzeptron. Volker Tresp Das Perzeptron Volker Tresp 1 Einführung Das Perzeptron war eines der ersten ernstzunehmenden Lernmaschinen Die wichtigsten Elemente Sammlung und Vorverarbeitung der Trainingsdaten Wahl einer Klasse von

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

Lineare Regression. Kapitel Regressionsgerade

Lineare Regression. Kapitel Regressionsgerade Kapitel 5 Lineare Regression 5 Regressionsgerade Eine reelle Zielgröße y hänge von einer reellen Einflussgröße x ab: y = yx) ; zb: Verkauf y eines Produkts in Stückzahl] hängt vom Preis in e] ab Das Modell

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. VO Februar R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

6.2 Feed-Forward Netze

6.2 Feed-Forward Netze 6.2 Feed-Forward Netze Wir haben gesehen, dass wir mit neuronalen Netzen bestehend aus einer oder mehreren Schichten von Perzeptren beispielsweise logische Funktionen darstellen können Nun betrachten wir

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Maschinelles Lernen Vorlesung

Maschinelles Lernen Vorlesung Maschinelles Lernen Vorlesung SVM Kernfunktionen, Regularisierung Katharina Morik 15.11.2011 1 von 39 Gliederung 1 Weich trennende SVM 2 Kernfunktionen 3 Bias und Varianz bei SVM 2 von 39 SVM mit Ausnahmen

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

Bayessche Lineare Regression

Bayessche Lineare Regression Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Baessche Lineare Regression Niels Landwehr Überblick Baessche Lernproblemstellung. Einführendes Beispiel: Münzwurfexperimente.

Mehr

Softwareprojektpraktikum Maschinelle Übersetzung

Softwareprojektpraktikum Maschinelle Übersetzung Softwareprojektpraktikum Maschinelle Übersetzung Jan-Thorsten Peter, Andreas Guta, Jan Rosendahl max.bleu@i6.informatik.rwth-aachen.de Vorbesprechung 5. Aufgabe 22. Juni 2017 Human Language Technology

Mehr

51 Numerische Berechnung von Eigenwerten und Eigenvektoren

51 Numerische Berechnung von Eigenwerten und Eigenvektoren 5 Numerische Berechnung von Eigenwerten und Eigenvektoren 5. Motivation Die Berechnung der Eigenwerte einer Matrix A IR n n als Lösungen der charakteristischen Gleichung (vgl. Kapitel 45) ist für n 5 unpraktikabel,

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

α i e i. v = α i σ(e i )+µ

α i e i. v = α i σ(e i )+µ Beweis: Der Einfachheit halber wollen wir annehmen, dass V ein endlich-dimensionaler Vektorraum mit Dimension n ist. Wir nehmen als Basis B {e 1,e 2,...e n }. Für beliebige Elemente v V gilt dann v α i

Mehr

Hauptdierentialanalyse

Hauptdierentialanalyse Hauptdierentialanalyse Jan Ditscheid TU Dortmund Seminar funktionale Datenanalyse 19.11.2015 1 / 40 1 Wozu HDA? 2 Denition des Problems 3 HDA am Beispiel 4 Techniken zur HDA 5 Beurteilung der Anpassung

Mehr

Einführung in Support Vector Machines (SVMs)

Einführung in Support Vector Machines (SVMs) Einführung in (SVM) Januar 31, 2011 Einführung in (SVMs) Table of contents Motivation Einführung in (SVMs) Outline Motivation Vektorrepräsentation Klassifikation Motivation Einführung in (SVMs) Vektorrepräsentation

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Deskriptive Statistik Peter Frentrup Humboldt-Universität zu Berlin 7. November 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November 2017 1 / 27 Übersicht

Mehr

Statistical Learning

Statistical Learning Statistical Learning M Gruber KW 45 Rev 1 1 Support Vector Machines Definition 1 (Lineare Trennbarkeit) Eine Menge Ü µ Ý µ Ü Æµ Ý Æµ R ist linear trennbar, wenn mindestens ein Wertepaar Û R µ existiert

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Niels Landwehr, Jules Rasetaharison, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 2/3) Bernhard Hanke Universität Augsburg 20..202 Bernhard Hanke / 3 Matrizen und Lineare Abbildungen Es seien lineare Abbildungen, d.h. Matrizen gegeben. B = (b jk ) : R r R n, A

Mehr

Gauß-Prozess-Regression

Gauß-Prozess-Regression Bayessche Regression und Gaußprozesse Dr. rer. nat. Johannes Riesterer Motivation Kriging Der südafrikanische Bergbauingenieur Danie Krige versuchte 1951, eine optimale Interpolationsmethode für den Bergbau

Mehr

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben (Marc Schlipsing) Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

Deskriptive Beschreibung linearer Zusammenhänge

Deskriptive Beschreibung linearer Zusammenhänge 9 Mittelwert- und Varianzvergleiche Mittelwertvergleiche bei k > 2 unabhängigen Stichproben 9.4 Beispiel: p-wert bei Varianzanalyse (Grafik) Bedienungszeiten-Beispiel, realisierte Teststatistik F = 3.89,

Mehr

Support Vector Machines, Kernels

Support Vector Machines, Kernels Support Vector Machines, Kernels Katja Kunze 13.01.04 19.03.2004 1 Inhalt: Grundlagen/Allgemeines Lineare Trennung/Separation - Maximum Margin Hyperplane - Soft Margin SVM Kernels Praktische Anwendungen

Mehr

Inhalt. Einleitung... XIII

Inhalt. Einleitung... XIII Inhalt Einleitung................................................. XIII 1 Vektoren, Matrizen und Arrays.................................. 1 1.0 Einführung.......................................... 1 1.1

Mehr

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3.

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3. Reparametrisierung des Modells Gegeben sei das Modell (2.1) mit (2.5) unter der linearen Restriktion Aβ = c mit A R a p, rg(a) = a, c R a. Wir betrachten die lineare Restriktion als Gleichungssystem. Die

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 26/7): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Intuition: Wie lässt sich das abhängige Merkmal durch die unabhängigen Merkmale erklären?

Intuition: Wie lässt sich das abhängige Merkmal durch die unabhängigen Merkmale erklären? 2. Regression Motivation Regressionsanalysen modellieren den Zusammenhang zwischen einem oder mehreren unabhängigen Merkmalen (z.b. Gewicht und PS) und einem abhängigen Merkmal (z.b. Verbrauch) Intuition:

Mehr

Einführung in Softwaretools zur Nichtlinearen Optimierung

Einführung in Softwaretools zur Nichtlinearen Optimierung Einführung in Softwaretools zur Nichtlinearen Optimierung 3. April 2017 5. April 2017 Sebastian Garreis, M. Sc. (hons) Johannes Haubner, M. Sc. Technische Universität München Fakultät für Mathematik Lehrstuhl

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2016 Prof. Dr. Stefan Etschberger Hochschule Augsburg Einstichproben-t-Test und approximativer Gaußtest

Mehr

Lineare Klassifikatoren. Volker Tresp

Lineare Klassifikatoren. Volker Tresp Lineare Klassifikatoren Volker Tresp 1 Einführung Lineare Klassifikatoren trennen Klassen durch eine lineare Hyperebene (genauer: affine Menge) In hochdimensionalen Problemen trennt schon eine lineare

Mehr

Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen

Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen Kapitel 9 Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen 9 Definitionen, Eigenschaften Wir betrachten jetzt p Zufallsvariablen X, X 2,, X p Alle Definitionen, Notationen und Eigenschaften

Mehr

Skipgram (Word2Vec): Praktische Implementierung

Skipgram (Word2Vec): Praktische Implementierung Skipgram (Word2Vec): Praktische Implementierung Benjamin Roth Centrum für Informations- und Sprachverarbeitung Ludwig-Maximilian-Universität München beroth@cis.uni-muenchen.de Benjamin Roth (CIS) Skipgram

Mehr

Geometrische Deutung linearer Abbildungen

Geometrische Deutung linearer Abbildungen Geometrische Deutung linearer Abbildungen Betrachten f : R n R n, f(x) = Ax. Projektionen z.b. A = 1 0 0 0 1 0 0 0 0 die senkrechte Projektion auf die xy-ebene in R 3. Projektionen sind weder injektiv

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Aufgabe 1. Signal Processing and Speech Communication Lab. Graz University of Technology

Aufgabe 1. Signal Processing and Speech Communication Lab. Graz University of Technology Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 1 Senden Sie die Hausübung bis spätestens 26.4.2017 per Email an hw1.spsc@tugraz.at. Verwenden Sie MatrikelNummer1

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Scheinklausur zur Linearen Algebra I, WS 05/06, 2. Teil

Scheinklausur zur Linearen Algebra I, WS 05/06, 2. Teil 14.2.2006 Scheinklausur zur Linearen Algebra I, WS 05/06, 2. Teil Prof. Dr. G. Hiß Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr