Hauptdierentialanalyse

Größe: px
Ab Seite anzeigen:

Download "Hauptdierentialanalyse"

Transkript

1 Hauptdierentialanalyse Jan Ditscheid TU Dortmund Seminar funktionale Datenanalyse / 40

2 1 Wozu HDA? 2 Denition des Problems 3 HDA am Beispiel 4 Techniken zur HDA 5 Beurteilung der Anpassung durch die HDA 6 Vergleich HDA und HKA 2 / 40

3 Wozu Hauptdierentialanalyse? Wir wollen eine Dierentialgleichung zu verrauschten Daten aufstellen um entweder die Eigenschaften einer einzigen Kurve oder die Unterschiede der Eigenschaften zwischen den Kurven zu erfassen. 3 / 40

4 Denition des Problems L = β 0 I + β 1 D β m 1 D m 1 + D m (1) D m x = β 0 x β 1 D 1 x... β m 1 D m 1 x (2) Lx i = 0 i = 1,..., N (3) Lx i = f i i = 1,..., N (4) 4 / 40

5 Denition des Problems N N SSE PDA (L x) = [Lx i (t)] 2 dt = Lx i 2 (5) i=1 i=1 N N SSE PDA (L x, f ) = [Lx i (t) f i (t)] 2 dt = Lx i f i 2 (6) i=1 i=1 5 / 40

6 HDA am Beispiel von Lippenbewegungen Ramsay and Silverman, / 40

7 Dierentialgleichung 2.Ordnung Lx i = β 0 x i + β 1 Dx i + D 2 x i = 0 (7) Koezienten-Werte von β 0 > 0 und β 1 = 0 entsprechen eine System mit Sinus-förmigen oder harmonischen Bewegungen mit β /2π Zyklen pro Zeiteinheit. Der 2. Koezient β 1 zeigt Einüsse auf das System, die proportional zur Geschwindigkeit sind, oft handelt es sich dabei um interne oder externe Reibungskräfte 7 / 40

8 Diskriminante des Operators 2.Ordnung d = (β 1 /2) 2 β 0 (8) d < 0 System ist unter-dämpft neigt zu Schwingungen die nach und nach verschwinden d > 0 System ist über-dämpft Es werden keine Schwankungen beobachtet (β 1 > 0) oder das System schwingt auÿer Kontrolle (β 1 < 0) d = 0 System ist kritisch gedämpft weist nicht schwingende Bewegungen die schnell abklingen 8 / 40

9 Verlauf der Funktionen β 0 und β 1 Ramsay and Silverman, / 40

10 Lösungen der homogenen Dierentialgleichung Ramsay and Silverman, / 40

11 Visualisierung der Ergebnisse der HDA Mit Hilfe der empirischen Störfunktion Lx i können wir überprüfen wie gut der lineare dierential Operator die homogene Dierentialgleichung Lx i = 0 erfüllt Sind die empirischen Störfunktionen nahe 0 und ähneln einem rauschen dann gehen wir davon aus, dass die Gleichung die Daten gut repräsentiert Um besser zu sehen, ob unsere Gleichung die Daten gut repräsentiert vergleichen wir die empirischen Störfunktionen mit den empirischen Störfunktionen unter H 0 : β 0 =... = β m 1 = 0 den D m x i 11 / 40

12 Visualisierung der Ergebnisse der HDA Ramsay and Silverman, / 40

13 Approximation der Originalkurven durch HDA Ramsay and Silverman, / 40

14 Betrachtung der Diskriminanzfunktion Ramsay and Silverman, / 40

15 HDA der Klemmkraftdaten Die Daten in diesem Beispiel bestehen aus 20 Aufzeichnungen kurzer Kraftimpulse, die durch Daumen und Zeigenger ausgeübt wurde Wir wollen den linearen dierential Operator mit einem theoretisch bestimmte Operator vergleichen Wir haben die Kraftimpulse vorverarbeitet um die Kurven auf eine gemeinsame Zeit zu bringen 15 / 40

16 Graphische Darstellung der Klemmkraftdaten Ramsay and Silverman, / 40

17 Theoretische Überlegungen y i (t) = c i exp( log 2 (t)/2σ 2 ) (9) L 0 = [(t 0 ) 1 log(t)]i + D (10) w 0 (t) = (t 0 ) 1 log(t) (11) 17 / 40

18 Glättung durch Splines Wir glätten die Daten indem wir Splines verwenden, wobei die Gröÿe der 3.Ableitung bestraft wird um eine glatte Schätzung der 1.Ableitung zu erhalten Aus den geglätteten Daten schätzen wir die Fehler und berechnen daraus die Standardabweichung um dann durch Glättung die Varianz der Residuen über die Zeit zu schätzen PENSSE λ (X Y ) = j (y j x(t j )) 2 /σ 2 j + λ D 3 x 2 (12) Wir minimieren PENSSE λ und glätten anschlieÿend die Daten wieder um die Splines und ihre Ableitungen zu erhalten 18 / 40

19 Vergleich Spline und KQ-Anpassung Ramsay and Silverman, / 40

20 Vergleich der unterschiedlichen Gewichtsfunktionsschätzungen Ramsay and Silverman, / 40

21 Vergleich der Störfunktionen Ramsay and Silverman, / 40

22 Vergleich der Störfunktionen Ramsay and Silverman, / 40

23 HDA durch punktweise Minimierung Wir denieren ein punktweises Anpassungskriterium bei dem gilt: β m (t) = 1 t PSSE L (t) = i (Lx i (t) f i (t)) 2 = i m ( β j (t)d j x i (t) f i (t)) 2 j=0 (13) Für festes t entspricht dies einem kleinste Quadrate Kriterium 23 / 40

24 HDA durch punktweise Minimierung Der m-dimensionale Koezientenvektor β(t) = (β 0 (t),..., β m 1 (t)) (14) Die N (m+1) Designmatrix Z mit Zeilen z i (t) = { x i (t),..., D m 1 x i (t), f i (t)} (15) Der N-dimensionale abhängige Variablenvektor y mit den Elementen y i (t) = D m x i (t) (16) 24 / 40

25 HDA durch punktweise Minimierung Das Anpassungskriterium in Matrixschreibweise PSSE L (t) = [Y (t) Z(t)β(t)] [Y (t) Z(t)β(t)] (17) Bei festem t führt die KQ-Methode zu folgendem Schätzer β(t) = (Z(t) Z(t)) 1 Z(t) y(t) (18) Damit der Schätzer existiert muss die Determinante von Z(t) Z(t) ungleich 0 sein 25 / 40

26 Probleme der punktweisen Methode Das Lösen der Gleichung Lx i = 0 verlangt, dass die β j an vielen Stellen t zur Verfügung stehen Wie viele Stellen t benötigt werden hängt von der Glätte ab Die punktweise Schätzung für die β j ist für groÿe m mit einem groÿen Rechenaufwand verbunden, darum brauchen wir eine approximative Lösung, die schnell berechnet werden kann Das punktweise Verfahren funktioniert nur wenn die Anzahl der funktionalen Beobachtungen N die Anzahl der Spalten der Designmatrix Z übersteigt 26 / 40

27 HDA durch Iteration des Konkurrenten linearen Modell x i (t j ) = c i1 + c i2 t j + c i3 sin(6πt j ) + c i4 cos(6πt j ) + ɛ ij (19) c ik N(0, 1) k = 1, 3, 4 c i2 N(0, 16) ɛ ij N(0, 1) (20) Bei den fehlerlosen Kurven wird Lx = 0 gelöst durch Lx = (6π) 2 D 2 x + D 4 x (21) 27 / 40

28 Grasche Darstellung der simulierten Daten Ramsay and Silverman, / 40

29 Einschub Konkurrentes lineares Modell y i (t) = β 0 (t) + β 1 (t)x i1 (t) β p (t)x ip (t) + ɛ i (22) x i (t) = (1, x i1 (t),..., x ip (t)) β(t) = (β 0 (t),..., β p (t)) (23) N SSE L = (y i (t) x i (t) β(t)) 2 dt (24) i=1 29 / 40

30 HDA durch Iteration des Konkurrenten linearen Modell Wir haben die Strafmatrix R für die erste Iteration durch den Operator L = D 4 geschätzt und lassen dann den folgenden Prozess 5 mal durchlaufen 1. Der Glättungsparameter λ der das GCV-Kriterium minimiert wurde mit Hilfe eines Optimierungsverfahren gefunden. Um Rundungsfehler zu vermeiden wurde eine obere Grenze für den Schätzer auf 10 log 10 (tracer) gesetzt 2. Die Daten werden unter Verwendung von λ geglättet 30 / 40

31 HDA durch Iteration des Konkurrenten linearen Modell 3. Eine HDA wurde auch Grundlage des Konkurrenten linearen Modell durchgeführt und alle 4 Koezienten wurden mit Hilfe der konstanten Basis geschätzt 4. Mit Hilfe des neu bestimmten linearen Operators schätzen wir die Strafmatrix R erneut 31 / 40

32 Ergebnisse des iterativen Verfahren Schätzung nach der ersten Iteration Lx = x 123.8Dx D 2 x 0.3D 3 + D 4 x (25) Schätzung nach der fünften Iteration Lx = 310.4x 125.4Dx D 2 x 0.4D 3 x + D 4 x. (26) Die Verhältnisse der mittleren quadratischen Fehler der 1.Iteration und der 5.Iteration sind 1.2,2.0,3.8,5.3 und 8.1 für die Ableitungen der Ordnung 0,1,2,3 und 4 32 / 40

33 Standardfehler der Schätzungen der 2.Ableitung Ramsay and Silverman, / 40

34 Beurteilung der Anpassung durch die HDA Theoretische punktweise Fehlerquadratsumme PSSE 0 (t) = i w j (t)(d j y i (t)) + (D m y i (t))) 2 (27) m 1 ( j=0 Punktweise quadrierte Korrelationsfunktion RSQ(t) = PSSE 0(t) PSSE L (t) PSSE 0 (t) Punktweise F-Statistik FRATIO(t) = (PSSE 0(t) PSSE L (t))/m PSSE 0 (t)/(n m) (28) (29) 34 / 40

35 HKA Ziel der HKA ist es m Basisfunktionen ξ j zu nden, so dass das kleinste Quadrate Kriterium minimiert wird in Bezug auf die Basisfunktionen ξ j und im Bezug auf die Koezienten von jedem beobachteten Hauptkomponentenergebnis f ij SSE PCA = N i=1 m (x i (t) f ij ξ j (t)) 2 dt (30) j=1 35 / 40

36 HKA als 2-Schritte-Prozess Als erstes bestimmen wir m Orthonormalbasisfunktionen ξ j Dann approximieren wir alle Kurven x i durch ˆx i = m f ij ξ j (31) j=1 P ξ x i = ˆx i (32) Q ξ x i = (I P ξ )x i = x i P ξ x i = x i ˆx i (33) 36 / 40

37 Identikation eines linearen Operators mittels HKA Wir wollen mittels HKA einen Operator Q ξ schätzen der folgende Gleichung näherungsweise so gut wie möglich erfüllt Q ξ x i = 0 (34) SSE PCA = N i=1 [Q ξ x i (t)] 2 dt (35) Die ersten m Eigenfunktionen der Kovarianzmatrix der x i bestimmen den Operator Q ξ Diese Eigenfunktionen erfüllen exakt die Gleichung Q ξ ξ j = 0 (36) 37 / 40

38 Unterschiede zwischen dierential Operator und Projektionsoperator Bei beiden Verfahren wird das kleinste Quadrate Kriterium minimiert also kann der Unterschied nur bei den Operatoren liegen Die HDA berücksichtigt die Glattheit der Daten, durch ableiten der Daten vor der Minimierung, die HKA nicht Das Beispiel der Lippenpositionen zeigt, dass es sinnvoll ist auch die Ableitungen zu berücksichtigen. Wir können damit argumentieren, dass der Unterschied bei der Lippenposition von Kurve zu Kurve an dem Unterschied der Kraft liegt, die direkten Einuss auf die Beschleunigung des Lippengewebes hat und somit nur indirekt auf die Position selber 38 / 40

39 Aufgabe Bestimmen Sie mit Hilfe der HDA einen linearen Operator der 4.Ordnung für den Datensatz Daten N02 von der Seminarseite 39 / 40

40 Literaturverzeichnis Ramsey, J. O., Silverman, B. W. (2005) Functional Data Analysis, 2 Auage, Springer, New York. 40 / 40

Von Daten zu Funktionen

Von Daten zu Funktionen Funktionale Datenanalyse (Wintersemester 2014/2015) 27. Oktober 2014 Inhaltsverzeichnis 1 Einleitung 2 Basisvektoren Auswahl des Vektors c Lineare Glättung der Daten Freiheitsgrade 3 Kompromiss zwischen

Mehr

Funktionale Regressionsmodelle für skalare Zielgrößen

Funktionale Regressionsmodelle für skalare Zielgrößen Funktionale Regressionsmodelle für skalare Zielgrößen Gerrit Toenges Fakultät Statistik Technische Universität Dortmund 15. Dezember 2014 G.Toenges (TU Dortmund) 15.12.14 1 / 47 Inhaltsverzeichnis 1 Motivation

Mehr

Seminar Gewöhnliche Dierentialgleichungen

Seminar Gewöhnliche Dierentialgleichungen Seminar Gewöhnliche Dierentialgleichungen Dynamische Systeme II Valentin Jonas 8. 6. 215 1 Einleitung In dem letzten Kapitel "Dynamische Systeme I" ging es vor allem um in t glatte, autonome, dynamische

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009,

Schwingungen. Antonia Blachnik und Jörg Laubersheimer. Wintersemester 2008/2009, Universität Heidelberg Proseminar Analysis Leitung: PD Dr. Gudrun Thäter Wintersemester 2008/2009, 09.12.2008 Inhaltsverzeichnis 1 Einführung 2 ohne Reibung mit Reibung 3 4 Einführung Denition Eine Schwingung

Mehr

Kurven. Markus Kraxner 22. Januar 2015

Kurven. Markus Kraxner 22. Januar 2015 Kurven Markus Kraxner 22. Januar 2015 1 Inhaltsverzeichnis 1 Einleitung 3 2 Einleitung Kurven 4 2.1 Parameterdarstellung von Kurven.................. 4 2.2 Ebene Kurven............................. 4 2.3

Mehr

Spline-Räume - B-Spline-Basen

Spline-Räume - B-Spline-Basen Spline-Räume - B-Spline-Basen René Janssens 4. November 2009 René Janssens () Spline-Räume - B-Spline-Basen 4. November 2009 1 / 56 Übersicht 1 Erster Abschnitt: Räume von Splinefunktionen Grundlegende

Mehr

ANALYSIS 2 VERSION 26. Juni 2018

ANALYSIS 2 VERSION 26. Juni 2018 ANALYSIS VERSION 6 Juni 018 LISIBACH ANDRÉ 6 Potenzreihenentwicklung 61 Einleitung Die Linearisierung einer Funktion f(x an der Stelle x ist die Funktion L(x f( + df dx ((x Die Linearisierung ist ein Polynom

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Proseminar zu Dierenzialgleichungen für Lehramtskandidatinnen und -kandidaten

Proseminar zu Dierenzialgleichungen für Lehramtskandidatinnen und -kandidaten Proseminar zu Dierenzialgleichungen für Lehramtskandidatinnen und -kandidaten Wintersemester 05/06 Armin Rainer Peter Raith Bezeichnet man die zum Zeitpunkt t vorhandene Stomenge eines radioaktiven Stoes

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Lösungsskizzen zur Nachklausur

Lösungsskizzen zur Nachklausur sskizzen zur Nachklausur Mathematik II für die Fachrichtungen Biologie und Chemie Sommersemester 22 Aufgabe Es seien die folgenden Vektoren 2 v = 2, v 2 = und v 3 = 2 im R 3 gegeben. (a) Zeigen Sie, dass

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

Lineare Klassifikationsmethoden

Lineare Klassifikationsmethoden Verena Krieg Fakultät für Mathematik und Wirtschaftswissenschaften 08. Mai 2007 Inhaltsverzeichnis 1. Einführung 2. Lineare Regression 3. Lineare Diskriminanzanalyse 4. Logistische Regression 4.1 Berechnung

Mehr

Appendix. Kapitel 2. Ökonometrie I Michael Hauser

Appendix. Kapitel 2. Ökonometrie I Michael Hauser 1 / 24 Appendix Kapitel 2 Ökonometrie I Michael Hauser 2 / 24 Inhalt Geometrie der Korrelation Freiheitsgrade Der OLS Schätzer: Details OLS Schätzer für Okuns s law nachgerechnet Anforderungen an Theorien

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2014 Mehrdimensionale Datensätze: Multivariate Statistik Multivariate Statistik Mehrdimensionale Datensätze:

Mehr

5 Allgemeine Verfahren zum Testen von Hypothesen

5 Allgemeine Verfahren zum Testen von Hypothesen 5 Allgemeine Verfahren zum Testen von Hypothesen 5.1 Likelihood Schätzung für multivariate Daten Statistisches Modell: Einfache Zufallsstichprobe X 1,..., X n (unabhängige Wiederholungen von X IR d ).

Mehr

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Jonathan Mosser 3. Juni 27 / 38 Vorbemerkungen Singularität Singuläre Probleme können auf zwei Arten formuliert

Mehr

Übungen mit dem Applet. by Michael Gärtner

Übungen mit dem Applet. by Michael Gärtner Übungen mit dem Applet by Michael Gärtner Betreuer: Prof. Dr. Wilhelm Kleppmann Abgabe: 20. October 2006 Inhaltsverzeichnis 1 Prinzip der kleinsten Quadrate 4 2 Quadrierte Abweichungen und Bestimmtheitsmaÿ

Mehr

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten

6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten 6.6 Lineare Dierentialgleichungen n-ter Ordnung mit konstanten Koezienten Dieser Abschnitt ist ein Einschub. Gewöhnliche DGL werden im nächsten Semester behandelt. Unter einer linearen gewöhnlichen DGL

Mehr

Goethe-Universität Frankfurt

Goethe-Universität Frankfurt Goethe-Universität Frankfurt Fachbereich Wirtschaftswissenschaft PD Dr. Martin Biewen Dr. Ralf Wilke Sommersemester 2006 Klausur Statistik II 1. Alle Aufgaben sind zu beantworten. 2. Bitte runden Sie Ihre

Mehr

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya

Fundamentale Lösungen von linearen homogenen Differentialgleichungen. 1-E Ma 2 Lubov Vassilevskaya Fundamentale Lösungen von linearen homogenen Differentialgleichungen 1-E Eigenschaften einer linearen DGL 2. Ordnung Eine homogene lineare Differenzialgleichung 2. Ordnung mit konstanten Koeffizienten

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift

Mehr

Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund

Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund Seminarvortrag Euler-Approximation Marian Verkely TU Dortmund 03.12.14 1 / 33 Inhaltsverzeichnis 1 Motivation 2 Simulierte Prozesse 3 Euler-Approximation 4 Vasicek-Prozess: Vergleich analytische Lösung

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

3.2 Rekonstruktion. 3.2 Rekonstruktion

3.2 Rekonstruktion. 3.2 Rekonstruktion Bei der Aufnahme eines Bildes in der Praxis erhält man so gut wie nie direkt jenes Bild, das man gerne verwenden w urde. Wie schon in der Einleitung beschrieben, passiert dies entweder durch Verzerrung(falsche

Mehr

So lösen Sie das multivariate lineare Regressionsproblem von Christian Herta

So lösen Sie das multivariate lineare Regressionsproblem von Christian Herta Multivariate Lineare Regression Christian Herta Oktober, 2013 1 von 34 Christian Herta Multivariate Lineare Regression Lernziele Multivariate Lineare Regression Konzepte des Maschinellen Lernens: Kostenfunktion

Mehr

Nichtlineare Klassifikatoren

Nichtlineare Klassifikatoren Nichtlineare Klassifikatoren Mustererkennung und Klassifikation, Vorlesung No. 11 1 M. O. Franz 12.01.2008 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

ẋ = αx(t) + βx(t τ) (1.3) 1.1 DDE als diskrete Abbildung x(t + h) = x(t) + hẋ(t) (1.2)

ẋ = αx(t) + βx(t τ) (1.3) 1.1 DDE als diskrete Abbildung x(t + h) = x(t) + hẋ(t) (1.2) 1 Lyapunovspektrum Wir wollen im folgenden Kapitel das Lyapunovspektrum am Beispiel der einfachsten retardierten Dierentialgleichung (Dierential Delay Equation) betrachten: ẋ(t) = αx(t) + βx(t τ) (11)

Mehr

Höhere Analysis. Lösungen zu Aufgabenblatt 7. Aufgabe 1 (Eigenschaften von Kurven) Fachbereich Informatik Sommersemester 2018 Prof. Dr.

Höhere Analysis. Lösungen zu Aufgabenblatt 7. Aufgabe 1 (Eigenschaften von Kurven) Fachbereich Informatik Sommersemester 2018 Prof. Dr. Fachbereich Informatik Sommersemester 8 Prof Dr Peter Becker Höhere Analysis Lösungen zu Aufgabenblatt 7 Aufgabe (Eigenschaften von Kurven ++6 Punkte (a Untersuchen Sie, ob die Kurve sin(πt cos(πt t t,

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Prof. Dr. Guido Sweers WS 28/29 Jan Gerdung, M.Sc. Gewöhnliche Dierentialgleichungen Übungsblatt 6 Die Lösungen müssen in den Übungsbriefkasten Gewöhnliche Dierentialgleichungen Raum 3 im MI) geworfen

Mehr

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit)

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit) Gunter Ochs 9. Juni 05 Probeklausur zu Mathematik für Informatik Lösungshinweise ohne Garantie auf Fehlefreiheit. Sei fx x x. a Bestimmen Sie den Grenzwert lim x fx. Da an der Stelle x Zähler Nenner Null

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Statistik II. Regressionsanalyse. Statistik II

Statistik II. Regressionsanalyse. Statistik II Statistik II Regressionsanalyse Statistik II - 23.06.2006 1 Einfachregression Annahmen an die Störterme : 1. sind unabhängige Realisationen der Zufallsvariable, d.h. i.i.d. (unabh.-identisch verteilt)

Mehr

Hauptkomponentenanalyse für funktionale Daten

Hauptkomponentenanalyse für funktionale Daten Hauptkomponentenanalyse für funktionale Daten Cesaire J. Kueté F. Hauptkomponentenanalyse (Wintersemester 2014/2015) 24. November 2014 Cesaire J. Kueté F. (TU Dortmund) Hauptkomponentenanalyse 24. November

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Zusammenfassung 11. Sara dos Reis.

Zusammenfassung 11. Sara dos Reis. Zusammenfassung 11 Sara dos Reis sdosreis@student.ethz.ch Diese Zusammenfassungen wollen nicht ein Ersatz des Skriptes oder der Slides sein, sie sind nur eine Sammlung von Hinweise zur Theorie, die benötigt

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Sommersemester 2011: Seminar Geometrie für Lehramt

Sommersemester 2011: Seminar Geometrie für Lehramt Technische Universität Dortmund Fakultät für Mathematik Sommersemester 2011: Seminar Geometrie für Lehramt Vortrag 1 am 05.04.2011: Konvexe Umgebungen Stephanie Fuchs Inhaltsverzeichnis 1 Einleitung 2

Mehr

Erste Schularbeit Mathematik Klasse 7D WIKU am

Erste Schularbeit Mathematik Klasse 7D WIKU am Erste Schularbeit Mathematik Klasse 7D WIKU am 12.11.2014 ANTWORTVORLAGE Achtung: Teil 2 war noch in einem anderen Modus, daher muss man die Punkte umrechnen P unkte wirkliche P unkte =. Kompensationspunkte

Mehr

Lineare Regression. Kapitel Regressionsgerade

Lineare Regression. Kapitel Regressionsgerade Kapitel 5 Lineare Regression 5 Regressionsgerade Eine reelle Zielgröße y hänge von einer reellen Einflussgröße x ab: y = yx) ; zb: Verkauf y eines Produkts in Stückzahl] hängt vom Preis in e] ab Das Modell

Mehr

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4

Serie 9, Musterlösung. Klasse: 2Ub Semester: 2 Datum: 30. Mai z 3 = i z 4 = 15 Z 4 Z Re(z) z 4 = 1 e i 7π 4 anu donat.adams@fhnw.ch www.adams-science.com Serie 9, Musterlösung Klasse: Ub Semester: Datum: 3. Mai 17 1. Die komplee Zahlenebene Stelle die Zahlen als Punkte in der kompleen Zahlenebene dar. Berechne

Mehr

Musterlösung. für die Klausur MA2_05.1 vom 11. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann.

Musterlösung. für die Klausur MA2_05.1 vom 11. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann. Fachbereich Produktion und Wirtschaft Musterlösung für die Klausur MA_05.1 vom 11. Februar 005 Labor für Mathematik und Statistik Prof. Norbert Heldermann Richard Münder Bei dem vorliegenden Dokument handelt

Mehr

Multivariate Verfahren

Multivariate Verfahren Multivariate Verfahren Oliver Muthmann 31. Mai 2007 Gliederung 1 Einführung 2 Varianzanalyse (MANOVA) 3 Regressionsanalyse 4 Faktorenanalyse Hauptkomponentenanalyse 5 Clusteranalyse 6 Zusammenfassung Komplexe

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 3: Lineares Modell, Klassifikation, PCA Randolf Altmeyer January 9, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Analysis 2 - Übung 1

Analysis 2 - Übung 1 Analysis - Übung 1 Felix Knorr 8 März 014 4 Gegeben sei die Polynomfunktion f(x, y xy 10x Man bestimme die Gleichungen ihrer Schnittkurven mit den senkrechten Ebenen x x 0 bzw y y 0 sowie die Höhenlinien

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n = b a 2 x + a 22 x 2 +...

Mehr

Lineare Modelle in R: Klassische lineare Regression

Lineare Modelle in R: Klassische lineare Regression Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)

Mehr

Brownsche Bewegung Seminar - Weiche Materie

Brownsche Bewegung Seminar - Weiche Materie Brownsche Bewegung Seminar - Weiche Materie Simon Schnyder 11. Februar 2008 Übersicht Abbildung: 3 Realisationen des Weges eines Brownschen Teilchens mit gl. Startort Struktur des Vortrags Brownsches Teilchen

Mehr

Serie 8 - Parametrisierte Kurven

Serie 8 - Parametrisierte Kurven Analysis D-BAUG Dr Meike Akveld HS 05 Serie 8 - Parametrisierte Kurven Geben Sie für die folgenden Bewegungen eines Punktes jeweils eine parametrisierte Darstellung I [0, ] R xt, t yt an Lösung a Geradlinige

Mehr

Ableitungen von Funktionen

Ableitungen von Funktionen Kapitel 8 Ableitungen von Funktionen 8. Der Begriff der Ableitung Aufgabe 8. : Prüfen Sie mit Hilfe des Differenzenquotienten, ob folgende Funktionen an den gegebenen Stellen x 0 differenzierbar sind.

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Euler-Approximation. Leonie van de Sandt. TU Dortmund Prof. Dr. Christine Müller. 5. Juni 2012

Euler-Approximation. Leonie van de Sandt. TU Dortmund Prof. Dr. Christine Müller. 5. Juni 2012 Euler-Approximation Leonie van de Sandt TU Dortmund Prof. Dr. Christine Müller 5. Juni 2012 Leonie van de Sandt (TU Dortmund) Euler-Approximation 5. Juni 2012 1 / 26 Inhaltsverzeichnis 1 Einleitung Leonie

Mehr

Übungen zu M1 WS 2007/2008

Übungen zu M1 WS 2007/2008 Übungen zu M1 WS 2007/2008 1. Welche der folgenden Mengen sind Vektorräume über R und in welchem Sinn? a {f : R n R f stetig} b {x R n n i=1 (x i 2 = 1} = S n 1 c {f : R R f (streng monoton steigend} 2.

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

k(x, y)u(y) dy = f(x), x 2, (3.20)

k(x, y)u(y) dy = f(x), x 2, (3.20) Bei der Aufnahme eines Bildes in der Praxis erhält man so gut wie nie direkt jenes Bild, das man gerne verwenden würde. Wie schon in der Einleitung beschrieben, passiert dies entweder durch Verzerrung

Mehr

5. Zeitreihenanalyse und Prognoseverfahren

5. Zeitreihenanalyse und Prognoseverfahren 5. Zeitreihenanalyse und Prognoseverfahren Stichwörter: Trend, Saisonalität, Noise, additives Modell, multiplikatives Modell, Trendfunktion, Autokorrelationsfunktion, Korrelogramm, Prognosehorizont, Prognoseintervall,

Mehr

Wahrscheinlichkeit & Statistik Musterlösung Serie 7

Wahrscheinlichkeit & Statistik Musterlösung Serie 7 ETH Zürich FS 4 D-MATH Koordinator Prof. Dr. J. Teichmann Mayra Bermúdez C. Wahrscheinlichkeit & Statistik Musterlösung Serie 7. a) P[t < T t + h T > t] λ(t) lim h h P[{t < T t + h} {T > t}] lim h P[T

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Klassische Polynom Interpolation.

Klassische Polynom Interpolation. Klassische Polynom Interpolation. Bestimme ein Polynom (höchstens) n ten Grades p n (x) = a 0 + a 1 x + a 2 x 2 +... + a n x n, das die gegebenen Daten interpoliert, d.h. p n (x i ) = f i, 0 i n. Erster

Mehr

Bootstrap: Punktschätzung

Bootstrap: Punktschätzung Resampling Methoden Dortmund, 2005 (Jenő Reiczigel) 1 Bootstrap: Punktschätzung 1. Die Grundidee 2. Plug-in Schätzer 3. Schätzung des Standardfehlers 4. Schätzung und Korrektur der Verzerrung 5. Konsistenz

Mehr

Differentialformen. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse.

Differentialformen. Lie-Ableitung von Differentialformen und Poincaré-Formel. Differentialform dp dx und ihre Invarianz bzgl. Hamiltonischer Flüsse. Differentialformen Plan Zuerst lineare Algebra: Schiefsymmetrische Formen im R n. Dann Differentialformen: Invarianz bzgl. Diffeomorphismen (und sogar beliebigen glatten Abbildungen). Äußere Ableitung.

Mehr

Herleitung der Euler-Lagrange Gleichungen für Optical Flow Constraints

Herleitung der Euler-Lagrange Gleichungen für Optical Flow Constraints Herleitung der Euler-Lagrange Gleichungen für Optical Flow Constraints Benjamin Seppke 4. Juni 2010 1 Euler-Lagrange Gleichungen In dem Gebiet der Variationsrechnung ist die Euler-Lagrange Gleichung (oder

Mehr

Bestimmen Sie die Absatzmenge eines Unternehmens, die sich bei Werbeausgaben in Höhe von ergeben wird. Werbeausgaben ( 1000)

Bestimmen Sie die Absatzmenge eines Unternehmens, die sich bei Werbeausgaben in Höhe von ergeben wird. Werbeausgaben ( 1000) Übungsaufgabe Bestimmen Sie die Absatzmenge eines Unternehmens, die sich bei Werbeausgaben in Höhe von 85.000 ergeben wird. Werbeausgaben ( 1000) Absatz ( 1000) 40 377 60 507 70 555 110 779 150 869 160

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor:

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: 5 Splineinterpolation Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: x i 3 f i Damit ist n 5, h Forderung

Mehr

6.2 Die Varianzanalyse und das lineare Modell

6.2 Die Varianzanalyse und das lineare Modell 6.2 Die Varianzanalyse und das lineare Modell Man ann die Varianzanalyse auch in einem linearen Modell darstellen. Im univariaten einfatoriellen Fall lautet die Gleichung des linearen Modells in Komponentenschreibweise:

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Substitutionsverfahren vs. Lagrange-Methode

Substitutionsverfahren vs. Lagrange-Methode Substitutionsverfahren vs. Lagrange-Methode 1 Motivation Substitutionsverfahren und Lagrange-Methode sind Verfahren, die es ermöglichen, Optimierungen unter Nebenbedingungen durchzuführen. Die folgende

Mehr

Angewandte Mathematik am Rechner 1

Angewandte Mathematik am Rechner 1 Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 1 SOMMERSEMESTER 2017 Kapitel 5 Grundlagen Analysis Kontinuierliche Mengen Vollständige Mengen Folgen Iterative Berechnungen Grenzwert:

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Biometrieübung 10 Lineare Regression. 2. Abhängigkeit der Körpergröße von der Schuhgröße bei Männern

Biometrieübung 10 Lineare Regression. 2. Abhängigkeit der Körpergröße von der Schuhgröße bei Männern Biometrieübung 10 (lineare Regression) - Aufgabe Biometrieübung 10 Lineare Regression Aufgabe 1. Düngungsversuch In einem Düngeversuch mit k=9 Düngungsstufen x i erhielt man Erträge y i. Im (X, Y)- Koordinatensystem

Mehr

EGRESSIONSANALYSE AVID BUCHATZ NIVERSITÄT ZU KÖLN

EGRESSIONSANALYSE AVID BUCHATZ NIVERSITÄT ZU KÖLN 1 EGRESSIONSANALYSE AVID BUCHATZ NIVERSITÄT ZU KÖLN UFBAU 1 Historie 2 Anwendungen / Ziele 3 Lineare Regression/ Beispiel KQ 4 Nichtlineare Regression 5 Eigenschaften der Schätzer istorie früheste Form

Mehr

Rheinisch-Westfälische Technische Hochschule. Gegeben seien eine gewöhnliche Dierentialgleichung (DGL) und ein Anfangswert. γ l K l.

Rheinisch-Westfälische Technische Hochschule. Gegeben seien eine gewöhnliche Dierentialgleichung (DGL) und ein Anfangswert. γ l K l. Rheinisch-Westfälische Technische Hochschule Institut für Geometrie und Praktische Mathematik Numerische Mathematik II Wintersemester 2009 Priv. Doz. Dr. Helmuth Jarausch Dr. KarlHeinz Brakhage Übung :

Mehr

V. Das lineare Regressionsmodell

V. Das lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Tino Conrad, M.Sc. Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2016 Übung zur

Mehr

Prüfung im Fach Mikroökonometrie im Sommersemester 2014 Aufgaben

Prüfung im Fach Mikroökonometrie im Sommersemester 2014 Aufgaben Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Mikroökonometrie im Sommersemester 014 Aufgaben Vorbemerkungen: Anzahl der Aufgaben: Bewertung:

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

Eine Einführung in R: Das Lineare Modell

Eine Einführung in R: Das Lineare Modell Eine Einführung in R: Das Lineare Modell Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2009 Bernd Klaus, Verena Zuber

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Hauptseminar - Methoden der experimentellen Teilchenphysik WS 2011/2012 Fabian Hoffmann 2. Dezember 2011 Inhaltsverzeichnis 1 Einleitung

Mehr

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2

D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 26. ẋ 1 = x 1 + 2x ẋ 2 = 2x 1 + x 2 D-MAVT/D-MATL Analysis II FS 07 Dr. Andreas Steiger Lösung - Serie 6. Es ist das folgende autonome System ẋ = x + x + 3 ẋ = x + x von linearen Differenzialgleichungen. Ordung gegeben. Welche der folgenden

Mehr

Lineare Regression 2: Gute Vorhersagen

Lineare Regression 2: Gute Vorhersagen Lineare Regression 2: Gute Vorhersagen Markus Kalisch 23.09.2014 1 Big Picture: Statistisches Lernen Supervised Learning (X,Y) Unsupervised Learning X VL 7, 11, 12 Regression Y kontinuierlich VL 1, 2,

Mehr

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen

Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Orthogonalpolynome Einführung, Eigenschaften und Anwendungen 1 Orthogonalpolynome Einführung, Eigenschaften und Anwendungen Anna Weller Seminar zur Numerik im SS 2018, Universität zu Köln 10.

Mehr

Interpolation und Approximation von Funktionen

Interpolation und Approximation von Funktionen Kapitel 6 Interpolation und Approximation von Funktionen Bei ökonomischen Anwendungen tritt oft das Problem auf, dass eine analytisch nicht verwendbare (oder auch unbekannte) Funktion f durch eine numerisch

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Seminar: Integralgleichungen (WS 06/07)

Seminar: Integralgleichungen (WS 06/07) Seminar: Integralgleichungen (WS 06/07) Numerische Behandlung der Fredholmschen Integralgleichung - Teil 1 Melanie Seifried Erik Ivar Fredholm (1866-1927) Schwedischer Mathematiker, der große Beiträge

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

H.J. Oberle Analysis II SoSe Interpolation

H.J. Oberle Analysis II SoSe Interpolation HJ Oberle Analysis II SoSe 2012 7 Interpolation 71 Allgemeine Problemstellung Interpolation ist die Kunst, zwischen den Zeilen einer Tabelle zu lesen (Rutishauser) Von f : R R seien Funktionswerte (x j,

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Julian Seyfried Wintersemester 2014/2015 1 Seite 2 Inhaltsverzeichnis 3 Energie, Arbeit und Leistung 3 3.1 Energie.................................. 3 3.2 Arbeit...................................

Mehr