ARCH- und GARCH-Modelle
|
|
|
- Hilko Blau
- vor 10 Jahren
- Abrufe
Transkript
1 ARCH- und GARCH-Modelle Thomas Simon Analyse und Modellierung komplexer Systeme homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
2 Ausgangssituation Ziel ist die Beschreibung von Finanzmarktdaten Es handelt sich um zufällige Daten, die nicht redundant sind Datensätze sehr umfangreich Liegen jeweils in verschiedenen Zeiteinheiten vor ARCH- und GARCH Modelle: stochastiche Prozesse homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
3 Ausgangssituation Ziel ist die Beschreibung von Finanzmarktdaten Es handelt sich um zufällige Daten, die nicht redundant sind Datensätze sehr umfangreich Liegen jeweils in verschiedenen Zeiteinheiten vor ARCH- und GARCH Modelle: stochastiche Prozesse homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
4 Ausgangssituation Ziel ist die Beschreibung von Finanzmarktdaten Es handelt sich um zufällige Daten, die nicht redundant sind Datensätze sehr umfangreich Liegen jeweils in verschiedenen Zeiteinheiten vor ARCH- und GARCH Modelle: stochastiche Prozesse homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
5 Ausgangssituation Ziel ist die Beschreibung von Finanzmarktdaten Es handelt sich um zufällige Daten, die nicht redundant sind Datensätze sehr umfangreich Liegen jeweils in verschiedenen Zeiteinheiten vor ARCH- und GARCH Modelle: stochastiche Prozesse homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
6 Ausgangssituation Ziel ist die Beschreibung von Finanzmarktdaten Es handelt sich um zufällige Daten, die nicht redundant sind Datensätze sehr umfangreich Liegen jeweils in verschiedenen Zeiteinheiten vor ARCH- und GARCH Modelle: stochastiche Prozesse homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
7 Probleme der richtigen Größen und Skalen Was wird modelliert? Z(t) Y (t + t) Y (t) Z D (t) [Y (t + t) Y (t)]d(t) Y (t + t) Y (t) R(t) = Z(t) Y (t) Y (t) S(t) log(y (t + t)) log(y (t)) homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
8 Probleme der richtigen Größen und Skalen Zeitskala Zeitskala: Physikalische Zeit Handelszeit Durchführung von Transaktionen homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
9 Probleme der richtigen Größen und Skalen Zeitskala Zeitskala: Physikalische Zeit Handelszeit Durchführung von Transaktionen homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
10 Probleme der richtigen Größen und Skalen Zeitskala Zeitskala: Physikalische Zeit Handelszeit Durchführung von Transaktionen homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
11 Zeitskalen am Beispiel des S&P 500 index Im rechten Plot wurde Z mit α = 1.4 wie folgt skaliert: Z Z ( t) 1 α homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
12 Empirische Dichte für t = 1 min des S&P 500 index homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
13 Charakteristika von Finanzmarktdaten Eigenschaften der Daten Leptokurtische Verteilung Volatilitätsclustering Stochastische Trends vs. Stationarität Leverage-Effekt homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
14 Charakteristika von Finanzmarktdaten Eigenschaften der Daten Leptokurtische Verteilung Volatilitätsclustering Stochastische Trends vs. Stationarität Leverage-Effekt homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
15 Charakteristika von Finanzmarktdaten Eigenschaften der Daten Leptokurtische Verteilung Volatilitätsclustering Stochastische Trends vs. Stationarität Leverage-Effekt homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
16 Charakteristika von Finanzmarktdaten Eigenschaften der Daten Leptokurtische Verteilung Volatilitätsclustering Stochastische Trends vs. Stationarität Leverage-Effekt homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
17 ARCH(p)-Prozess Definition ARCH-Prozess ist ein diskreter stochastischer Prozess (x t ) t N x t normalverteilt mit µ = 0 und Varianz σ 2 t σ 2 t = α 0 + α 1 x 2 t α px 2 t p. α 0, α 1,..., α p R +. Im Falle von p Parametern spricht man von einem ARCH(p)-Prozess. Der Preisprozess ist gegeben durch die kumulierten Zuwächse: S(t) = t x i. i=1 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
18 ARCH(1)-Prozess Eigenschaften σ t = α 0 + α 1 x 2 t 1 Nicht-bedingte Varianz von (x t ) t N : falls 1 α 1 0 und 0 α 1 < 1. Nicht-bedingte Kurtosis von (x t ) t N : σ = α 0 1 α 1 (1) κ = 3 + 6α α 2 1 (2) falls 0 α 1 < 1 3 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
19 ARCH(1)-Prozess Eigenschaften σ t = α 0 + α 1 x 2 t 1 Nicht-bedingte Varianz von (x t ) t N : falls 1 α 1 0 und 0 α 1 < 1. Nicht-bedingte Kurtosis von (x t ) t N : σ = α 0 1 α 1 (1) κ = 3 + 6α α 2 1 (2) falls 0 α 1 < 1 3 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
20 ARCH(1)-Prozess Eigenschaften σ t = α 0 + α 1 x 2 t 1 Nicht-bedingte Varianz von (x t ) t N : falls 1 α 1 0 und 0 α 1 < 1. Nicht-bedingte Kurtosis von (x t ) t N : σ = α 0 1 α 1 (1) κ = 3 + 6α α 2 1 (2) falls 0 α 1 < 1 3 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
21 ARCH(1)-Prozess Simulation in R arch <- function(a,n,s=1){ c=mat.or.vec(n,1) c[1]=(rnorm(1,0,s)) 2 for(i in 1:(n-1)){ s=sqrt(a[1]+a[2]*(c[i] 2 )) c[i+1]=rnorm(1,0,s) } return(c) } k=arch(a,100000) S=cumsum(k) homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
22 Simulation von S t homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
23 Simulation der Zunahmen x t homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
24 Simulation der zugehörigen Dichte(α 0 = 1, α 1 = 0) Moment Theoretisch Empirisch Varianz 1 1 Kurtosis homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
25 Simulation der zugehörigen Dichte(α 0 = 0.5, α 1 = 0.5) Moment Theoretisch Empirisch Varianz 1 1 Kurtosis homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
26 Simulation der zugehörigen Dichte(α 0 = 0.45, α 1 = 0.55) Moment Theoretisch Empirisch Varianz Kurtosis homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
27 Probleme des ARCH-Modells Gute Modellierung einer Zeitreihe benötigt zahlreiche Paramter Schätzprobleme Bedingt wird nur unter den einzelnen Zuwächsen Volatilitätsclustering wird unzureichend wiedergegeben Idee Verallgemeinerung des ARCH-Modells homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
28 Probleme des ARCH-Modells Gute Modellierung einer Zeitreihe benötigt zahlreiche Paramter Schätzprobleme Bedingt wird nur unter den einzelnen Zuwächsen Volatilitätsclustering wird unzureichend wiedergegeben Idee Verallgemeinerung des ARCH-Modells homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
29 GARCH(q,p)-Prozess Definition GARCH-Prozess ist ein diskreter stochastischer Prozess (x t ) t N x t normalverteilt mit µ = 0 und Varianz σ 2 t σ 2 t = α 0 + α 1 x 2 t α px 2 t p + β 1 σ 2 t β qσ 2 t q α 0,..., α p, β 1,..., β q R +. Im Falle von p, bzw. q Parametern spricht man von einem GARCH(p,q)-Prozess. Der Preisprozess ist gegeben durch die kumulierten Zuwächse: S(t) = t x i. i=1 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
30 GARCH(1,1)-Prozess Eigenschaften σ t = α 0 + α 1 x 2 t 1 + β 1σ 2 t 1 Nicht-bedingte Varianz von (x t ) t N : σ = Nicht-bedingte Kurtosis von (x t ) t N : α 0 1 α 1 β 1 (3) 6α 2 1 κ = α1 2 2α 1β 1 β1 2 (4) homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
31 GARCH(1,1)-Prozess Eigenschaften σ t = α 0 + α 1 x 2 t 1 + β 1σ 2 t 1 Nicht-bedingte Varianz von (x t ) t N : σ = Nicht-bedingte Kurtosis von (x t ) t N : α 0 1 α 1 β 1 (3) 6α 2 1 κ = α1 2 2α 1β 1 β1 2 (4) homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
32 GARCH(1,1)-Prozess Eigenschaften σ t = α 0 + α 1 x 2 t 1 + β 1σ 2 t 1 Nicht-bedingte Varianz von (x t ) t N : σ = Nicht-bedingte Kurtosis von (x t ) t N : α 0 1 α 1 β 1 (3) 6α 2 1 κ = α1 2 2α 1β 1 β1 2 (4) homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
33 GARCH(1,1)-Prozess Eigenschaften σ t = α 0 + α 1 x 2 t 1 + β 1σ 2 t 1 Nicht-bedingte Varianz von (x t ) t N : σ = Nicht-bedingte Kurtosis von (x t ) t N : α 0 1 α 1 β 1 (3) 6α 2 1 κ = α1 2 2α 1β 1 β1 2 (4) homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
34 Vergleich mit den empirischen S&P 500 Daten für t = 1 min Wahl der Kontrollparameter S&P 500 -Daten liefern Varianz und Kurtosis. β 1 = 0.9 Berechnung der Kontrollparameter Simulation des Prozesses gibt eine empirische Dichte homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
35 Vergleich mit den empirischen S&P 500 Daten für t = 1 min Wahl der Kontrollparameter S&P 500 -Daten liefern Varianz und Kurtosis. β 1 = 0.9 Berechnung der Kontrollparameter Simulation des Prozesses gibt eine empirische Dichte homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
36 Vergleich mit den empirischen S&P 500 Daten für t = 1 min Wahl der Kontrollparameter S&P 500 -Daten liefern Varianz und Kurtosis. β 1 = 0.9 Berechnung der Kontrollparameter Simulation des Prozesses gibt eine empirische Dichte homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
37 Vergleich mit den empirischen S&P 500 Daten für t = 1 min Wahl der Kontrollparameter S&P 500 -Daten liefern Varianz und Kurtosis. β 1 = 0.9 Berechnung der Kontrollparameter Simulation des Prozesses gibt eine empirische Dichte homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
38 Vergleich mit den empirischen S&P 500 Daten für t = 1 min Wahl der Kontrollparameter S&P 500 -Daten liefern Varianz und Kurtosis. β 1 = 0.9 Berechnung der Kontrollparameter Simulation des Prozesses gibt eine empirische Dichte homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
39 Vergleich mit den empirischen S&P 500 Daten für t = 1 min Linkes Bild: Simulierter GARCH(1,1)-Prozess mit α 0 = , α 1 = und β 1 = 0.9. Rechtes Bild: Vergleich mit einer Normalverteilung und einem TLF. homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
40 Vergleich mit den empirischen S&P 500 Daten für t = 1 min Linkes Bild: Simulierter GARCH(1,1)-Prozess mit α 0 = , α 1 = und β 1 = 0.9. Rechtes Bild: Vergleich mit einer Normalverteilung und einem TLF. homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
41 Auswirkungen der Wahl des Zeitintervalls Kreise: S&P hochfrequente Daten. Quadrate: Simulation eines GARCH(1,1)Prozesses. homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
42 Autokovarianz des Prozesses Begriff der Autokovarianz cov(z t, z t+n ) = E{(z t E{z t }) (z t+n E{z t+n })} Autokovarianz von (x 2 t ) t N cov(x 2 t, x 2 t+n) =(α 1 + β 1 )cov(x 2 t, x 2 t+n 1) =(α 1 + β 1 ) n cov(xt 2, xt 2 ) ( ) n =exp ln(α 1 + β 1 ) 1 var(xt 2 ) ( =Aexp n ) τ Korrelation der Varianz Empirische Daten : polynomielle Korrelation GARCH - Modell : exponentielle Korrelation homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
43 Autokovarianz des Prozesses Begriff der Autokovarianz cov(z t, z t+n ) = E{(z t E{z t }) (z t+n E{z t+n })} Autokovarianz von (x 2 t ) t N cov(x 2 t, x 2 t+n) =(α 1 + β 1 )cov(x 2 t, x 2 t+n 1) =(α 1 + β 1 ) n cov(xt 2, xt 2 ) ( ) n =exp ln(α 1 + β 1 ) 1 var(xt 2 ) ( =Aexp n ) τ Korrelation der Varianz Empirische Daten : polynomielle Korrelation GARCH - Modell : exponentielle Korrelation homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
44 Autokovarianz des Prozesses Begriff der Autokovarianz cov(z t, z t+n ) = E{(z t E{z t }) (z t+n E{z t+n })} Autokovarianz von (x 2 t ) t N cov(x 2 t, x 2 t+n) =(α 1 + β 1 )cov(x 2 t, x 2 t+n 1) =(α 1 + β 1 ) n cov(xt 2, xt 2 ) ( ) n =exp ln(α 1 + β 1 ) 1 var(xt 2 ) ( =Aexp n ) τ Korrelation der Varianz Empirische Daten : polynomielle Korrelation GARCH - Modell : exponentielle Korrelation homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
45 Aggregation des Prozesses Normierte Aggregation - Zentraler Grenzwertsatz Falls (x t ) t N i.i.d. und Varianz endlich: zentraler Grenzwertsatz n Sn = 1 x σ 2 t ist dann im Grenzwert normalverteilt(µ = 0, σ 2 = 1). n t=1 Einfache Aggregation ABER: S (m) m 1 t = x t i (5) i=0 Ist wieder GARCH-Prozess in t. Kontrollparameteränderung! homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
46 Aggregation des Prozesses Normierte Aggregation - Zentraler Grenzwertsatz Falls (x t ) t N i.i.d. und Varianz endlich: zentraler Grenzwertsatz n Sn = 1 x σ 2 t ist dann im Grenzwert normalverteilt(µ = 0, σ 2 = 1). n t=1 Einfache Aggregation ABER: S (m) m 1 t = x t i (5) i=0 Ist wieder GARCH-Prozess in t. Kontrollparameteränderung! homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
47 Aggregation des Prozesses Normierte Aggregation - Zentraler Grenzwertsatz Falls (x t ) t N i.i.d. und Varianz endlich: zentraler Grenzwertsatz n Sn = 1 x σ 2 t ist dann im Grenzwert normalverteilt(µ = 0, σ 2 = 1). n t=1 Einfache Aggregation ABER: S (m) m 1 t = x t i (5) i=0 Ist wieder GARCH-Prozess in t. Kontrollparameteränderung! homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
48 Aggregation des Prozesses Normierte Aggregation - Zentraler Grenzwertsatz Falls (x t ) t N i.i.d. und Varianz endlich: zentraler Grenzwertsatz n Sn = 1 x σ 2 t ist dann im Grenzwert normalverteilt(µ = 0, σ 2 = 1). n t=1 Einfache Aggregation ABER: S (m) m 1 t = x t i (5) i=0 Ist wieder GARCH-Prozess in t. Kontrollparameteränderung! homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
49 Aggregation des Prozesses Normierte Aggregation - Zentraler Grenzwertsatz Falls (x t ) t N i.i.d. und Varianz endlich: zentraler Grenzwertsatz n Sn = 1 x σ 2 t ist dann im Grenzwert normalverteilt(µ = 0, σ 2 = 1). n t=1 Einfache Aggregation ABER: S (m) m 1 t = x t i (5) i=0 Ist wieder GARCH-Prozess in t. Kontrollparameteränderung! homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
50 Aggregation des Prozesses Normierte Aggregation - Zentraler Grenzwertsatz Falls (x t ) t N i.i.d. und Varianz endlich: zentraler Grenzwertsatz n Sn = 1 x σ 2 t ist dann im Grenzwert normalverteilt(µ = 0, σ 2 = 1). n t=1 Einfache Aggregation ABER: S (m) m 1 t = x t i (5) i=0 Ist wieder GARCH-Prozess in t. Kontrollparameteränderung! homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
51 Aggregation des Prozesses Veränderung der Parameter durch einfache temporale Aggregation α (m) 0 =α 0 1 B m 1 B α (m) 1 =B m β (m) wobei β (m) (0, 1) die Lösung der folgenden quadratischen Gleichung ist. β (m) 1 + [β (m) ] 2 = β 1 B m α 2 1 [1 B2m 2 ]/[1 B 2 ] + β 2 1 B2m 2 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
52 Parameteränderung bei Aggregation Die Startpunkte sind (β 1 = 0.8), (α 1 = 0.05,.1,.19,.199 und.1999). Das Zeitfenster der Aggregation wird verdoppelt, bzw. halbiert. homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
53 Zusammenfassung GARCH-Prozess beschreibt sehr gut hochfrequente Finanzzeitreihen Zeitskalierung kann nicht abgebildet werden Anwendung: Vorhersage von Schwankungen >Risikoeinschätzung Wichtige Annahme: Asymptotische Stationarität Modellerweiterungen homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
54 Noch Fragen...? homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle / 27
Das GARCH Modell zur Modellierung von Finanzmarktzeitreihen. Seminararbeit von Frauke Heuermann Juni 2010
Das GARCH Modell zur Modellierung von Finanzmarktzeitreihen Seminararbeit von Frauke Heuermann Juni 2010 i Inhaltsverzeichnis 0 Einleitung 1 1 Der ARCH-Prozess 1 1.1 Das ARCH(1)-Modell........................
Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel
Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung
Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über
Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
Grundlagen der Monte Carlo Simulation
Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte
Schleswig-Holstein 2011. Kernfach Mathematik
Aufgabe 6: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. Eine repräsentative
Statistische Thermodynamik I Lösungen zur Serie 1
Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen
Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell:
Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen LV-Leiterin: Univ.Prof.Dr. Sylvia Frühwirth-Schnatter 1 Wahr oder falsch? 1. Das folgende Modell ist ein GARCH(1,1)-Modell: Y
1.3 Die Beurteilung von Testleistungen
1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Ausarbeitung des Seminarvortrags zum Thema
Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung
In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.
Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht
Forschungsstatistik I
Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] WS 008/009 Fachbereich
B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!
Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden
Melanie Kaspar, Prof. Dr. B. Grabowski 1
7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
Übersicht. 1 Unsicherheit und Klimawandel. 2 Umgang mit Unsicherheit in IAMs. 3 Strukturelle Unsicherheit: Weitzmans Dismal Theorem
Vorlesung 8: Bewertung III 1/15 Übersicht 1 Unsicherheit und Klimawandel 2 Umgang mit Unsicherheit in IAMs 3 Strukturelle Unsicherheit: Weitzmans Dismal Theorem Vorlesung 8: Bewertung III 2/15 Unsicherheit
Grundlagen der Künstlichen Intelligenz
Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.
Grundbegriffe der Informatik
Grundbegriffe der Informatik Kapitel 6: Induktives Vorgehen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische
Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg
Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 6 Endliche Kameras Die Lochkamera Die Projektive Kamera Die projektive Kamera Spalten von P Zeilen von P Hauptpunkt und Hauptachse
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument
Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 11. Mai 2015 Mathematik Teil-2-Aufgaben Korrekturheft Aufgabe 1 200-m-Lauf a) Lösungserwartung: s (t) = 7 75 t + 1,4 s (t) = 7 75 s (t)
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen
geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde
2. Eigenschaften digitaler Nachrichtensignale
FH OOW / Fachb. Technik / Studiengang Elektrotechnik u. Automatisierungstechnik Seite 2-2. Eigenschaften digitaler Nachrichtensignale 2. Abgrenzung zu analogen Signalen Bild 2.- Einteilung der Signale
Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2
Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung
13.5 Der zentrale Grenzwertsatz
13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle
Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz
Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Andreas Aigner email: [email protected]. Januar 00 Inhaltsverzeichnis Theorie. Stromfunktion...........................
Das Hebelgesetz zur Lösung technischer Aufgaben
Es gibt einseitige Hebel, zweiseitige Hebel und Winkelhebel. Mit allen Hebeln kann man die Größe und Richtung von Kräften ändern. In der Regel verwendet man Hebel zur Vergrößerung von Kräften. Das Hebelgesetz
R ist freie Software und kann von der Website. www.r-project.org
R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird
Überblick über die Tests
Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt
Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)
Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase
OSEK Deadline-Analyse
OSEK Deadline-Analyse GmbH Erlangen Jürgen Scherg 8. Juni 2001 Ein Programmtest muß unter verschiedenen Gesichtspunkten durchgeführt werden. verschiedene Testmethoden sind notwendig. Blackbox : Es wird
Aufgabe 1: [Logische Modellierung]
Aufgabe 1: [Logische Modellierung] a) Entwerfen Sie für das von Ihnen entworfene Modell aus Aufgabe 2 des 1. Übungsblattes ein Star-Schema. b) Entwerfen Sie für das vorangegangene Modell einen Teil eines
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de
1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht
Viele Bilder auf der FA-Homepage
Viele Bilder auf der FA-Homepage Standardmäßig lassen sich auf einer FA-Homepage nur 2 Bilder mit zugehörigem Text unterbringen. Sollen es mehr Bilder sein, muss man diese als von einer im Internet
Simulation LIF5000. Abbildung 1
Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles
A2.3: Sinusförmige Kennlinie
A2.3: Sinusförmige Kennlinie Wie betrachten ein System mit Eingang x(t) und Ausgang y(t). Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet. Der Zusammenhang zwischen dem Eingangssignal
Kompetenzen und Aufgabenbeispiele Englisch Schreiben
Institut für Bildungsevaluation Assoziiertes Institut der Universität Zürich Kompetenzen und Aufgabenbeispiele Englisch Schreiben Informationen für Lehrpersonen und Eltern 1. Wie sind die Ergebnisse dargestellt?
Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.
LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Rohstoffanalyse - COT Daten - Gold, Fleischmärkte, Orangensaft, Crude Oil, US Zinsen, S&P500 - KW 07/2009
MikeC.Kock Rohstoffanalyse - COT Daten - Gold, Fleischmärkte, Orangensaft, Crude Oil, US Zinsen, S&P500 - KW 07/2009 Zwei Märkte stehen seit Wochen im Mittelpunkt aller Marktteilnehmer? Gold und Crude
Data Mining: Einige Grundlagen aus der Stochastik
Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge
2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten
Beweisbar sichere Verschlüsselung
Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit [email protected] 6
Risikoeinstellungen empirisch
Risikoeinstellungen empirisch Risk attitude and Investment Decisions across European Countries Are women more conservative investors than men? Oleg Badunenko, Nataliya Barasinska, Dorothea Schäfer http://www.diw.de/deutsch/soep/uebersicht_ueber_das_soep/27180.html#79569
Wir machen neue Politik für Baden-Württemberg
Wir machen neue Politik für Baden-Württemberg Am 27. März 2011 haben die Menschen in Baden-Württemberg gewählt. Sie wollten eine andere Politik als vorher. Die Menschen haben die GRÜNEN und die SPD in
Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt
Mit denken - nicht ausgrenzen Kinder und Jugendliche mit Behinderung und ihre Familien
Mit denken - nicht ausgrenzen Kinder und Jugendliche mit Behinderung und ihre Familien Arbeitsgruppe 6 Problemlagen an der Schnittstelle zwischen SGB VIII und SGB XII. 1 These 1 These 2 These 3 These 4
Umsatz-Kosten-Treiber-Matrix. 2015 Woodmark Consulting AG
Umsatz-Kosten-Treiber-Matrix Die Alpha GmbH ist ein Beratungsunternehmen mit 43 Mitarbeitern. Der Umsatz wird zu 75% aus IT-Beratung bei Kunden vor Ort und vom Betrieb von IT-Applikationen erwirtschaftet.
Teiltransparente Bilder
Ralf Eberle: Im folgenden eine Anleitung, wie man mit FixFoto teiltransparente Bilder für den Hintergrund von Web-Seiten oder auch Web-Tabellen erstellen kann. Verwendete FixFoto-Werkzeuge: Farbabgleich
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Verteilungsmodelle. Verteilungsfunktion und Dichte von T
Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung
Kosten-Leistungsrechnung Rechenweg Optimales Produktionsprogramm
Um was geht es? Gegeben sei ein Produktionsprogramm mit beispielsweise 5 Aufträgen, die nacheinander auf vier unterschiedlichen Maschinen durchgeführt werden sollen: Auftrag 1 Auftrag 2 Auftrag 3 Auftrag
Value at Risk Einführung
Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim [email protected] Institut für Wirtschaftsinformatik Leibniz Universität Hannover
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
Quantilsschätzung als Werkzeug zur VaR-Berechnung
Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, [email protected] Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird
Korrelation - Regression. Berghold, IMI
Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines
Software-Engineering SS03. Zustandsautomat
Zustandsautomat Definition: Ein endlicher Automat oder Zustandsautomat besteht aus einer endlichen Zahl von internen Konfigurationen - Zustände genannt. Der Zustand eines Systems beinhaltet implizit die
DAS PARETO PRINZIP DER SCHLÜSSEL ZUM ERFOLG
DAS PARETO PRINZIP DER SCHLÜSSEL ZUM ERFOLG von Urs Schaffer Copyright by Urs Schaffer Schaffer Consulting GmbH Basel www.schaffer-consulting.ch [email protected] Haben Sie gewusst dass... >
Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen
Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Stephan Rosebrock Pädagogische Hochschule Karlsruhe 23. März 2013 Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe)
A Lösungen zu Einführungsaufgaben zu QueueTraffic
A Lösungen zu Einführungsaufgaben zu QueueTraffic 1. Selber Phasen einstellen a) Wo im Alltag: Baustelle, vor einem Zebrastreifen, Unfall... 2. Ankunftsrate und Verteilungen a) poissonverteilt: b) konstant:
Korrelation (II) Korrelation und Kausalität
Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen
Alle Bestandteile dieses Dokuments sind urheberrechtlich geschützt. 2014 dwif-consulting GmbH. Dieses Dokument ist Teil der Präsentation und ohne die
Alle Bestandteile dieses Dokuments sind urheberrechtlich geschützt. 2014 dwif-consulting GmbH. Dieses Dokument ist Teil der Präsentation und ohne die mündliche Erläuterung unvollständig. 31.10.2014 2 Anmerkungen
Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8
1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen
Lichtbrechung an Linsen
Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen
Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen
4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.
Einfache Varianzanalyse für abhängige
Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese
Erfahrungen mit Hartz IV- Empfängern
Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November
Induktivitätsmessung bei 50Hz-Netzdrosseln
Induktivitätsmessung bei 50Hz-Netzdrosseln Ermittlung der Induktivität und des Sättigungsverhaltens mit dem Impulsinduktivitätsmeßgerät DPG10 im Vergleich zur Messung mit Netzspannung und Netzstrom Die
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)
Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck
Kap. 8: Speziell gewählte Kurven
Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl
Repetitionsaufgaben Wurzelgleichungen
Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen
METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER
METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede
Das Mathematik-Abitur im Saarland
Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die
Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:
Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn
Musterlösung zu Serie 14
Dr. Lukas Meier Statistik und Wahrscheinlichkeitsrechnung FS 21 Musterlösung zu Serie 14 1. Der Datensatz von Forbes zeigt Messungen von Siedepunkt (in F) und Luftdruck (in inches of mercury) an verschiedenen
Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen.
Fakultät Informatik, Institut für Angewandte Informatik, Professur für Technische Informationssysteme Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen.
Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall
Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen
Kevin Caldwell. 18.April 2012
im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig
Kryptographie in der Moderne
Kryptographie in der Moderne Sicherheit im Internet Kryptographie in der Moderne Kryptographie ist die Lehre der Datensicherheit im Allgemeinen Verschlüsselung nur noch kleiner Bestandteil der Kryptographie
Wie ist das Wissen von Jugendlichen über Verhütungsmethoden?
Forschungsfragen zu Verhütung 1 Forschungsfragen zu Verhütung Wie ist das Wissen von Jugendlichen über Verhütungsmethoden? Wie viel Information über Verhütung ist enthalten? Wie wird das Thema erklärt?
MatheBasics Teil 4 Grundlagen der Mathematik
Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der
4. Dynamische Optimierung
4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger
Erstellen einer GoTalk-Auflage
Erstellen einer GoTalk-Auflage 1. Bei dem Startbild Vorlage öffnen wählen 2. In dem folgenden Fenster Geräte Schablonen doppelt anklicken. - und schon öffnet sich der gesamte Katalog der verfügbaren Talker-Auflagen...eigentlich
Mathematischer Vorbereitungskurs für Ökonomen
Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen
Gleichungen Lösen. Ein graphischer Blick auf Gleichungen
Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term
Geometrische Brownsche Bewegung und Brownsche Brücke
Geometrische Brownsche Bewegung und Brownsche Brücke Korinna Griesing Dozentin: Prof. Dr. Christine Müller 17. April 2012 Korinna Griesing 1 (26) Inhalt Motivation Statistische Methoden Geometrische Brownsche
Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik
Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche
1: 9. Hamburger Gründerpreis - Kategorie Existenzgründer - 08.09.2010 19:00 Uhr
1: 9. Hamburger Gründerpreis - Kategorie Existenzgründer - Sehr geehrter Herr Bürgermeister, sehr geehrter Herr Dr. Vogelsang, sehr geehrter Herr Strunz, und meine sehr geehrte Damen und Herren, meine
RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG
Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie
Angewandte Stochastik
Angewandte Stochastik Dr. C.J. Luchsinger 14 Lehren für s Management & das tägliche Leben III: Zins und exponentielles Wachstum Zur Erinnerung: mit grossen n gilt: n! > c n > n c > log n. Aus der Analysis
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
Portfolioselection. Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen?
Portfolioselection Zentrale Frage: Wie stellen rationale Investoren ihr Portfolio zusammen? Investieren in Aktien ist riskant Risiko einer Aktie kann in 2 Teile zerlegt werden: o Unsystematisches Risiko
