6. Numerische Lösung des. Nullstellenproblems

Größe: px
Ab Seite anzeigen:

Download "6. Numerische Lösung des. Nullstellenproblems"

Transkript

1 6. Numerische Lösung des Nullstellenproblems 1

2 Problemstellung Zwischenwertsatz: Sei f : [a,b] R stetig und c R mit f(a) c f(b) oder f(b) c f(a). Dann gibt es ein x [a,b] mit f(x) = c. Frage: Wie lässt sich x bestimmen? Nullstellenproblem: c = 0. 2

3 Bisektionsverfahren Einfache Methode: Unterteile Intervall in der Mitte und berechne den Wert. Der gesuchte Wert muss in einer der beiden Teilintervalle liegen. Für eine Nullstelle: Gegeben sei f : [a 0,b 0 ] R mit f(a 0 ) f(b 0 ) < 0. Erzeuge rekursiv die Intervalle falls f ( a i +b i 2 ) f(ai ) 0 [a i+1,b i+1 ] := [ ai, a ] i+b i 2 ] [ ai +b i 2,b i sonst Die Nullstelle liegt im Intervall [a i,b i ] und es gilt lim (b b a i a i ) = lim i i 2 i = 0. 3

4 Fixpunktiteration (1) Definition: Eine Gleichung der Form F(x) = x heißt Fixpunktgleichung. Ihre Lösungen, also x mit F( x) = x heißen Fixpunkte Definition: Gegeben sei F : [a,b] R, x 0 [a,b]. Die rekursive Folge x n+1 := F(x n ), n = 0,1,... heißt Fixpunktiteration von F zum Startwert x 0. X 3 X 2 X 1 X 0 X 1 X 2 X 3 4

5 Fixpunktiteration (2) Beispiel Bestimme die Nullstelle von p(x) = x 3 x+0.3. Methode: Führe die Fixpunktiteration x n+1 = F(x n ) = x 3 n+0.3, durch Ergebnis: Startwert x 0 = 1: konvergiert gegen x = Startwert x 0 = 0 : konvergiert gegen x = Startwert x 0 = 1: divergiert Z.B. kann die Gleichung x = 2sin(x)+1 nur iterativ gelöst werden! 5

6 Fixpunktiteration (3) Satz Sei F : [a,b] R mit stetiger Ableitung F und x [a,b] ein Fixpunkt von F. Dann gilt für die Fixpunktiteration x n+1 = F(x n ) Ist F ( x) < 1, so konvergiert x n gegen x, falls der Startwert x 0 nahe genug bei x liegt. Der Punkt x heißt anziehender Fixpunkt. Ist F ( x) > 1, so konvergiert x n für keinen Startwert x 0 x. Der Punkt x heißt abstoßender Fixpunkt. In unserem Beispiel ist nur der Fixpunkt bei x = anziehend. Die anderen beiden Fixpunkte (liegen bei den anderen beiden Nullstellen von p(x)) sind abstoßend. 6

7 Fixpunktiteration (4) Sehr einfaches Anwendungsbeispiel Zur diskreten Zeit t i sind k i Menschen an einer Grippe erkrankt Die Zahl der Neuerkrankungen ist proportional zur Zahl der möglichen Begegnungen zwischen kranken und gesunden Menschen. Ein zum Zeitpunkt t i kranker Menschen ist zum Zeitpunkt t i+1 wieder gesund. Die Übertragungsrate sei α, falls alle innerhalb eines Zeitintervalls miteinander in Kontakt sind. Frage: Wie entwickelt sich die Anzahl der Kranken? Antwort: Iteriere k i+1 = αk i (1 k i ) 7

8 Fixpunktiteration (5) Iterationsfunktion: F(x) = αx(1 x) anziehender Fixpunkt: x = F( x) = α x(1 x) x = α 1 α oder x = 0 Geometrische Interpretation: Der Fixpunkt ist der Schnittpunkt der Kurven y = F(x) und y = x. Die aktuellen Modelle zur Schweinegrippe oder Vogelgrippe funktionieren analog, sind nur erheblich komplizierter. 8

9 Banachscher Fixpunktsatz (1) Sei F : [a,b] [a,b] eine kontrahierende Abbildung, d.h. es existiere eine Konstante α < 1 mit Dann gilt F(x) F(y) α x y für alle x,y [a,b]. F hat genau einen Fixpunkt x in [a,b]. Die Fixpunktiteration x n+1 = F(x n ) konvergiert gegen x für alle Startwerte x 0 [a,b]. Es gelten die Fehlerabschätzungen x n x αn 1 α x 1 x 0 x n x α 1 α x n x n 1 a-periori-abschätzung a-posteriori-abschätzung 9

10 Banachscher Fixpunktsatz (2) Beweis von Abschätzung 1: mit x n+1 = F(x n ) gilt: x n+1 x n = F(x n ) F(x n 1 ) α x n x n 1 Damit gilt für zwei Werte x n und x k α 2 x n 1 x n 2... α n x 1 x 0 x n x k = (x n x n 1 )+(x n 1 x n 2 )+...+(x k+1 x k ) (x n x n 1 ) + (x n 1 x n 2 ) (x k+1 x k ) (α n 1 +α n α k ) x 1 x 0 = ( n 1 i=0 α i k 1 i=0 α i ) x 1 x 0 = Für lim n wird x n x und α n 0 und damit x x k αk 1 α x 1 x 0 ( 1 α n 1 α 1 αk 1 α ) x 1 x 0 10

11 Newtonverfahren (1) Gesucht ist die Nullstelle einer stetig differenzierbaren Funktion f : [a,b] R, also f( x) = 0. Zurückführung auf das Fixpunktproblem über Taylorentwicklung f(x+h) = f(x)+f (x) h+o(h 2 ) mit x+h = x und x = x k und damit h = x x k 0 = f( x) = f(xk)+f (xk)( x xk)+o(( x xk) 2 ). x = x k f(x k) f (x k ) +O(( x x k) 2 ) Setze x x k+1. Falls f (x k ) 0 verwende die Iterationvorschrift unter Vernachlässigung des Terms 2. Ordnung x k+1 = x k f(x k) f (x k ) 11

12 Newtonverfahren (2) Geometrische Interpretation: Ersetze f(x) lokal an der Stelle x k durch die Tangente t(x) = f(x k )+f (x k )(x x k ) und bestimme die Nullstelle der Tangente. Verwende diesen Wert als Näherung der gesuchten Nullstelle. f(x ) 0 y x x 1 0 f(x) t(x) Tangente x Problem: Ist die Ableitung klein, konvergiert das Verfahren eventuell nicht. 12

13 Newtonverfahren (3) Da das Problem ist äquivalent zum Fixpunktproblem x = F( x) mit der Fixpunktfunktion F(x) = x f(x) f (x), gelten die Aussagen über Iterationsgleichungen wie z.b. der Banachsche Fixpunktsatz. Definition Konvergenzordnung: Sei x n eine Folge mit lim n = x. Dann hat das Verfahren die Konvergenzordnung q 1, wenn es eine Konstante c > 0 gibt mit x n+1 x c x n x q Ist q = 1, wird zusätzlich verlangt: c < 1. 13

14 Newtonverfahren (4) Das Newtonverfahren für eine stetig differenzierbare Funktion f mit einfacher Nullstelle x ist lokal quadratisch konvergent. Beweis: Taylorentwicklung liefert 0 = f( x) = f(x k )+f (x k )( x x k )+ 1 2 f (z)( x x k ) 2 mit einer Zwischenstelle z. ( x x k )+ f(x k) f (x k ) = ( x x k+1) = 1 f (z) 2f (x k ) ( x x k) 2 x x k+1 = 1 f (z) 2f (x k ) x x k 2 = C x x k 2 C ist beschränkt, falls f (x) 0 in der Umgebung von x 14

15 Sekantenverfahren Anstatt die Ableitung zu berechnen, verwende einen Differenzenquotient. Mit f (x k ) f(x k) f(x k 1 ) x k x k 1 = f D (x k) und f(x ) 0 y f(x) t(x) Sekante S(x) = f(x k )+f D (x k)(x x k ) folgt f(x ) 1 x x 2 1 x 0 x x k+1 = x k x k x k 1 f(x k ) f(x k 1 ) f(x k) Vorteil: Berechnung der Ableitungen fällt weg. Nachteil: Es werden zwei Startwerte benötigt und die Konvergenz ist langsamer. 15

16 Newton-Verfahren für Polynome Betrachte Polynom mit n reelle Nullstellen ξ 1 > ξ 2 >... > ξ n. Das Newton-Verfahren konvergiert für x 0 > ξ 1 gegen die größte Nullstelle. Methode für alle Nullstellen: Bestimme die größte Nullstelle und führe Polynomdivision mit (x ξ 1 ) durch. Führe die Prozedur so lange durch, bis alle Nullstellen gefunden wurden. Achtung: Polynomdivision kann zu großen Rundungsfehlern führen (es gibt Tricks, diese zu vermeiden). 16

17 Newtonverfahren in mehreren Dimensionen (1) Im Allgemeinen liegen mehrere Funktionen f = f 1,f 2,...,f n, abhängig von mehreren Variablen x = x 1,x 2,...,x n vor. Frage: Wo liegt die Stelle x, an der f Null wird? Antwort: Verallgemeinere das Newton-Verfahren unter der Verwendung der so genannten Jacobi-Matrix, die die Ableitungen der Funktionen nach allen Variablen enthält. J = f 1 x 1 f 1 x n..... f n x 1 f n x n 17

18 Newtonverfahren in mehreren Dimensionen (2) Jetzt: Anstelle für die Variable x x (k+1) = x (k) (f (x (k) )) 1 f(x (k) ) lautet nun die Iterationsvorschrift für den Vektor x x (k+1) = x (k) J 1 f(x (k) ) Benötigt wird die Berechnung der inversen Jacobi-Matrix: J J 1 = I ergibt n 2 Gleichungen für n 2 Unbekannte in J 1. (da gibt es viel bessere Verfahren) 18

19 Newtonverfahren in mehreren Dimensionen (3) Einfaches Beispiel aus Knorrenschild Bestimme die Nullstelle von ( 2x1 +4x f(x 1,x 2 ) = 2 4x 1 +8x 3 2 ) oder 2x 1 +4x 2 = 0 4x 1 +8x 3 2 = 0 Jacobi-Matrix: ( 2 4 ) J = 4 24x 2 2 Iterationsvorschrift x (k+1) = x (k) J 1 f(x (k) ) oder J δ (k) = J (x (k+1) x (k) ) = f(x (k) ) 19

20 Newtonverfahren in mehreren Dimensionen (4) Wähle z.b. den Startvektor Damit folgt: Löse: J(x (0) ) = J δ (k) = f(x (k) ) ( ) x (0) = ( ( 4 2 ) und f (0) = f(4,2) = ) δ (0) = ( ) ( ) δ (0) = ( Erste Näherung: ( ) x (1) = x (0) +δ (0) 32 = Nach 4 Iterationen wird die ersten der drei Nullstellen auf 3 Stellen genau gefunden. 20 )

21 Optimierungsproblem Häufige Anwendungen: Gesucht ist das Minimum einer Funktion in Abhängigkeit von vielen Variablen. Methode: Bestimme die Nullstelle der ersten Ableitung. In einer Variablen: x k+1 = x k f (x k ) f (x k ) Mit mehreren Variablen ist gesucht min F(x x 1,...,x 1,...,x n ) n Minimum ist dort, wo die Tangenten waagerecht sind. 21

22 Optimierungsproblem (1) Das ist dort, wo der Gradientenvektor F = F x 1. F x n := f 1. f n := f eine Nullstelle hat. Das Problem ist äquivalent zum Newtonverfahren in mehreren Dimensionen. Berechnet werden muss die Ableitung von f bzw. F, also die 2. Ableitung von F, die Matrix mit den Elementen f i x j = 2 F x i x j Die Matrix heißt Hesse-Matrix. 22

23 Optimierungsproblem (2) Bei einem Optimierungsproblem, also der Suche nach einem Minimum (Maximum) gibt es im Allgemeinen nicht ein Minimum, sondern viele Minima. Dann wir das Minimum dadurch gesucht, dass die Werte entlang des negativen Gradienten geändert werden, und zwar mit einem variablen Vorfaktor, bis ein Minimum gefunden wurde (hoffentlich ein gutes ). In einer Dimension: x k+1 = x k ηf (x k ) Zur zeit populärste Anwendung: Neuronale Netze bzw. Maschine Learning Algorithmen oder KI 23

24 Optimierungsproblem (3) Zu minimierende Funktion: Analog zur linearen Ausgleichsrechnung ein Fehlerfunktional als quadratische Differenz zwischen berechneten Werten und Trainingsdaten. Da die Parameter nicht-linear in die Funktion eingehen, ist nur eine iterative Lösung möglich. Gesucht wird das Minimum des Fehlerfunktionals. Methode: Gehe entlang des negativen Gradienten in den nichtlinearen Paramtern, bis ein hoffentlich guten Minimum gefunden wurde. w i k+1 = wi k η E(w1,...,w i,...,w n ) w i 24

25 Anwendungen (1) Diverse weitere Variationen dieser Verfahren existieren. Einige Anwendungen: Neuronale Netze Optimierungsprobleme Iterationsvorschriften als chaotische Systeme, z.b. für Computergrafiken Biologische Systeme Mein Vortrag in der Vortragsreihe WS 2008/2009 des FB03s, Thema: Hat eine Gleichung eine Lösung? Ein Computerbeweis Mein Vortrag in der Vortragsreihe SS 2016 des FB03s, Thema: Wie fängt eine Eule eine Maus: Eine biologisch motivierte Simulation 25

26 Anwendungen (2) Iterative Verfahren werden in vielen weiteren Bereichen angewendet, z.b. die Nobelpreisträger für Wirtschaftswissenschaften 2011, Thomas Sargent und Christopher Sims haben den Nobelpreis für ihre empirische Untersuchung von Ursache und Wirkung in der Makroökonomie bekommen. Ihr Modell ist ein Satz linearer iterativer Gleichungen X t = a 1 +a 2 X t 1 +a 3 Y t 1 +e x,t Y t = a 4 +a 5 X t 1 +a 6 Y t 1 +e y,t, um gesamtwirtschaftliche Vorgänge zu beschreiben. 26

27 Anwendungen (3) Wurzelziehen und Division auf einen Rechner (C t 2013, Heft 12) Es wird zuerst trickreich eine Näherung bestimmt, neuen Recheneinheiten verwenden einfach interne Tabellen. (FDIV-Bug des Pentium- Prozessors). Die Tabellen sind auf ca. 12 Stellen genau. Anschließend wird das Ergebnis per Newton-Iteration (bei der Division nach Newton Raphson) verbessert. Die Tabellen können in den SSE-Einheiten per Pipeline direkt verwendet werden (Compiler-Flags). Falls viele Werte benötigt werden, kann das Nachschärfen über wenige Newton-Iterationen auch per Hand geschehen. Das Ergebnis ergibt sich dann bei gleicher Genauigkeit schneller als durch 1.0/x durch Verwendung der SSE-Einheiten. 27

28 Anwendungen (4) Geht es um Performance wie z.b. bei Computersimulationen wird mit allen Tricks gearbeitet. Wurzelberechnung über f(x) = x 2 a liefert x n+1 = (x n +a/x n ) 0.5 Wurzelberechnung über f(x) = 1 a/x 2 liefert x n+1 = x n (3 x 2 n/a) 0.5 Das 2. Verfahren ist schneller, falls viele Werte berechnet werden sollen, da nur eine Division benötigt wird und dann das Ganze über SSE-Einheiten in einer Pipeline ablaufen kann. Wird die inverse Wurzel benötigt, ist das sogar noch schneller: f(x) = 1/x 2 a liefert x n+1 = x n (3 a x 2 n) 0.5 ohne Division. 28

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Nichtlineare Gleichungen

Nichtlineare Gleichungen Nichtlineare Gleichungen Ein wichtiges Problem in der Praxis ist die Bestimmung einer Lösung ξ der Gleichung f(x) =, () d.h. das Aufsuchen einer Nullstelle ξ einer (nicht notwendig linearen) Funktion f.

Mehr

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme

6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6 Iterationsverfahren für lineare und nichtlineare Gleichungssysteme 6.1 Nullstellen reeller Funktionen Bemerkung 6.1 (Problemstellung) geg.: f C[a, b] ges.: x [a, b] mit f(x ) = 0 Lösungstheorie f linear

Mehr

KAPITEL 5. Nichtlineare Gleichungssysteme

KAPITEL 5. Nichtlineare Gleichungssysteme KAPITEL 5. Nichtlineare Gleichungssysteme Beispiel 5.1. Gravitationskraft zwischen zwei Punktmassen m 1 und m 2 mit gegenseitigem Abstand r: F = G m 1m 2 r 2, wobei G = 6.67 10 11 Nm 2 /kg. Gravitationsfeld

Mehr

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0.

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. 7. Nichtlineare Gleichngssysteme Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. Das Gleichungssystem f(x) = 0 lässt sich in die Fixpunktgleichung x = φ(x) umschreiben, wobei φ : D R n R n. Beispielsweise

Mehr

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 3. März 2016 Nichtlineare Gleichungen, Fixpunkt-Iterationen 1 Wiederholung Aufgabentypen

Mehr

6. Iterationsverfahren. Fixpunktiteration. 6.Iterationsverfahren: Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16

6. Iterationsverfahren. Fixpunktiteration. 6.Iterationsverfahren: Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16 6. Iterationsverfahren Fixpunktiteration Numerisches Programmieren, Jürgen Bräckle page 1 of 16 Beispiel: Ausbreitung eines Grippevirus in einem Kindergarten Zeitpunkt t 0 t 1 t 2 t 3 t 4 t 5 Anteil kranker

Mehr

Kapitel 6. Nichtlineare Gleichungen. 6.1 Einführung. Problem: Idee: Beispiel:

Kapitel 6. Nichtlineare Gleichungen. 6.1 Einführung. Problem: Idee: Beispiel: Kapitel 6 Nichtlineare Gleichungen 6. Einführung Problem: Gesucht sind Lösungen nichtlinearer Gleichungen bzw. Systeme, das heißt es geht beispielsweise um die Bestimmung der Nullstellen eines Polynoms

Mehr

NEXTLEVEL I, Analysis I

NEXTLEVEL I, Analysis I NEXTLEVEL I, Analysis I Hanna Peywand Kiani Wintersemester 9/ Die ins Netz gestellten Kopien der Folien sollen nur die Mitarbeit während der Veranstaltung erleichtern. Ohne die in der Veranstaltung gegebenen

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Nullstellenberechnung von nichtlinearen Funktionen

Nullstellenberechnung von nichtlinearen Funktionen Kapitel 3 Nullstellenberechnung von nichtlinearen Funktionen In dieser Vorlesung wird nur die Nullstellenberechnung reeller Funktionen einer reellen Variablen f : R R betrachtet. Man nennt die Nullstellen

Mehr

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0.

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0. 3 Nullstellenbestimmung von Funktionen Sei x f(x) eine reellwertige Funktion, definiert auf einem Intervall I = [a, b] R. suchen Nullstellen der Funktion f, d.h. Wir finde α R so, das f(α) = 0. (3.0.1)

Mehr

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip

Mehr

Newton-Verfahren für ein Skalarfunktion

Newton-Verfahren für ein Skalarfunktion Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

5 Numerische Iterationsverfahren

5 Numerische Iterationsverfahren In diesem Kapitel besprechen wir numerische Iterationsverfahren (insbesondere Fixpunktverfahren) als eine weitere Lösungsmethode zur Lösung von linearen Gleichungssystemen (Kapitel 4) sowie zur Lösung

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 4 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Kapitel 5. Lösung nichtlinearer Gleichungen

Kapitel 5. Lösung nichtlinearer Gleichungen Kapitel 5. Lösung nichtlinearer Gleichungen 5.1 Nullstellen reeller Funktionen, Newton-Verfahren 5.2 Das Konvergenzverhalten iterativer Verfahren 5.3 Methode der sukzessiven Approximation 5.4 Das Newton-Verfahren

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

Iterative Verfahren: Allgemeines, Fixpunkt-Iteration, Nullstellen. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Iterative Verfahren: Allgemeines, Fixpunkt-Iteration, Nullstellen. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Iterative Verfahren: Allgemeines, Fiunkt-Iteration, Nullstellen Motivation Viele numerische Probleme lassen sich nicht mit endlich vielen Schritten lösen Nullstellen

Mehr

Übungen zur Mathematik Blatt 1

Übungen zur Mathematik Blatt 1 Blatt 1 Aufgabe 1: Bestimmen Sie die Fourier-Reihe der im Bild skizzierten periodischen Funktion, die im Periodenintervall [ π, π] durch die Gleichung f(x) = x beschrieben wird. Zeichnen Sie die ersten

Mehr

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.

Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle. 10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Anleitung zu Blatt 1, Analysis II

Anleitung zu Blatt 1, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Anleitung zu Blatt, Analysis II SoSe 0 Banachscher Fixpunktsatz Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit

Mehr

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim Lösung zur Serie 8 Aufgabe 40 Wir zeigen in dieser Aufgabe, dass die Voraussetzung dass die Funktion in einer kleinen Umgebung injektiv sein muss, beim Satz über die Umkehrfunktion notwendig ist. Hierzu

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 26. Februar 2009, Gliederung,, Gleichungen in einer Variablen Was ist... Wie geht... eine lineare (nichtlineare,

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

NEXTLEVEL im WiSe 2011/12

NEXTLEVEL im WiSe 2011/12 Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani NEXTLEVEL im WiSe 2011/12 Vorlesung 5, Teil 2 Linearisierung, einige Eigenschaften differenzierbarer Funktionen Die ins Netz gestellten Kopien

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten (MUL) 1. März 2012 1 / 37 Nichtlineare Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand MUL 1. März 2012 Gliederung 1 Wiederholung Begriffe, Verfahren

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Wir betrachten das System f() = 0 von n skalaren Gleichungen f i ( 1,..., n ) = 0, i = 1,..., n. Gesucht: Nullstelle von f() = 0. Es sei (0) eine

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Bestimmung der Wurzeln nichtlinearer Gleichungen. Mária Lukáčová (Uni-Mainz) Nichtlineare Gleichungen June 22, / 10

Bestimmung der Wurzeln nichtlinearer Gleichungen. Mária Lukáčová (Uni-Mainz) Nichtlineare Gleichungen June 22, / 10 Bestimmung der Wurzeln nichtlinearer Gleichungen Mária Lukáčová (Uni-Mainz) Nichtlineare Gleichungen June 22, 2010 1 / 10 Problem Definition Gegeben f : (a, b) R R. Finde α (a, b) : Existiert eine Lösung?

Mehr

Numerisches Lösen von Gleichungen

Numerisches Lösen von Gleichungen Numerisches Gesucht ist eine Lösung der Gleichung f(x) = 0. Das sverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz: Satz (1.1.1) Zwischenwertsatz:

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Nichtlineare Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. Februar 2010 Newton- Gliederung Newton-, ng Newton- , Fragenliste Nichtlineare Gleichungen

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen

Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen Kapitel 5 Iterative Lösung von nichtlinearen Gleichungen und Gleichungssstemen 5.1 Iterationsverfahren zur Lösung einer reellen nichtlinearen Gleichung Es sei g() eine im Intervall I definierte reellwertige

Mehr

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0.

Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. 6.4 Fixpunkt-Iteration Ziel: Iterative Lösung der (nichtlinearen) Gleichung f(x) = 0. Möglichkeiten: Bisektionsverfahren (Intervallhalbierung) Newton-Verfahren, x k+1 = x k f(x k) f (x k ) für k = 0, 1,

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2012 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Alexander Breuer Dipl.-Math. Dipl.-Inf. Jürgen Bräckle Dr.-Ing. Markus

Mehr

VI. Iterationsverfahren

VI. Iterationsverfahren VI. Iterationsverahren To ininity and beyond Falls eine direte Lösung des Problems nicht möglich oder ineizient ist. 6.. Fipuntgleichungen 6... Problemstellung: Iterationsuntion Iteration: R Startwert,

Mehr

Gleichungsbasierte Modellierung

Gleichungsbasierte Modellierung 1 Gleichungsbasierte Modellierung Die Benutzung von Gleichungen zur Geometrischen Modellierung wurde bereits von Sutherland eingeführt. Fortgeführt wurde sie durch die Arbeiten von Light und Gossard. Wie

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3. Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.

Mehr

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Aussagen Diese sind mit wahr bzw falsch zu kennzeichnen (hinschreiben) Es müssen alle Fragen mit wahr

Mehr

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen Mathematik I für Naturwissenschaften Dr. Christine Zehrt 5.10.18 Übung 6 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 9. Oktober 018 in den Übungsstunden Aufgabe 1 GebenSieohneTaschenrechnereineNäherungvon

Mehr

Computer Vision Group Prof. Daniel Cremers. Fixpunktgleichungen

Computer Vision Group Prof. Daniel Cremers. Fixpunktgleichungen Computer Vision Group Pro. Daniel Cremers Fipuntgleichungen Iterationsverahren Problem: Ot önnen wir eine direte Lösung einer Gleichung angeben. Anstelle einer direten Lösung ann man aber ot ein Iterationsverahren

Mehr

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1.

Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung. x = x 2 e x 1. Name: Matrikel-Nr.: 1 Aufgabe 1. Berechnen Sie die absolute und die relative Kondition des Problems x f(x) für die Abbildung R 3 R 2, x 1 f : x 1 + e x2 2 sin(x3 ) x = x 2 e x 1 (1 + x 2 1 + x, 2x 3 )

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Nichtlineare Gleichungen, mehrere Unbekannte

Nichtlineare Gleichungen, mehrere Unbekannte Dritte Vorlesung, 6. März 2008, Inhalt Aufarbeiten von Themen der letzten Vorlesung, und Nichtlineare Gleichungen, mehrere Unbekannte Systeme nichtlinearer Gleichungen Vektor- und Matrixnormen Fixpunkt-Iteration,

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Algorithmen zur Nullstellenbestimmung Ac 2018

Algorithmen zur Nullstellenbestimmung Ac 2018 Algorithmen zur Nullstellenbestimmung Ac 2018 Bestimmt werden sollen Lösungen x der Gleichung f(x) = 0 für eine stetige Funktion f. Diese Lösungen x nennt man Nullstellen von f. 1. Methode: Bisektionsverfahren

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Name: Wichtige Hinweise D-ITET, D-MATL Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Prüfungsdauer: 90 Minuten. Nur begründete Resultate werden bewertet. Zugelassene Hilfsmittel: 10 A4-Seiten

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

(x x j ) x [a,b] n! j=0

(x x j ) x [a,b] n! j=0 IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (4 Punkte Es gibt zu jeder der 1 Aufgaben vier Aussagen. Diese sind mit bzw. zu kennzeichnen (hinschreiben. Es müssen alle Fragen mit oder gekennzeichnet

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

Analysis I. Vorlesung 19

Analysis I. Vorlesung 19 Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 19 In dieser Vorlesung untersuchen wir mit Mitteln der Differentialrechnung, wann eine Funktion f: I R, wobei I R ein Intervall ist, (lokale)

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

Gleichungen, GS und Nullstellen

Gleichungen, GS und Nullstellen TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG5.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 5 Gleichungen, GS

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Systeme nichtlinearer Gleichungen

Systeme nichtlinearer Gleichungen Systeme nichtlinearer Gleichungen 3. Vorlesung 170004 Numerische Methoden I Clemens Brand 5. März 2009 Gliederung en Wichtige Themen zur Wann konvergiert Fixpunktiteration anschaulich erklärt mathematisch

Mehr

4 Nichtlineare Gleichungssysteme

4 Nichtlineare Gleichungssysteme 4 Nichtlineare Gleichungssysteme 4.1 Nichtlineare Gleichungssysteme und Optimierungsprobleme Sei f : D Ê n mit D Ê n ein Gebiet. Gesucht ist dann ein x D mit f(x) = 0 oder f i (x 1,...,x n ) = 0 für i

Mehr

Diplom VP Informatik/Numerik 9. September 2000 / Seite 1. Aufgabe 1: L-R-Zerlegung, Nachiteration / Ly = b. y = Rx = y.

Diplom VP Informatik/Numerik 9. September 2000 / Seite 1. Aufgabe 1: L-R-Zerlegung, Nachiteration / Ly = b. y = Rx = y. Diplom VP Informatik/Numerik 9 September 2000 / Seite 1 1 Pivotisierung : 2 L-R-Zerlegung von A: 3 Vorwärtseinsetzen: (pivotisierung) Aufgabe 1: L-R-Zerlegung, Nachiteration A A = 4 2 10 2 6 9 2 1 6 L

Mehr

Übersicht. 1. Motivation. 2. Grundlagen

Übersicht. 1. Motivation. 2. Grundlagen Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler

Mehr

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch):

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch): Leseprobe Hans-Jochen Bartsch Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler ISBN (Buch): 978-3-446-43800-2 ISBN (E-Book): 978-3-446-43735-7 Weitere Informationen oder Bestellungen

Mehr

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) SS 2016 Klausur

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) SS 2016 Klausur Prof. Dr. Benjamin Stamm Prof. Dr. Martin Grepl Öffnen Sie den Klausurbogen erst nach Aufforderung! Zugelassene Hilfsmittel: Mathematische Grundlagen II (CES) SS 2016 Klausur 29.07.2016 Dokumentenechtes

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

Analysis II. Vorlesung 36. stark kontrahierend, wenn es eine nichtnegative reelle Zahl c < 1 gibt mit

Analysis II. Vorlesung 36. stark kontrahierend, wenn es eine nichtnegative reelle Zahl c < 1 gibt mit Prof. Dr. H. Brenner Osnabrück SS 2014 Analysis II Vorlesung 36 Weitere Stetigkeitsbegriffe Wir führen einige weitere Stetigkeitsbegriffe ein. Definition 36.1. Es sei eine Abbildung zwischen den metrischen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Michael Karow Thema: Satz von Taylor Die Taylor-Entwicklung I Satz von Taylor. Sei f : R D R an der Stelle x n-mal differenzierbar. Dann gilt für x D, n f (k) (x )

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr