Wiederholung: Iterative Verfahren
|
|
|
- Emil Krämer
- vor 7 Jahren
- Abrufe
Transkript
1 Wiederholung: Iterative Verfahren Vorlesung Inverse Probleme
2 Inhalt Landweber-Iteration Nichtlineare Probleme Konjugierte Gradientenmethoden
3 Landweber-Iteration T Tx = T y äquivalente Fixpunktgleichung x = x T (Tx y). Einfachster iterativer Algorithmus x k+1 = x k T (Tx k y), k N Relaxierungsparameter τ R ergibt x k+1 = x k τ T (Tx k y) = (I τ T T )x k + τ T y, k N (1) die sogenannte Landweber Iteration. Für lineare Gleichungen ist die Standard Wahl des Startwertes x 0 = 0.
4 Landweber Gradientenmethode Die Landweber Iteration ist äquivalent zu der Gradientenmethode für das kleinste Quadrate-Problem die deniert ist durch J(x) := 1 2 Tx y 2 min, x X x k+1 := x k τ J (x) = x k τ T (Tx k y), das kleinste Quadrate-Funktional wir während der Iteration kleiner, falls τ klein genug.
5 Landweber - Konvergenz Theorem (Konvergenz der Landweber-Methode) Sei y D(T ) und 0 < τ < 2 T 2, dann gilt x k T y, wenn k.
6 Landweber - Konvergenz Theorem (Konvergenz der Landweber-Methode) Sei y D(T ) und 0 < τ < 2 T 2, dann gilt x k T y, wenn k. Beweis. Mit Hilfe der Singulärwertzerlegung mit Singulärsystem (σ n, u n, v n ) (x k+1, u n ) = (1 τσ 2 n)(x k, u n ) + τσ n (y, v n ) für den n-ten Koezienten. Mit x 0 = 0 erhalten wir: (x k, u n ) = ( 1 (1 τσ 2 n) k 1 ) 1 σ n (y, v n ) x, u n, falls 1 τσ 2 n < 1. Da σ 1 = max n σ n = T, bedeutet dies 0 < τ < 2 T 2.
7 Fehlerverhalten Bemerkung Unter der obigen Bedingung an τ können wir zeigen, dass das kleinste-quadrate Funktional kleiner wird, wenn es gilt Tx k+1 y 2 = Tx k y τ TT (Tx k y) 2 = Tx k y 2 + τ 2 TT (Tx k y) 2 2τ Tx k y, TT (Tx k y) = Tx k y 2 + τ ( τ TT (Tx k y) 2 T (Tx k y) 2) Tx k y 2 + τ T (Tx k y) 2 ( τ T 2 2 ) }{{} 0 Tx k y 2.
8 Landweber - Regularisierungsmethode Wenn wir α := 1 k gilt g α (σ) = als Regularisierungsparameter interpretieren ( 1 (1 τσ 2 ) 1/(α 1)) 1 σ. Für τσ 2 < 2 konvergiert g α (σ) oensichtlich zu 1/σ für α = 1 k 0. Mit Satz aus Kapitel 3 schlieÿen wir daher, dass x k x für k. Ebenfalls analog zu Kapitel 3: Konvergenz kann beliebig langsam sein ( Quellbedingungen).
9 Landweber - Konvergenzraten Annahme: folgende Quellbedingung ist erfüllt x = T p for p Y. Dann gilt für die Singulärwerte im Singulärsystem (σ n, u n, v n ): ( ) (y, (x k x, u n ) = 1 (1 τσn) 2 k 1 vn ) (x, u n ) σ n = σ n (1 τσn) 2 k 1 (p, v n ). Die positive Funktion r(σ) := σ(1 τσ 2 ) k 1 hat ein 1 eindeutiges Maximum an σ = und daher τ(2k 1) (x k x, u n ) r(σ) p Damit gilt für den Fehler x k x = O 1 τ(2k 1) p. ( ) 1. k
10 Landweber - Verrauschte Daten Verrauschte Daten y y δ δ Da α = 1 als Regularisierungsparameter α immer positiv k für verrauschte Daten nach endlich vielen Schritten abbrechen. Insbesondere sollte die Anzahl der Iterationen k von den verrauschten Daten und dem Rauschlevel δ anhängen, also k = k (δ, y δ ). Fehler zwischen exakten und regularisierten Lösung: x k (δ) δ x, u n τσ n k δ + (1 τσ 2 n) k 1 x. Wählen wir also, für δ 0, denn Stopp-Index so dass k (δ) und k (δ)δ 0, dann x k (δ) δ x, d.h. die Landweber-Iteration ist eine konvergenze Regularisierungsmethode.
11 Diskrepanzprinzip Iterativen Methoden: sehr einfach a-posteriori Stopp-Regeln wie Diskrepanzprinzip zu benutzen: Fehler: k (δ, y δ ) := inf{k N Tx δ k y δ < ηδ}, x δ k+1 x 2 x δ k x 2 τ η Tx k δ y δ ( ) Txδ k y δ ηδ, mit η 2 2 τ T. So lange k < k d.h. der Fehler verringert sich mindestens bis der Stopp-Index erreicht ist. x = T p für p Y erfüllt gilt sogar x k δ x = O( δ), also ein Resultat analog zu den stetigen Regularisierungsmethoden aus Kapitel 3.
12 Landweber - Beispiel Primal Adjungiert messungen unbekannt Residuum update
13 Nichtlineare Probleme F (x) = y. Motivation: Äquivalenz zur Gradienten-Abstiegsmethode für das zugehörige kleinste-quadrate Funktional 1 2 Tx y 2 ist. Ableitung gegeben durch J(x) := 1 2 F (x) y δ 2. J (x) = F (x) (F (x) y) Nichtlineare Landweber-Iteration: x k+1 δ = xδ k τ F (xδ k ) (F (xδ k ) y). (2)! Nichtlinearer Fall: Wahl des Anfangswertes x 0 spielt selbe Rolle wie a-priori Information x bei der Tikhonov-Regularisierung (i.a. mehrere Lösungen!).
14 Fehler: Ähnlich linearer Fall x δ k+1 x 2 x δ x k 2 = τ 2 F (x δ ) k (F (x δ ) y δ ) k 2 2τ x δ x, F (x δ ) k k (F (x δ ) y δ ) k τ 2 F (x δ ) k 2(F (x δ ) y δ ) k 2 2τ F (x δ ) y, F (x δ ) y δ k k +2τ F (x δ ) + F (x δ )(x δ x ) F (x ), F (x δ ) y δ k k k k Da F (x k δ ) + F (x k δ )(x k δ x ) F (x ) eine erste Ordnung Taylorentwicklung ist erwartet man (zumindest lokal um die Lösung) eine Abschätzung der Art F (x k δ ) + F (x k δ )(x k δ x ) F (x ) c x k δ x 2.! Aber: Fehler x k δ x 2 kann viel gröÿer sein als F (x k δ ) F (x ) (schlechtgestelltes Problem!)
15 Für die Konvergenzanalyse zeigt sich, dass eine Bedingung der Form F (x k δ ) + F (x k δ )(x k δ x ) F (x ) c F (x k δ ) F (x ) mit c < 1 ausreichend ist, zumindest lokal um eine Lösung. Diese 2 Bedingung beschränkt die Art der Nichtlinearität des Operators F und wird tangential cone condition genannt. Diese Bedingung ersetzt in gewisser Weise die stetige Invertierbarkeit des Operators F (x ), die bei der Konvergenzanalyse wohl-gestellter Probleme eine zentraler Voraussetzung ist.
16 Newtonartige Methoden Grundlegende Idee: lokale Linearisierung. F (x k )(x k+1 x k ) = (F (x k ) y). Da F (x k ) im Fall schlecht-gestellter Probleme kein regulärer Operator Regularisierung: (F (x k ) F (x k ) + α k I )(x k+1 x k ) = F (x k ) (F (x k ) y), Levenberg-Marquardt-Methode Alternativ: Tikhonov-Regularisierung auch mit a-priori Informationen, die gebräuchlichste Form ist der Startwert x 0 in jedem Iterationsschritt: (F (x k ) F (x k ) + α k I )(x k+1 x k ) = F (x k ) (F (x k ) y) + α k (x 0 x k ). iterativ Regularisierte Gauss-Newton-Methode Stop-Index der Regularierungsparameter ist, nicht α k!
17 Konjugierte Gradientenmethoden
18 EIT Quelle:
19 EIT Quelle:
20 EIT Quelle:
21 Frohe Weihnachten & Guten Rutsch
Numerik III trifft inverse Probleme
Numerik III trifft inverse Probleme Michael Hönig Heinrich-Heine-Universität Düsseldorf Bad Neuenahr-Ahrweiler, Juli 2009 Inverse Probleme Schließen von einer beobachteten Wirkung auf deren Ursache Beispiel:
Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren
Beispiele Grundlagen Kompakte Operatoren Regularisierungsoperatoren Transportgleichung Dierenzieren ( nx ) (f δ n ) (x) = f (x) + n cos, x [0, 1], δ Regularisierung!! Inverse Wärmeleitung Durc f (f δ n
Kapitel 4: Nichtlineare Nullstellenprobleme
Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS
6.8 Newton Verfahren und Varianten
6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)
VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.
NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet
Nichtlineare Gleichungssysteme
Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung
Nichtlineare Ausgleichsrechnung
10. Großübung Nichtlineare Ausgleichsrechnung Allgemeines Problem: Wir betrachten ein nichtlineares System F : R n R m mit (m > n, d.h. das System ist überbestimmt und F i (x g(t i ; x g i! 0 i 1,.., m.
Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme
Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh ([email protected]) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es
Institut für Geometrie und Praktische Mathematik
RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).
Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems
Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest
Inexakte Newton Verfahren
Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n
Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0.
3 Nullstellenbestimmung von Funktionen Sei x f(x) eine reellwertige Funktion, definiert auf einem Intervall I = [a, b] R. suchen Nullstellen der Funktion f, d.h. Wir finde α R so, das f(α) = 0. (3.0.1)
Das Gradientenverfahren
Das Gradientenverfahren - Proseminar: Algorithmen der Nichtlinearen Optimierung - David Beisel December 10, 2012 David Beisel Das Gradientenverfahren December 10, 2012 1 / 28 Gliederung 0 Einführung 1
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Grundlagen der Nichtlinearen Optimierung. Klausur zur Vorlesung WS 2008/09
................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT
VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.
IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei
Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen
Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Wir betrachten das System f() = 0 von n skalaren Gleichungen f i ( 1,..., n ) = 0, i = 1,..., n. Gesucht: Nullstelle von f() = 0. Es sei (0) eine
Inverse Probleme Vorlesung im Wintersemester 2015/2016
Inverse Probleme Vorlesung im Wintersemester 25/26 Andreas Kirsch Institut für Angewandte und Numerische Mathematik Karlsruher Institut für Technologie (KIT). Februar 26 5 Nichtlineare Probleme In diesem
Das Trust-Region-Verfahren
Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein
Nichtlineare Gleichungssysteme
Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei
Modulprüfung Numerische Mathematik 1
Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel
Seminar Gewöhnliche Differentialgleichungen
Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden
Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt
Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht Partielle Differentialgleichungen, Approximation der Lösung Finite Elemente, lineare und höhere Ansatzfunktionen Dünn
Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn
Optimierung Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 1 Newton Verfahren Taylor Approximation 1. Ordnung von Newton Verfahren! 0 Setze 0und berechne Löse lineares Gleichungssystem für : 2
Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn
Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum
D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.
D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +
3 Nichtlineare Gleichungssysteme
3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )
6. Numerische Lösung des. Nullstellenproblems
6. Numerische Lösung des Nullstellenproblems 1 Problemstellung Zwischenwertsatz: Sei f : [a,b] R stetig und c R mit f(a) c f(b) oder f(b) c f(a). Dann gibt es ein x [a,b] mit f(x) = c. Frage: Wie lässt
Wiederholung von Linearer Algebra und Differentialrechnung im R n
Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:
Nullstellen von algebraischen Gleichungen
Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar
NEXTLEVEL I, Analysis I
NEXTLEVEL I, Analysis I Hanna Peywand Kiani Wintersemester 9/ Die ins Netz gestellten Kopien der Folien sollen nur die Mitarbeit während der Veranstaltung erleichtern. Ohne die in der Veranstaltung gegebenen
Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016
Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.
KAPITEL 5. Nichtlineare Gleichungssysteme
KAPITEL 5. Nichtlineare Gleichungssysteme Beispiel 5.1. Gravitationskraft zwischen zwei Punktmassen m 1 und m 2 mit gegenseitigem Abstand r: F = G m 1m 2 r 2, wobei G = 6.67 10 11 Nm 2 /kg. Gravitationsfeld
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren
7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0.
7. Nichtlineare Gleichngssysteme Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. Das Gleichungssystem f(x) = 0 lässt sich in die Fixpunktgleichung x = φ(x) umschreiben, wobei φ : D R n R n. Beispielsweise
Einführung in die numerische Mathematik
Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 4 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis
(d) das zu Grunde liegende Problem gut konditioniert ist.
Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt
Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren
Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren
Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn
Optimierung Vorlesung 5 Optimierung mit Nebenbedingungen 1 Minimierung mit Gleichheitsrestriktionen Gegeben: Funktion,,,, : Ziel:,,, Unrestringierter Fall: Notwendige Bedingung für lokales Minimum keine
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren
k(x, y)u(y) dy = f(x), x 2, (3.20)
Bei der Aufnahme eines Bildes in der Praxis erhält man so gut wie nie direkt jenes Bild, das man gerne verwenden würde. Wie schon in der Einleitung beschrieben, passiert dies entweder durch Verzerrung
Numerische Optimierung
Numerische Optimierung 6 In den ersten fünf Kapiteln dieses Skriptes haben wir Grundaufgaben der biomedizinischen Bildgebung eingeführt, im Sinne von Variationsmethoden modelliert und ihre Analyse in geeigneten
2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren
2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;
18.4 Das Newton-Verfahren
18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift
Newton- und und Quasi-Newton-Methoden in der Optimierung. János Mayer
Newton- und und Quasi-Newton-Methoden in der Optimierung János Mayer 1 GLIEDERUNG Newton-Methode für nichtlineare Gleichungen nichtlineare Gleichungssysteme freie Minimierung. Quasi-Newton-Methoden für
KAPITEL 10 DIE INNERE-PUNKTE-METHODE
KAPITEL DIE INNERE-PUNKTE-METHODE F. VALLENTIN, A. GUNDERT Vorteile: + Löst effizient lineare Programme (in Theorie und Praxis) + erweiterbar (zu einer größeren Klasse von Optimierungsproblemen) + einfach
KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.
MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw
Iterative Verfahren: Allgemeines, Fixpunkt-Iteration, Nullstellen. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme
Algorithmik kontinuierlicher Systeme Iterative Verfahren: Allgemeines, Fiunkt-Iteration, Nullstellen Motivation Viele numerische Probleme lassen sich nicht mit endlich vielen Schritten lösen Nullstellen
Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016
Stoppzeiten und Charakteristische Funktionen Tutorium Stochastische Prozesse 15. November 2016 Inhalte des heutigen Tutoriums Im heutigen Tutorium besprechen wir: (1) Eindeutigkeit von Maßen ohne schnittstabilen
Permutationen. ... identische Abbildung
Permutationen n > 0 sei S n {σ : {1, 2,..., n} {1, 2,..., n} : σ ist bijektiv}. Dann ist S n eine Gruppe bzgl. der Verknüpfung von Abbildungen (vgl. früher) und heißt symmetrische Gruppe (vom Index n).
2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p
Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.
5 Numerische Iterationsverfahren
In diesem Kapitel besprechen wir numerische Iterationsverfahren (insbesondere Fixpunktverfahren) als eine weitere Lösungsmethode zur Lösung von linearen Gleichungssystemen (Kapitel 4) sowie zur Lösung
Rechenoperationen mit Folgen. Rekursion und Iteration.
Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )
Globale Newton Verfahren
Betrachten: System von n nichtlinearen Gleichungen: F : D R n, F C 1 D Gesucht: x D, sodass F x =0. Vorher: Bedingungen für Startwert wie z.b. x x 0 2 / garantieren die Konvergenz des lokalen Newton-Verfahrens
Klausur zu Grundlagen der Computermathematik
Prof. Dr. Klaus Höllig 14. Oktober 2010 Klausur zu Grundlagen der Computermathematik en Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. a Die Folge A
Kontinuierliche Optimierung
Kontinuierliche Optimierung Markus Herrich Wintersemester 2018/19 ii Inhaltsverzeichnis 2 Optimalitäts- und Regularitätsbedingungen 1 2.1 Einleitung und Wiederholung.................... 1 2.2 Optimalitätsbedingungen
Kapitel 16 : Differentialrechnung
Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen
Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0.
6.4 Fixpunkt-Iteration Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. Möglichkeiten: Bisektionsverfahren (Intervallhalbierung) Newton-Verfahren, x k+1 = x k f(x k) f (x k ) für k = 0, 1,
Institut für Analysis WS 2014/15 PD Dr. Peer Christian Kunstmann Dipl.-Math. Leonid Chaichenets
Institut für Analysis WS 4/5 PD Dr. Peer Christian Kunstmann 9..4 Dipl.-Math. Leonid Chaichenets Höhere Mathematik III für die Fachrichtung Physik Lösungsvorschläge zum 5. Übungsblatt Aufgabe : (a) Sei
5 Interpolation und Approximation
5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)
Singuläre Integrale 1 Grundideen der harmonischen Analysis
Singuläre Integrale Grundideen der harmonischen Analsis Jens Hinrichsen und Annina Saluz November 2007 Motivation Ein tpisches Beispiel für ein singuläres Integral ist die Hilbert-Transformation, welche
Innere-Punkt-Methoden
Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction
Das Subgradientenverfahren
Das Subgradientenverfahren Seminar Optimierung WS 05/06 Betreuer: Prof. F. Jarre von Jalo Liljo Das Subgradientenverfahren Das Ziel dieses Vortrags ist die Berechnung einer Lösung des unrestringierten
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung
Institut für Geometrie und Praktische Mathematik
RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen
Ein neuer numerischer Ansatz zur L p -Regularisierung
Ein neuer numerischer Ansatz zur L p -Regularisierung Diplomarbeit vorgelegt von Frank Werner aus Hofgeismar angefertigt am Institut für Numerische und Angewandte Mathematik der Georg-August-Universität
Inhaltsverzeichnis. Innere-Punkte-Verfahren 3. Inhaltsverzeichnis 1
Inhaltsverzeichnis 1 Inhaltsverzeichnis Innere-Punkte-Verfahren 3 1 Theoretische Grundlagen 3 1.1 Die KKT-Bedingungen........................... 3 1.2 Der zentrale Pfad.............................. 4
Institut für Geometrie und Praktische Mathematik
RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen
Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen
Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen
Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren
Kapitel 2 Newtonverfahren Ziel: Bestimmung von Nullstellen von f (=stationärer Punkt). Dies geschieht mit dem Newtonverfahren. x k+1 = x k ( 2 f (x k )) 1 f (x k ) (2.1) Bemerkung 2.1: Das Newtonverahren
Begleitmaterial zur Vorlesung Numerik II
Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik
Kapitel 3. Konvergenz von Folgen und Reihen
Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden
Rückblick auf die letzte Vorlesung. Bemerkung
Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D
6 Nichtlineare Ausgleichsrechnung
6 Nichtlineare Ausgleichsrechnung 6.1 Problemstellung Wie im Abschnitt 4.1 betrachten wir wieder die Aufgabe, aus gegebenen Daten (Messungen) b i, i =1,...,m, m>n, auf eine von gewissen unbekannten Parametern
Finite Elemente Methoden (aus der Sicht des Mathematikers)
Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht: Partielle Differentialgleichungen, Approximation der Lösung, Finite Elemente, lineare und höhere Ansatzfunktionen, Dünn
5.3.5 Abstiegs & Gradientenverfahren
5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3.5 Abstiegs & Gradientenverfahren Die bisher kennengelernten Iterationsverfahren zur Approximation von linearen Gleichungssystemen haben
Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt
TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra
Analysis I für Studierende der Ingenieurwissenschaften
Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom
Fixpunkt-Iterationen
Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 3. März 2016 Nichtlineare Gleichungen, Fixpunkt-Iterationen 1 Wiederholung Aufgabentypen
35 Stetige lineare Abbildungen
171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.
Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1
Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,
5 Numerische Mathematik
6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul
Lösungen zur Übungsserie 9
Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag,? November Lösungen zur Übungsserie 9 Aufgaben 1,2,3,5,6,8,9,11 Aufgabe 1. Sei a R. Berechnen Sie die folgenden Grenzwerte, falls sie existieren.
3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten
Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C
Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf
d Gewöhnliche Differentialgleichungen Woche 6 Existenz nach Picard-Lindelöf 6.1 Vorbereitung für den Existenzsatz 6.1.1 Stetigkeit und Lipschitz-Stetigkeit Definition 6.1 Seien (V 1, 1 und (V 2, 2 zwei
