Stochastik-Praktikum
|
|
|
- Anna Schräder
- vor 7 Jahren
- Abrufe
Transkript
1 Stochastik-Praktikum Deskriptive Statistik Peter Frentrup Humboldt-Universität zu Berlin 7. November 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
2 Übersicht 1 Kenngrößen 2 Visualisierungen 3 Beispiel: Median vs. Mean 4 Beispiele mit Datensätzen (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
3 Kenngrößen univariater Verteilungen Endlichdimensionale Kenngrößen: Mittelwert E[X ] Median 1 2 (F 1 (0.5) + F 1 (0.5 )) Quantile Q α = F 1 (a) = inf{x F (x) α} für α (0, 1) Varianz und Standardabweichung σ 2 = Var(X ) bzw. σ = Var(X ) allgemeiner: (un-)zentrierte Momente E[X k ] bzw. E[(X EX ) k ] für k N Schiefe (skewness) E[(X EX ) 3 ]/σ 3, Wölbung (kurtosis) E[(X EX ) 4 ]/σ 4,... (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
4 Kenngrößen univariater Verteilungen Die unendlich-dimensionalen Kenngrößen (kumulative) Verteilungsfunktion F (x) = P[X x], x R charakteristische Funktion ϕ(t) = E[exp(itX )] beschreiben univariate Verteilungen vollständig. (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
5 Kenngrößen für Stichproben Typischerweise auf eine von zwei Weisen berechnet: wie zuvor, bloß bezüglich der empirischen Verteilung 1 n n 1 δ x i der Stichprobe, ggf. modifiziert zu einem erwartungstreuem Schätzer der entsprechenden Kenngröße der zugrundeliegenden theoretischen Verteilung. (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
6 Kenngrößen für Stichproben Beispiele Mittelwert x = 1 n n i=1 Varianz s 2 = 1 n 1 Schiefe 1 n x i n (x i x) 2 (erwartungstreu) i=1 n (x i x) 2 (nicht erwartungstreu) i=1 n (n 1)(n 2) n ( xi x ) 3 (erwartungstreu) i=1 Median aus der Ordnungsstatistik... s (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
7 Kenngrößen multivariater Verteilungen Mittelwert und Median (Vektoren) gemischte (zentrierte) Momente Kovarianzmatrix (alle zentrierten Momente der Ordnung 2) gemeinsame charakteristische Funktion oder Verteilungsfunktion Randverteilungen und Copula der gemeinsamen Verteilung Letztere beschreiben Verteilung eindeutig. (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
8 Übersicht 1 Kenngrößen 2 Visualisierungen 3 Beispiel: Median vs. Mean 4 Beispiele mit Datensätzen (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
9 Visualisierungen... von uni- bzw. multivariaten Verteilungen/Stichproben in R d : Dichtefunktion bzw Histogramm (skaliert auf PDF-Form) Regressionsgeraden, -polynome,... Quantil/Quantil-Plots (QQ-Plots) Scatterplot, Copula-Scatterplot Für Beispielcode siehe auch multinorm.py (Folien aus Block 1) (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
10 Visualisierungen... von uni- oder multivariaten kategorialen Datenstichproben: Kuchendiagramm Balkendiagramme... Kontingenztafeln Beispiele: Studienfächer, Nationalitäten, Geschlecht,... (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
11 Übersicht 1 Kenngrößen 2 Visualisierungen 3 Beispiel: Median vs. Mean 4 Beispiele mit Datensätzen (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
12 Beispiel: Median vs. Mean Untersuche Verteilung von Mean und Median für Stichprobe von je 50 Elementen von X N (0, 1), Y = X 5 import numpy as np f o r k i n range ( 0, 5 ) : p r i n t ( Experiment %d : % k ) X = np. random. normal ( s i z e =50) Y = X 5 p r i n t ( [ [ np. mean (X), np. median (X ) ], [ np. mean (Y), np. median (Y ) ] ] ) Beobachtung? Erklärung?? Visualisieren Sie, z.b. mit numpy.histogram + matplotlib.pyplot.bar, matplotlib.pyplot.boxplot, scipy.stats.probplot,... (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
13 Übersicht 1 Kenngrößen 2 Visualisierungen 3 Beispiel: Median vs. Mean 4 Beispiele mit Datensätzen (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
14 Univariate Daten Michelsons Lichtgeschwindigkeits-Daten Lichtgeschwindigkeit c s km/s. A. A. Michelson Nr. Wert s Durchlauf Experiment (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
15 Interpretation der Daten Nr. Wert s Durchlauf Experiment Erste Spalte: Fortlaufende Nummer der Messungen (1-100) Zweite Spalte: (Gemessene Geschwindigkeit ) in km/s Dritte Spalte: Fortlaufende Nummer in der Messreihe (1-20) Vierte Spalte: Nummer der Messreihe (1-5) (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
16 Einlesen der Daten m i c h e l s o n = np. l o a d t x t ( m i c h e l s o n. dat, s k i p r o w s =1) ( number, speed, run, e x p e r i m e n t ) = m i c h e l s o n. T # o d e r a l t e r n a t i v : number = m i c h e l s o n [ :, 0 ] speed = m i c h e l s o n [ :, 1 ] run = m i c h e l s o n [ :, 2 ] e x p e r i m e n t = m i c h e l s o n [ :, 3 ] (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
17 Auswahl der ersten Messreihe i n d i c e s = e x p e r i m e n t == 1 s = speed [ i n d i c e s ] (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
18 Statistische Kenngrößen (Arithmetischer) Mittelwert x = n i=1 x i: >>> np. mean ( s ) Standardabweichung (erwartungstreu) (1/(n 1)) i (x i x) 2 : >>> np. s t d ( s, ddof =1) Median med(x) = x ((n+1)/2) : >>> np. median ( s ) 940 Mittel absoluter Abweichungen zum Median MAD = n 1 i x i med(x) : >>> np. mean ( np. a b s o l u t e ( s np. median ( s ) ) ) Achtung: MAD auch median absolute deviation : med ( ( x i med(x) ) i ) sowie andere mean absolute deviation s: n 1 i x i x (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
19 Der Box Whisker Plot >>> matplotlib.pyplot.boxplot(s) (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
20 Box-Plots der verschiedenen Messreihen p l t. f i g u r e ( ) p l t. b o x p l o t ( [ speed [ e x p e r i m e n t==i ] f o r i i n [ 1, 2, 3, 4, 5 ] ] ) p l t. x l a b e l ( Experiment ) p l t. y l a b e l ( Speed ) 1000 Speed Experiment (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
21 Vergleich verschiedener Messreihen QQ-Plot von Quantilen 1-ter Messreihe gegen Quantile einer N (0, 1)-Verteilung 1100 QQ-Plot 1. Messreihe gegen Normalverteilung 1000 Ordered Values Theoretical quantiles (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
22 Vergleich verschiedener Messreihen QQ-Plot von Quantilen 1-ter Messreihe gegen Quantile 2-ter Messreihe 1100 QQ-Plot 1. Messreihe gegen 2. Messreihe Messreihe Messreihe (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
23 Multivariate Daten Mietspiegel Daten Einlesen der Daten m i e t e = np. g e n f r o m t x t ( miete03p. c s v, d e l i m i t e r= \ t, s k i p h e a d e r =1) # TODO: b e s s e r e Namen (GKM, QMKM, QM, Zi, BJ, B, L, best, WW, ZH, BK, BA, KUE) = m i e t e. T (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
24 Abgeleitete Variablen Hier: Klassfizierung von Baujahr und Quadratmeterzahl # E i n s o r t i e r e n i n Baujahr K l a s s e 1 6 BJKL = 1 + ( BJ > 1918) + ( BJ > 1948) + ( BJ > 1965) \ + ( BJ > 1977) + ( BJ > 1983) # E i n s o r t i e r e n i n G r o e s s e n k l a s s e 1 3 QMKL = 1 + (QM > 50) + (QM > 80) (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
25 Zusammenhänge zwischen Variablen Darstellung linearer Zusammengänge : Regressionsgraden ## R e g r e s s i o n s g e r a d e p = np. p o l y 1 d ( np. p o l y f i t (QM, GKM, 1 ) ) x = [ 0, ] y = p ( x ) p l t. p l o t ( x, y,. r ) p l t. show ( ) (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
26 lineare Zusammenhänge Regressionsgrade, (mittlere QM-Miete±1Std)*QM, QMKL-weise... Kaltmiete Quadratmeter (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
27 Visualisierung von Kontingenztafeln Miete Wohnlage Kontingenztafel der QM- u BJ-Klassen bestimmen und mit matplotlib. pyplot. bar() aufbauen (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 7. November / 27
Stochastik Praktikum Zufallszahlen und deskriptive Statistik
Stochastik Praktikum Zufallszahlen und deskriptive Statistik Thorsten Dickhaus Humboldt-Universität zu Berlin 04.10.2010 Übersicht Erzeugung von Zufallszahlen 1 Erzeugung von Zufallszahlen 2 3 Übersicht
If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra
If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If you torture your data long enough, they will tell you whatever you want to hear. James L. Mills Warum Biostatistik?
Beschreibende Statistik Eindimensionale Daten
Mathematik II für Biologen 16. April 2015 Prolog Geordnete Stichprobe Rang Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten Erkennung potentieller Eindimensionales
Statistik II: Grundlagen und Definitionen der Statistik
Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 [email protected] Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
1.6 Der Vorzeichentest
.6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen
7.2 Moment und Varianz
7.2 Moment und Varianz Def. 21 Es sei X eine zufällige Variable. Falls der Erwartungswert E( X p ) existiert, heißt der Erwartungswert EX p p tes Moment der zufälligen Variablen X. Es gilt dann: + x p
Bitte am PC mit Windows anmelden!
Einführung in SPSS Plan für heute: Grundlagen/ Vorwissen für SPSS Vergleich der Übungsaufgaben Einführung in SPSS http://weknowmemes.com/generator/uploads/generated/g1374774654830726655.jpg Standardnormalverteilung
2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen
4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form
Methoden der Statistik Kapitel 2: Deskriptive Statistik
Methoden der Statistik Kapitel 2: Deskriptive Statistik Thorsten Dickhaus Humboldt-Universität zu Berlin Wintersemester 2011/2012 Übersicht Univariate Merkmale 1 Abschnitt 2.1: Univariate Merkmale 2 Abschnitt
Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.
Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation
Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)
Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) [email protected] Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein
ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)
ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels
Kapitel VI - Lage- und Streuungsparameter
Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie
Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5
Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung
Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 2007
Mathematik IV für Maschinenbau und Informatik Stochastik Universität Rostock, Institut für Mathematik Sommersemester 007 Prof. Dr. F. Liese Dipl.-Math. M. Helwich Serie Termin: 9. Juni 007 Aufgabe 3 Punkte
Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage
Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung
Copula Funktionen. Eine Einführung. Nils Friewald
Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien [email protected] 13. Juni 2005
Sozialwissenschaftliche Datenanalyse mit R
Katharina Manderscheid Sozialwissenschaftliche Datenanalyse mit R Eine Einführung F' 4-1 V : 'i rl ö LiSl VS VERLAG Inhaltsverzeichnis Vorwort 5 Danksagung 7 Inhaltsverzeichnis 9 R für sozialwissenschaftliche
Empirische Verteilungsfunktion
Empirische Verteilungsfunktion H(x) := Anzahl der Werte x ist. Deskriptive
3. Deskriptive Statistik
3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht
Bachelor BEE Statistik Übung: Blatt 1 Ostfalia - Hochschule für angewandte Wissenschaften Fakultät Versorgungstechnik Aufgabe (1.1): Gegeben sei die folgende Messreihe: Nr. ph-werte 1-10 6.4 6.3 6.7 6.5
Herzlich willkommen zur Vorlesung Statistik. Streuungsmaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung
FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkommen zur Vorlesung Statistik smaße oder die Unterschiedlichkeit der Daten nebst kurzen Ausführungen zu Schiefe und Wölbung FB 1 W. Ludwig-Mayerhofer
Grundlagen der Probabilistik
Grundlagen der Probabilistik Gliederung Einleitung Theoretische Grundlagen der Stochastik Probabilistische Methoden Mögliche Ergebnisse von probabilistischen Untersuchungen Mögliche Fehlerquellen bei probabilistischen
Univariates Datenmaterial
Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =
Mittelwert und Standardabweichung
Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße
I. Deskriptive Statistik 1
I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................
Mathematische und statistische Methoden I
Prof. Dr. G. Meinhardt Methodenlehre Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Dr. Malte Persike [email protected]
Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden
Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse
- Beschreibung der Stichprobe(n-Häufigkeitsverteilung) <- Ermittlung deskriptiver Maßzahlen (Mittelungsmaße, Variationsmaße, Formparameter)
Übung 1: Wiederholung Wahrscheinlichkeitstheorie
Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable
Hydrologie und Flussgebietsmanagement
Hydrologie und Flussgebietsmanagement o.univ.prof. DI Dr. H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Gliederung der Vorlesung Statistische Grundlagen Etremwertstatistik
Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...
Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5
Eine zweidimensionale Stichprobe
Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation
STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG
STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem
10. Die Normalverteilungsannahme
10. Die Normalverteilungsannahme Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann man
Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik
Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer
1. Übungsblatt zu Wahrscheinlichkeitsrechnung und Statistik in den Ingenieurswissenschaften
1. Übungsblatt zu Aufgabe 1: In R können die Logarithmen zu verschiedenen Basen mit der Funktion log berechnet werden, wobei im Argument base die Basis festgelegt wird. Plotten Sie die Logarithmusfunktion
Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014
Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.
PROC UNIVARIATE. Starten Sie die Programmzeilen aus dem Beispiel, zeigt SAS im Output-Fenster die Informationen auf der Rückseite:
PROC UNIVARIATE zum Berechnen statistischer Maßzahlen, Prüfung auf Normalverteilung, Häufigkeitslisten für stetige Merkmale (für quantitative Merkmale) Allgemeine Form: PROC UNIVARIATE DATA=name Optionen
1.8 Kolmogorov-Smirnov-Test auf Normalverteilung
1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen
Zufallsvariablen [random variable]
Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden
Brückenkurs Statistik für Wirtschaftswissenschaften
Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München
Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung
M.Sc. Brice Hakwa [email protected] Seminar im Wintersemester 2010/2011: Quantitative und implementierte Methoden der Marktrisikobewertung - Zusammenfassung zum Thema: Berechnung von Value-at-Risk
Kapitel 1 Beschreibende Statistik
Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)
Statistik II Übung 1: Einfache lineare Regression
Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der
Statistik für Ökonomen
Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren
Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn
Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter
Mögliche Fragen für mündliche Prüfung aus Statistik und Wahrscheinlichkeitstheorie von Prof. Dutter Was für Kenngrößen von Verteilungen kennst du? Ortsparameter (Arithmetisches Mittel, Median, MedMed,
Inhaltsverzeichnis. Teil I Einführung
Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...
I. Zahlen, Rechenregeln & Kombinatorik
XIV. Wiederholung Seite 1 I. Zahlen, Rechenregeln & Kombinatorik 1 Zahlentypen 2 Rechenregeln Brüche, Wurzeln & Potenzen, Logarithmen 3 Prozentrechnung 4 Kombinatorik Möglichkeiten, k Elemente anzuordnen
Kenngrößen von Zufallsvariablen
Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert
1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent
Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte
Test auf den Erwartungswert
Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen
1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...
Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............
Vorlesung Wirtschaftsstatistik 2 (FK ) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren. Dipl.-Ing.
Vorlesung Wirtschaftsstatistik 2 (FK 040637) Wiederholungen deskriptive Statistik und Einleitung Normalverteilungsverfahren Dipl.-Ing. Robin Ristl Wintersemester 2012/13 1 Vorlesungsinhalte Wiederholung:
Wolf-Gert Matthäus, Jörg Schulze. Statistik mit Excel. Beschreibende Statistik für jedermann. 3./ überarbeitete und erweiterte Auflage.
Wolf-Gert Matthäus, Jörg Schulze Statistik mit Excel Beschreibende Statistik für jedermann 3./ überarbeitete und erweiterte Auflage Teubner Inhaltsverzeichnis Einleitung 11 1 Grundlagen 17 1.1 Statistische
Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche
Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael
Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Gleichmäßig beste unverfälschte Tests und Tests zur Normalverteilung Induktive Statistik Prof. Dr. W.-D.
Teil: lineare Regression
Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge
Probeklausur Statistik Lösungshinweise
Probeklausur Statistik Lösungshinweise Prüfungsdatum: Juni 015 Prüfer: Studiengang: IM und BW Aufgabe 1 18 Punkte 0 Studenten werden gefragt, wie viele Stunden sie durchschnittlich pro Tag ihr Smartphone
11. Nichtparametrische Tests
11. Nichtparametrische Tests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 In Kapitel 8 und 9 haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann
Einführung in die (induktive) Statistik
Einführung in die (induktive) Statistik Typische Fragestellung der Statistik: Auf Grund einer Problemmodellierung sind wir interessiert an: Zufallsexperiment beschrieben durch ZV X. Problem: Verteilung
8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme)
8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) Annahme B4: Die Störgrößen u i sind normalverteilt, d.h. u i N(0, σ 2 ) Beispiel: [I] Neoklassisches Solow-Wachstumsmodell Annahme einer
Übungsblatt 9. f(x) = e x, für 0 x
Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable
Kapitel V - Erwartungstreue Schätzfunktionen
Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Erwartungstreue Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh
Tabellarische und graphie Darstellung von univariaten Daten
Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische
Wahrscheinlichkeitstheorie und Statistik vom
INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.
Deskriptive Statistik
Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen
Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.
Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite
1 Dichte- und Verteilungsfunktion
Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen [email protected] 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung
diskrete und kontinuierliche Verteilungen
Vorlesung: Computergestützte Datenauswertung Wahrscheinlichkeit, Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik diskrete und kontinuierliche Verteilungen SS '16 KIT Die Forschungsuniversität
2.1 Gemeinsame-, Rand- und bedingte Verteilungen
Kapitel Multivariate Verteilungen 1 Gemeinsame-, Rand- und bedingte Verteilungen Wir hatten in unserer Datenmatrix m Spalten, dh m Variablen Demnach brauchen wir jetzt die wichtigsten Begriffe für die
Statistics, Data Analysis, and Simulation SS 2015
Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler
Statistik, Geostatistik
Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.
Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK
Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über
Stochastik und Statistik
Stochastik und Statistik p. 1/44 Stochastik und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Stochastik und Statistik p. 2/44 Daten Schätzung Test Mathe Die Datenminen
Kapitel 12 Stetige Zufallsvariablen Dichtefunktion und Verteilungsfunktion. stetig. Verteilungsfunktion
Kapitel 12 Stetige Zufallsvariablen 12.1. Dichtefunktion und Verteilungsfunktion stetig Verteilungsfunktion Trägermenge T, also die Menge der möglichen Realisationen, ist durch ein Intervall gegeben Häufig
3.2 Streuungsmaße. 3 Lage- und Streuungsmaße 133. mittlere Variabilität. geringe Variabilität. große Variabilität 0.0 0.1 0.2 0.3 0.4 0.
Eine Verteilung ist durch die Angabe von einem oder mehreren Mittelwerten nur unzureichend beschrieben. Beispiel: Häufigkeitsverteilungen mit gleicher zentraler Tendenz: geringe Variabilität mittlere Variabilität
Statistik. Jan Müller
Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen
Übungsaufgaben zu Kapitel 2 und 3
Übungsaufgaben zu Kapitel 2 und 3 Aufgabe 1 Wann ist eine Teilerhebung sinnvoller als eine Vollerhebung? Nennen Sie mindestens drei Gründe. Aufgabe 2 Welches Verfahren soll angewendet werden, um eine Teilerhebung
Statistik 2 für SoziologInnen. Normalverteilung. Univ.Prof. Dr. Marcus Hudec. Themen dieses Kapitels sind:
Statistik 2 für SoziologInnen Normalverteilung Univ.Prof. Dr. Marcus Hudec Statistik 2 für SoziologInnen 1 Normalverteilung Inhalte Themen dieses Kapitels sind: Das Konzept stetiger Zufallsvariablen Die
Über den Autor 7. Teil Beschreibende Statistik 29
Inhaltsverzeichnis Über den Autor 7 Einführung Über dieses Buch - oder:»... für Dummies«verpflichtet! Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil I:
8. Stetige Zufallsvariablen
8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse
Evaluation der Normalverteilungsannahme
Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Kurze Zusammenfassung der letzten Vorlesung Schätzung und Modellentwicklung Überblick Statistische Signifikanztests
Box. Mathematik ZU DEN KERNCURRICULUM-LERNBEREICHEN:
Box Mathematik Schülerarbeitsbuch P (μ o- X μ + o-) 68,3 % s rel. E P (X = k) f g h A t μ o- μ μ + o- k Niedersachsen Wachstumsmodelle und Wahrscheinlichkeitsrechnung ZU DEN KERNCURRICULUM-LERNBEREICHEN:
Einführung in die computergestützte Datenanalyse
Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL
Angewandte Statistik 3. Semester
Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen
