Aufgaben zur gleichförmigen Bewegung. Aufgaben

Größe: px
Ab Seite anzeigen:

Download "Aufgaben zur gleichförmigen Bewegung. Aufgaben"

Transkript

1 Aufgaben zur gleicförigen Bewegung Aufgaben. Ein Radfarer are u 7.00 Ur in Leipzig und fär i der ileren Gecwindigkei 0 / nac Berlin. U 9.00 Ur fär ein Auo on deelben Punk in dieelbe Ricung ab. E beiz die ilere Gecwindigkei 80 /. Wann und nac welcer Srecke a da Auo den Radfarer eingeol?. Mi welcer Gecwindigkei u da Erdöl in einer Rorleiung on 00 c² Quercni fließen, dai i Laufe einer Sunde 8 ³ daon indurcfließen? 3. Ein Auo i 60 - wird on eine zweien i 70 - überol. Wie lange dauer der Überolorgang und welce Farrecke u der Überoler dabei zurücklegen? Der gegeneiige Aband or und nac de Überolen berug 0 und beide Wagen ind je 4 lang. 4. Zur Zei 0= 0 fär 60 or eine PKW (V Pkw= 54/) eine Sraßenban i einer Gecwindigkei on 36/. Beide bealen ire Gecwindigkei bei. a) Wie iel Meer u der PKW faren, beor er die Sraßenban erreic? b) Welce Srecke leg die Sraßenban in dieer Zei zurück? c) Wann erreic der PKW die Sraßenban? 5. Ic fare i 30 / auf der recen Spur der Auoban und näere ic eine i 00 / farenden LKW on 0 Länge. Al ic 00 iner de LKW bin und zu Überolen anezen will, fare ic an der Anzeigeafel 000 or einer Abfar orbei. Wie wei or der Abfar cließ an den Überolorgang ab, wenn an ordnunggeäß i --Aband or de LKW wieder auf die rece Farban wecel? Mein Auo a eine Länge on 4. (--Aband: Sicereiaband zwicen zwei Farzeugen; i der Aband, den ein Farzeug in zurückleg.) 6. Hein, Jan und Fiee liegen a Srand und een in 60 Enfernung eine Boje i Waer caukeln. (AB) Sie fragen ic: Auf welce Weg gelang an wol a cnellen zu Boje, wenn an i Waer i eine Meer pro Sekunde cwien kann, auf de Land aber dreial o cnell i." U a Srand auf die Höe der Boje zu gelangen, üßen ie 00 gerade a Ufer enlang laufen. (AC) Wie wei üen ie a Ufer laufen (AD), u dann direk auf die Boje zuzucwien und dabei die kürzee Zei benöigen?

2 Löungen:. Löung: Anwor: ge.: = 0 = 80 Wenn da Auo den Radfarer eingeol a, aben beide Farzeuge die gleice Srecke zurückgeleg. E gil alo: = Die bi dain benöigen Zeien unerceiden ic u Sunden, die Zei de Radfarer i Sunden größer. = + Weierin gil, da die Bewegungen al gleicförig berace werden,: = Nac ugeell und in die ere Gleicung eingeez: = = Sez an die. Gleicung noc ein, kann an eine der Farzeien aurecnen: + = + = = = = ( ) ( ) = 3 Da Auo fär /3. Da ind 40 in. Da er 9.00 Ur logefaren i, erreic er den Radfarer u 9.40 Ur. Er i dabei = = 80 3 = 53,3 gefaren. Der Radfarer ebenfall: = = 0 3 = 53,3 Die beiden reffen ic u 9.40 Ur nac 53,3.

3 . A = 00c ge.: V = 8 3 = Löung: Da Öl fließ gleicförig i der Gecwindigkei. Da Voluen, da geforder i, i allgeein die Fläce de Rorquercni al die Länge einer Öläule. V = A Anwor: V = A 8 = 00 0 = In einer Sunde u da Öl au 800 Rorleiung eraulaufen. =,800 = =,8 Da Öl u i einer Gecwindigkei on,8 / oder 0,5 / durc die Roleiung fließen.

4 3. a = 60 = 6,7 = 70 = 9,4 = a = 0 ge.: l = l = 4 Löung: Man berace da langae Auo al ruend -> Relaigecwindigkei 0 / =,8 / () Welcen Weg uß da cnelle Auo zurücklegen, u an de al eend angenoenen orbeizufaren?, * = 48 () Die Zei dafür: = = = 7, Bei der zurückgelegen Srecke uß wieder i der wirklicen Gecwindigkei gerecnee werden: = = 9,4 7, = 33 Anwor: Der Überolorgang dauer 7, da Auo leg dabei einen Weg on 33 zurück. 4. Die Sraßenban e und da Auo fär i der Differenzgecwindigkei on 8 / = 5 /. Da der Aband 60 beräg, brauc da Auo, u die Sraßenban einzuolen. Dai fär da Auo in dieer Zei 5 / * = 80. Die Sraßenban fär 0 / * = 0. Der Aband zwicen beiden Srecken beräg 60, da war aber in der Aufgabe con gegeben (= Probe).

5 5. Löung: P L P L A = 30 = 00 = 00 = 000 ge.: L = 0 Die Frage i, wieiel or der Abfar kann ic or de LKW wieder auf die rece Spur koen. Dabei u der -Aband eingealen werden. Da eiß, der Sicereiaband zwicen de LKW und ir u o groß ein, wie der LKW in fär. = = = 7,8 = 55,6 Welcen Weg u ic ingea zurücklegen? Al ere ni an an, da der LKW e und ic an i i der Differenzgecwindigkei orbei fare. Die Differenzgecwindigkei beräg 30 /. Wie groß i der Weg bei eende LKW? Mein Aband zu LKW or de Überolen + die Länge de LKW + die Länge eine Auo + der Aband LKW - Auo nac de Überolen. Mein Auo i 4 lang. Alo: = ,6 = 69,6 Wie lange brauce ic dafür i 30 /? = = 69,6 = 8,3 = 0,4 Wie wei fare ic nun aber wirklic in dieer Zei? = = = 36, 0,4 = 736,7 Der Überolorgang i nac 736,7 abgecloen. Anwor: Bi zur Aufar bleiben noc 64.

6 6. Löung: Sie üen 55,8 a Ufer laufen und dann direk zur Boje cwien. Sie benöigen dann 5. E ei A der Sandor der drei Jungen, B die Boje, C der Or enkrec uner der Boje und D der Or, an de an in Waer pringen uß. Der Winkel bei A eiß α und i 5,3 groß, co α = 5/8. Die geuce Srecke i AD=x. Scwi an direk on A nac B benöig an 60, läuf an nac C und cwi dann brauc an 58,3. Die Löung i ein Beipiel für da Ferace Prinzip. Eine Welle läuf zwicen zwei Punken ier o, daß ie dazu öglic wenig Zei brauc. Zwicen beiden Punken können beliebige Medien i beliebigen carfen oder koninuierlicen Übergängen dazwicen liegen. Man ni nun an Selle der Welle die drei Jungen. Dai kann an da Proble i de Brecunggeez löen: Der Srand a die Gecwindigkei 3 und da Waer die Gecwindigkei. Dai ergib ic für den Übergang Waer - Srand eine Breczal on /3. Berace an die Bewegung in ugekerer Ricung, alo on B über D nac A dann a an gerade den Fall der Toalreflexion. E ergib ic ein Einfallwinkel on 9,47, dai i der Winkel BDA = 09,47. Über die enprecenden Winkelfunkionen eräl an 55,84 für die geuce Srecke.. Möglickei: Ge an on A über D nac B ergib ic folgende Löung: Die Zei ez ic au der Zei (AD) und der Zei (DB) zuaen. = +. = x/3 + DB/ nac de Coinuaz i DB = Wurzel(60²² + x² - *60*x*co α) dai wird = x/3 + Wurzel( x² - 00x) (Zur Vereinfacung abe ic weggelaen, da der Zalenwer ja i. Die Eineien werden auc nic er beace). Die Frage i nun, wo a diee Funkion ir Miniu, denn da i ja die Zei a kleinen. Dazu uß an die. Ableiung der Funkion bilden, diee 0 ezen und nac x uellen. Da i dann 0 = (Wurzel(x² - 00x )+3*(x-00)) / (3*Wurzel(x² - 00x )) Al Löung ergib ic dann für x = 55,8.

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen:

6. In einem Experiment wurden für die Bewegung eines Spielzeugautos folgende Messwerte aufgenommen: Aufgaben zur gleicförigen Bewegung Aufgaben. Ein Radfarer are u 7.00 Ur in Leipzig und fär i der ileren Gecwindigkei 0 / nac Berlin. U 9.00 Ur fär ein Auo on deelben Punk in dieelbe Ricung ab. E beiz die

Mehr

Weg von 150 m zurück. Mit welcher Geschwindigkeit bewegt sich das Wasser in dem Fluss?

Weg von 150 m zurück. Mit welcher Geschwindigkeit bewegt sich das Wasser in dem Fluss? Aufgaben zur gleicförigen Bewegung 533. Eine Wepe caff al Höcgecwindigkei 6,5 k/. Gib die Gecwindigkei in / an. Wie wei flieg da Tier i dieer Gecwindigkei in einer alben Minue? 534. ibellen ind in der

Mehr

1. Flächen und Räume (Buch Seite 69-71)

1. Flächen und Räume (Buch Seite 69-71) Löungen zu Teraining Texaufgaben Hee/Scrader. Fläcen und Räue (Buc Seie 69-7) Aufgabe Größe eine Pflaerein A Sein : ASein = 0c 0c= 0, 0, = 0, 0 Wie iele Pflaereine brauc die Fira nun für den Plaz? 500

Mehr

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei

ges.: Der erste Treffpunkt ist zum Zeitpunkt 0 am Start. Danach fährt der Fahrer 1 45 min und legt dabei 859. Zwei Auo faren mi erciedenen Gecwindigkeien 1 = 160 / bzw. 2 = 125 / dieelbe Srecke on 200 Länge. Beide Wagen aren gleiczeiig in derelben Ricung. Der arer de cnelleren Wagen mac nac 45min arzei 15min

Mehr

Treffpunkte, Überholvorgänge

Treffpunkte, Überholvorgänge Treffpunke, Überolorgänge 1. Vor eine Inerregio, der i einer Gecwindigkei on 10 k/ fär, uc plözlic u de Nebel in 0 Enfernung ein Güerzug uf, der in derelben Ricung i 40 k/ fär. Der Inerregio bre ofor i

Mehr

2 Formeln richtig und schnell umstellen

2 Formeln richtig und schnell umstellen Formeln ricig und cnell umellen 17 Aufgabe 1 Peer i mi einer Scweer Criina in Konanz unerweg. Er oll ie bei irer Freundin abezen. Die beiden faren gerade in einer engen Einbanraße mi Parkbucen und Bürgereig

Mehr

= 150 kmh -1. Wie groß ist die Beschleunigung und der zurückgelegte Weg, wenn die Geschwindigkeitserhöhung in der Zeit von 10 Sekunden erfolgt?

= 150 kmh -1. Wie groß ist die Beschleunigung und der zurückgelegte Weg, wenn die Geschwindigkeitserhöhung in der Zeit von 10 Sekunden erfolgt? Aufgaben zur gleicäßig becleunigen Bewegung. Ein Auo eiger eine Gecwindigkei gleicäßig on = 0 k - auf = 50 k -. Wie groß i die Becleunigung und der zurückgelege Weg, wenn die Gecwindigkeieröung in der

Mehr

Übungsaufgaben. Physik. http://physik.lern-online.net. http://www.lern-online.net THEMA: Gleichförmige Bewegungen und Überholvorgang

Übungsaufgaben. Physik. http://physik.lern-online.net. http://www.lern-online.net THEMA: Gleichförmige Bewegungen und Überholvorgang bungaufgaben Pyik p://pyik.lern-online.ne p://.lern-online.ne THEMA: leicförmige Beegungen und berolvorgang Vorgeclagene Arbeizei: Vorgeclagene Hilfmiel: Beerung: Hinei: ea 30 Minuen Tacenrecner (nic programmierbar,

Mehr

3. Die Tabelle enthält die Messwerte für zwei Spielzeugautos, die nebeneinander starten.

3. Die Tabelle enthält die Messwerte für zwei Spielzeugautos, die nebeneinander starten. Aufgen zur gleicäßig ecleunigen Bewegung Aufgen. Ein Auo ecleunig gleicäßig in on uf k -. Welcen Weg e in dieer Zei zurückgeleg?. Ein Zug fär i 7 k/ Gecwindigkei. Durc eine Buelle wird er gezwungen, eine

Mehr

Aufgabe 1: Ein LkW fährt mit einer konstanten Geschwindigkeit von a) Welchen Weg legt er dabei in einer Zeit von t 8,5min zurück?

Aufgabe 1: Ein LkW fährt mit einer konstanten Geschwindigkeit von a) Welchen Weg legt er dabei in einer Zeit von t 8,5min zurück? ewegung i konaner ecwindigkei ufgabe : Ein LkW fär i einer konanen ecwindigkei von a) Welcen Weg leg er dabei in einer Zei von 8,5in zurück? eg.: v 65 8 8 ; 8,5in 50 ; 0 0 e.: 0 0 0 8 3 () v v 8 50 908

Mehr

Aufgaben zur gleichförmigen Bewegung

Aufgaben zur gleichförmigen Bewegung Aufgaben zur gleichförigen Bewegung 860. Ein Waerrad on 5 Durcheer eh an eine 2 breien und 0,7 iefe Bach. Da Rad dreh ich in der Minue 5 al und i a Rand genau o chnell, wie der Bach fließ. Wie iel Lier

Mehr

Übungen für die 1. Physikprüfung - mit Lösungen

Übungen für die 1. Physikprüfung - mit Lösungen Übungen für die. Pyikprüfung - i Löungen One vhvon obenl : =H 0 L + v 0 + ÅÅÅÅ a One Hvon obenl : v = v 0 + a One a : =H 0 L + ÅÅÅÅ Hv + v 0L One : v = è!!!!!!!!!!!!!!!!!!!!!!! v 0 + a Zenerpoenzen Screiben

Mehr

wird auch die Dehnung zz nach (3.12) gleich null. Die nicht verschwindenden Verzerrungen sind (mit (3.17a) ):

wird auch die Dehnung zz nach (3.12) gleich null. Die nicht verschwindenden Verzerrungen sind (mit (3.17a) ): Tragwerkberecnung apl Doz Dr-Ing abil G Georgi Reine Torion Offene Quercnie Uner der Vorauezung kon wird auc die Denung zz nac () gleic null Die nic vercwindenden Verzerrungen ind (i (7a) ):, ( z),, (

Mehr

1. Kontrolle Physik Grundkurs Klasse 11

1. Kontrolle Physik Grundkurs Klasse 11 1. Konrolle Phyik Grundkur Klae 11 1. Ein Luch lauer eine Haen auf und lä e da ahnungloe und chackhafe Tier bi auf 30,0 herankoen. Dann prine er i 68 k/h auf ein Opfer lo, da ofor davon renn. Nach 5,0

Mehr

Aufgaben zu den Würfen. Aufgaben

Aufgaben zu den Würfen. Aufgaben Aufaben zu den Würfen Aufaben. Ein Körper wird i der Gecwindikei 8 - nac oben eworfen. Vo Lufwiderand ee an ab. Berecnen Sie die Wurföe und die Zei bi zu Erreicen de öcen Punke der Ban. Berecnen Sie die

Mehr

13 Tangentenproblem; Ableitung

13 Tangentenproblem; Ableitung Tangenenproble; Ableiung Gegeben sei die Funion : x x ; ID IR Proble: Welce Seigung a eine Gerade, die den Grap von i Pun P berür (Tangene); Tangenengleicung? G U die Seigung einer Geraden durc den Pun

Mehr

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar.

Aufgabe T1: Eine Druckgasflasche (V=50l) sei gefüllt mit Stickstoff unter einem Druck von 300 bar. ysikkurs i Raen des Forbildungslerganges Indusrieeiser Facricung arazeuik anuar 008 Lösungen Wärelere Aufgabe : Eine Drucasflasce (V50l) sei gefüll i icksoff uner eine Druck von 00 bar. ϑ a) Wieviel ol

Mehr

Aufgabe 1: a) (i) und (ii) und (iv) 1 Punkt b) (i) 1 Punkt c) (i) 1 Punkt d) (iv) 1 Punkt e) (B) 1 Punkt f) (iv) 1 Punkt g) (i) und (ii) 2 Punkte h

Aufgabe 1: a) (i) und (ii) und (iv) 1 Punkt b) (i) 1 Punkt c) (i) 1 Punkt d) (iv) 1 Punkt e) (B) 1 Punkt f) (iv) 1 Punkt g) (i) und (ii) 2 Punkte h Aufgabe : a) i) un ii) un i) Punk b) i) Punk c) i) Punk ) i) Punk e) B) Punk f) i) Punk g) i) un ii) Punke i) un iii) un i) un ).5 lu.5 Punk Aufgabe : Venuri Ror Punke) a. Volumenrom Für ieen Aufgabeneil

Mehr

1. Für die Bewegung eines Fahrzeuges wurde das t-s-diagramm aufgenommen. Skizziere für diese Bewegung das t-v- Diagramm.

1. Für die Bewegung eines Fahrzeuges wurde das t-s-diagramm aufgenommen. Skizziere für diese Bewegung das t-v- Diagramm. Aufgaben zur gleichförigen Bewegung 1. Für die Bewegung eine Fahrzeuge wurde da --Diagra aufgenoen. Skizziere für diee Bewegung da -- Diagra. 2. Eine Radfahrerin und ein Spaziergänger i eine Hund bewegen

Mehr

V Welche Leistung bringt ein Mensch beim Fahrrad Fahren? Einleitung (Hier wird erklärt, warum der Versuch durchgeführt wird)

V Welche Leistung bringt ein Mensch beim Fahrrad Fahren? Einleitung (Hier wird erklärt, warum der Versuch durchgeführt wird) AB Energie Leiung Scüler, Seie 1 V Welce Leiung bring ein Menc bei arrad aren? Einleiung (Hier wird erklär, waru der Veruc durcgefür wird) Mecanice Energie E wird dann auf einen Körper überragen, wenn

Mehr

Aufgaben zu den Newtonsche Gesetzen

Aufgaben zu den Newtonsche Gesetzen Aufgaben zu den ewtonce Geetzen. Zwei Maen von = 8 und = ängen an den Enden eine Seil, da über eine fete Rolle it vernacläigbarer Mae gefürt it. a) Wie groß it die Becleunigung de al reibungfrei angenoenen

Mehr

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung

Geradlinige Bewegung Krummlinige Bewegung Kreisbewegung 11PS KINEMATIK P. Rendulić 2011 EINTEILUNG VON BEWEGUNGEN 1 KINEMATIK Die Kinemaik (Bewegunglehre) behandel die Geezmäßigkeien, die den Bewegungabläufen zugrunde liegen. Die bei der Bewegung aufreenden

Mehr

Bitte beginnen Sie jede neue Aufgabe auf einem neuen Blatt!

Bitte beginnen Sie jede neue Aufgabe auf einem neuen Blatt! Soereeer 010 Bla 1 (on 7) Sudiengang: BT(B) / CI(B) Seeer Prüfungfach: Phyik Fachnuer: 04, 071, 07 Hilfiel: Manukrip, Lieraur, Tachenrechner Zei:10 Minuen Ingea ind 10 Punke erreichbar. Bie beginnen Sie

Mehr

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur?

auf den Boden fallen, hört man in gleichen Zeitabständen 4 Geräusche. Welchen Abstand hat die 3. Schraube vom unteren Ende der Fallschnur? Aufaben zu freien Fall 0. Von der Spize eine Ture lä an einen Sein fallen. Nach 4 Sekunden ieh an ihn auf de Boden aufchlaen. a) Wie hoch i der Tur? b) Mi welcher Gechwindikei riff der Sein auf den Erdboden

Mehr

c) Berechne aus dieser die mechanische Arbeit, die bei ebener Strecke nötig ist, um dieses Fahrzeug 100 km weit zu bewegen.

c) Berechne aus dieser die mechanische Arbeit, die bei ebener Strecke nötig ist, um dieses Fahrzeug 100 km weit zu bewegen. Aufben Arbei und Enerie 547. Ein Tnk oll i Hilfe einer Pupe i Wer efüll werden. Der Tnk für den Scluc zwei Anclüe, oben und unen. Wie eräl e ic i der durc die Pupe zu erriceen Arbei, u den Tnk olländi

Mehr

Physik-Übungsblatt Nr. 1: Lösungsvorschläge

Physik-Übungsblatt Nr. 1: Lösungsvorschläge Phyik-Übungbla Nr. 1: Löungorchläge ufgabe 1: Zur Zei are Wagen mi der konanen Gechwindigkei 1 km / h, Wagen fähr mi der konanen Gechwindigkei 1 km / h in die gleiche Richung, ha aber zu eginn einen Vorprung

Mehr

Mathematik 1 für Maschinenbau, M. Schuchmann (SoSe 2013) Aufgabenblatt 5 (Ebenen)

Mathematik 1 für Maschinenbau, M. Schuchmann (SoSe 2013) Aufgabenblatt 5 (Ebenen) Mahemaik für Machinenbau, M. Schuchmann (SoSe ) Aufgabenbla 5 (Ebenen) ) Geuch i eine Gleichung der Ebene E durch die Punke A(; -; ); B(; ; -) und C(; ; ) in Parameerform. ) Schreibe in Koordinaenform:

Mehr

Vergleichsarbeiten 2004 Realschule Klasse 8

Vergleichsarbeiten 2004 Realschule Klasse 8 Vergleicsarbeien 2004 Realscule Klasse 8 Maemaik Dein Name: Deine Scülernummer: Beginn deiner Arbeiszei: Ur Ende deiner Arbeiszei: Ur Liebe Scülerin, lieber Scüler! Die vor dir liegende Vergleicsarbei

Mehr

2. Schärfentiefe des Mikroskops

2. Schärfentiefe des Mikroskops Seie 3 Prakikum Nr. 11 urclic-mikrskp. Scärfeniefe des Mikrskps.1 Gemerisc-pisce Scärfeniefe Wird ein Objek mi Tiefenausdenung fgrafier (der auf eine Masceibe abgebilde), s is nur ein ebener Scni durc

Mehr

3 Gesetze von Newton und ihre Anwendungen

3 Gesetze von Newton und ihre Anwendungen 3 eetze von Newton und ire Anwendungen 3. Der Trägeitatz U die ecwindigkeit oder die Rictung eine Körper zu ändern it der Einflu einer Kraft nötig. Überlät an einen Körper, der ic it der ecwindigkeit v

Mehr

oder In den USA werden Geschwindigkeiten in miles per hour (mph) angegeben, 1 Meile = 1'609.34 m. 1 ist um 3.6% grösser. Strecke s v = 120/3.

oder In den USA werden Geschwindigkeiten in miles per hour (mph) angegeben, 1 Meile = 1'609.34 m. 1 ist um 3.6% grösser. Strecke s v = 120/3. Teorie Kineatik Kineatik (griec.: κíνεω (kineo) bewegen ; [Kino bewegte Bilder]) Lere on den Bewegungen. Die Kineatik becränkt ic auf die geoetrice Becreibung der Bewegungabläufe durc die Angabe on Ort,

Mehr

Mechanik 1.Gleichförmige Bewegung 1

Mechanik 1.Gleichförmige Bewegung 1 Mecanik 1.Gleicförige Bewegung 1 1. Geradlinige, gleicförige Bewegung (Bewegung it kontanter Gecwindigkeit) Zeit: 1 Unterricttunde 45 Minuten 2700 Sekunden 1 Sculjar entält etwa 34 Doppeltunden 68 Unterricttunden

Mehr

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG

Mathematik: Mag. Schmid Wolfgang+LehrerInnenteam ARBEITSBLATT 6-13 ERMITTELN DER KREISGLEICHUNG ahemaik: ag. Schmid WolfgangLehrerInneneam ARBEITSBLATT - ERITTELN DER KREISGLEICUNG Wir wollen un nun bemühen, die Gleichung pezieller Kreie zu ermieln. Beipiel: Ermile die Gleichung jene Kreie mi dem

Mehr

2.1 Das Zeit-Ort-Gesetz der geradlinig gleichförmigen Bewegung

2.1 Das Zeit-Ort-Gesetz der geradlinig gleichförmigen Bewegung 21 Da Zeit-Ort-Geetz der geradlinig gleicförigen Bewegung Wie laen ic geradlinig gleicförige Bewegungen becreiben? Die Scüler een einen Fil zur geradlinig gleicförigen Bewegung: ttp://wwwkunicculeco/11-2-01-gecwindigkeitwf

Mehr

PHYSIK Geradlinige Bewegungen 1

PHYSIK Geradlinige Bewegungen 1 PHYSIK Geradlinige Bewegungen 1 Gleichförige Bewegungen Daei Nr. 91111 Friedrich W. Buckel Juli 2002 Inernagynaiu Schloß Torgelow Inhal 1 Grundlagen der gleichförigen Bewegung 1 2 Gleichförige Bewegung

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoreiche Grundlagen Phik Leiungkur Größen Größen Größen 5 m Grundgrößen abgeleiee Größen Zahl Einhei Länge, Mae, Zei, Sromärke, Temperaur, Soffmenge, Lichärke Gechwindigkei, Kraf, Ladung Änderunggrößen:

Mehr

Aufgaben zur beschl. Bewegung (Abi 2007) 517. Ein Zug fährt mit 72 km/h Geschwindigkeit. Durch eine Baustelle wird er gezwungen,

Aufgaben zur beschl. Bewegung (Abi 2007) 517. Ein Zug fährt mit 72 km/h Geschwindigkeit. Durch eine Baustelle wird er gezwungen, Aufgben zur bechl. Bewegung 66. (Abi 007) Ein Lieferwgen der Me,5 wird u de Sillnd durch eine konne Krf i de k Berg,0 kn bechleunig. Nchde die Gechwindigkei 7 erreich i, fähr der h Lieferwgen gleichförig

Mehr

W. Stark; Berufliche Oberschule Freising

W. Stark; Berufliche Oberschule Freising 9.6 Aufellen der Bewegunggleichungen der haronichen Schwingung bei unerchiedlichen Anfangbedingungen i Hilfe eine Zeiger- und Liniendiagra 9.6. Der chwingende Körper durchläuf zu Zeinullpunk eine uhelage

Mehr

Zusammenfassung Gleichmäßig beschleunigte Bewegung

Zusammenfassung Gleichmäßig beschleunigte Bewegung 3c D-Kineaik Zuaenfaung a a a a a con con poii con negai Gleichäßig bechleunige Bewegung + a + + a + a( ) + ( - ) + - a Bechleunigungen Magnechwebebahn Erreich der Tranrapid auf der Srecke on Shanghai-Flughafen

Mehr

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8

Der einfache Dampfprozess Clausius Rankine Prozess Seite 1 von 8 Der einface Dapfproze Clauiu Rankine Proze Seite von 8 darin ind e die Exergie, b die Anergie und U die Ugebungteperatur Wie vergleicen zunäct den Carnot cen η C Prozewirkunggrad it de Clauiu-Rankine Prozewirkunggrad

Mehr

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min

1. Klausur Physik Leistungskurs: Kinematik Klasse Dauer: 90 min 1. Kluur Phyik Leiungkur: Kineik Kle 11 1.1.13 Duer: 9 in 1. Mx und Mäxchen chen ein Werennen über 1. Mx gewinn d Rennen i en 5 Vorprung. U Mäxchen bei Lune zu hlen, ren ie einen Rencheluf, bei de ber

Mehr

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2

= 7,0 kg), der sich in der Höhe h = 7,5 m über B befindet, ist durch ein Seil mit dem Körper K 2 59. De Köpe K ( 7,0 kg), de ich in de öhe h 7,5 übe B befinde, i duch ein Seil i de Köpe K (,0 kg) ebunden. Die Köpe ezen ich zu Zei 0 au de Ruhe heau in Bewegung. K gleie eibungfei auf eine chiefen Ebene

Mehr

Weg im tv-diagramm. 1. Rennwagen

Weg im tv-diagramm. 1. Rennwagen Weg im v-diagramm 1. Rennwagen Löung: (a). (a) Bechreibe die Fahr de Rennwagen. (b) Wie wei kommm der Rennwagen in den eren vier Minuen, wie wei komm er über den geamen Zeiraum? (c) Wie groß i die Durchchnigechwindigkei

Mehr

Aufgaben zum Impuls. 1. Zwei Kugeln mit den Massen m 1

Aufgaben zum Impuls. 1. Zwei Kugeln mit den Massen m 1 Aufaben zu Ipul. Zwei Kueln it den Maen 5,0 k und 0 k toßen it den Gecwindikeiten 5,0 / und 8,0 / erade eeneinander. Wie cnell ind die Kueln nac de Stoß, wenn dieer a) elatic b) unelatic it? c) Wieiel

Mehr

Grundlagen der Kinetik

Grundlagen der Kinetik Grundlen der Kineik Gecwindikei und Becleuniun Die Gecwindikei i definier l der pro Zeieinei zurückelee We eine Körper = bzw = Die Becleuniun i definier l die Änderun der Gecwindikei pro Zeieinei: = bzw

Mehr

Harmonische Schwingung

Harmonische Schwingung Haronice Scwingung 1. a Foto zeigt eine Atronautin i BMM (Body Ma Meaureent evice) der NASA. Mit diee BMM betien die Atronauten i Spaceuttle in der Erdulaufban ire Körperae. E betet au eine Getell, in

Mehr

Addiion und Surakion Mündlic addieren und suraieren ) APFELSAFT APFELSAFT APFELSAFT 9 Felix eko Sporscue zu 9 und einen Baskeall zu. Wie viel Euro sin

Addiion und Surakion Mündlic addieren und suraieren ) APFELSAFT APFELSAFT APFELSAFT 9 Felix eko Sporscue zu 9 und einen Baskeall zu. Wie viel Euro sin Nae: Addiion und Surakion Mündlic addieren und suraieren ) APFELSAFT APFELSAFT APFELSAFT 9 Felix eko Sporscue zu 9 und einen Baskeall zu. Wie viel Euro sind zu ezalen? Aus eine Fass i 0 Lier Apfelsaf wurden

Mehr

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt.

Arbeit = Kraft Weg. Formelzeichen: W Einheit: 1 N 1 m = 1 Nm = 1 J Joule ( dschul ) Beispiel: Flaschenzug. F zeigt. Kraftwandler Die Energie al Eraltunggröße Ein Kraftwandler it eine mecanice Anordnung, die eine Kraft wirken lät, welce größer it al die Kraft, die aufgewendet wird (oder umgekert). Beipiel: lacenzug Aufgewendete

Mehr

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik

Westfälische Hochschule - Fachbereich Informatik & Kommunikation - Bereich Angewandte Naturwissenschaften. 2. Mechanik Wefäliche Hochchule - Fachbereich Informaik & Kommunikaion - Bereich Anewande Naurwienchafen. Mechanik Ziele der Vorleun:.) Eineilun der phikalichen Größen in kalare und ekorielle Größen.) Kinemaik Bechreibun

Mehr

Hauptprüfung 2010 Aufgabe 4

Hauptprüfung 2010 Aufgabe 4 Haupprüfung Aufgabe Gegeben ind die Punke A(5//), B(//), C(//) und S(//5).. Zeigen Sie, da da Dreieck ABC rechwinklig und gleichchenklig i. Berechnen Sie die Koordinaen de Punke D o, da da Viereck ABCD

Mehr

Stochastische Differentialgleichungen

Stochastische Differentialgleichungen INSTITUT FÜR STOCHASTIK SS 2007/08 UNIVRSITÄT KARLSRUH Bla 9 Priv.-Doz. Dr. D. Kadelka Übungen zur Vorleung Sochaiche Differenialgleichungen Muerlöungen Aufgabe 21: Definieren Sie analog zur d-dimenionalen

Mehr

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme

Arbeitsauftrag Thema: Gleichungen umformen, Geschwindigkeit, Diagramme Arbeiaufrag Thema: Gleichungen umformen, Gechwindigkei, Diagramme Achung: - So ähnlich (aber kürzer) könne die näche Klaenarbei auehen! - Bearbeie die Aufgaben während der Verreungunde. - Wa du nich chaff

Mehr

Freiwillige Aufgaben zur Vorlesung WS 2002/2003, Blatt 1 1) m Fahrzeug b: sb

Freiwillige Aufgaben zur Vorlesung WS 2002/2003, Blatt 1 1) m Fahrzeug b: sb Freiwillie Aufaen zur Vorleun WS /3, la 1 1) 3 () 1 4 8 1 () a Fahrzeu a und Fahrzeu fahren auf der leichen eradlinien Sraße. Sellen Sie anhand neenehenden Diara ihre We-Zei- Funkionen auf und erechnen

Mehr

Aufgabensammlung BM Berufs- und Weiterbildungszentrum bzb, Hanflandstr. 17, Postfach, 9471 Buchs,

Aufgabensammlung BM Berufs- und Weiterbildungszentrum bzb, Hanflandstr. 17, Postfach, 9471 Buchs, Löung Aufgabenalung BM Beruf- und Weierbildungzenru bzb, Hanflandr. 17, Pofach, 9471 Buch, www.bzbuch.ch 1) Während Sie in eine Lif ehen, ehen Sie eine Schraube von der hohen Decke der Lifkabine herabfäll.

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinknn hp://brinknn-du.de Seie 5..03 Kle 0: Ergebnie und uführliche Löungen der Aufgben zur bechleunigen Bewegung Ergebnie E E E3 E4 E5 Erkläre die Begriffe: ) gleichförige Bewegung b) bechleunige

Mehr

und zeigen Sie, dass der Punkt P auf g liegt. (c) Bestimmen Sie den Schnittwinkel der Ebenen E und E

und zeigen Sie, dass der Punkt P auf g liegt. (c) Bestimmen Sie den Schnittwinkel der Ebenen E und E Übungen zum ABI 8 Geomerie (Lineare Algebra) - Lösung eie von 7 Aufgaben incl Lösungen: Aufgabe G Gegeben sind eine Ebenenscar E :( + ) x+ x + ( ) x+ + = mi, eine Ebene E: x+ x + = und der Punk P( ) (a)

Mehr

Fakultät Grundlagen. s = t. gleichförm ig

Fakultät Grundlagen. s = t. gleichförm ig Experimenierfeld Freier Fall und Würfe. Einführung Die Kinemaik al Lehre der Bewegungen befa ich nich mi den Urachen on Bewegungabläufen, ondern lediglich mi den Bewegungen an ich. Auch die Audehnung und

Mehr

Aufgaben gleichmäßig beschleunigte Bewegung

Aufgaben gleichmäßig beschleunigte Bewegung Aufaben eichäßi bechleunie Beweun 671. (Abi 1995, Grundkur) Vor der Einfahr in eine Bahnhof bre der Lokführer einen Zu i der Bechleuniun 0,850 - on 100,0 kh -1 auf 50,0 kh -1 ab und fähr i dieer Gechwindikei

Mehr

Aufgaben zum Energieerhaltungssatz

Aufgaben zum Energieerhaltungssatz Aufben zu nerieerlunz. Bei Zuenellen eine eiezue wird ein Won i Me bereieell. r roll einen Ablufber i de eiunwinkel,7 von einer Höe,0 i der Anfnecwindikei,40 - inb und bewe ic dnn in der orizonlen bene

Mehr

2. Gleich schwere Pakete werden vom

2. Gleich schwere Pakete werden vom . Klauur Phyik Leiungkur Klae 11 14.1.014 Dauer. 90 in Teil 1 Hilfiel: alle verboen 1. a) Schreiben Sie den Energieerhalungaz für ein abgechloene Sye auf. () b) Ein Auo wird ohne angezogene Handbree und

Mehr

E mv E (72 ) 0, 20MJ E (144 ) 0,80MJ. 2 mv F s W F N 1,9kN. mv 2s

E mv E (72 ) 0, 20MJ E (144 ) 0,80MJ. 2 mv F s W F N 1,9kN. mv 2s 5 nergie ufgaben: k k. in uto der Mae, t färt it der Gecwindigkeit on 7 ( 44 ). erecnen Sie die etice nergie de Farzeuge und betien Sie die Höe, au der e enkrect erunterfallen üte u die gleice nergie zu

Mehr

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h)

Abstand von 4,5 cm von der Mitte. Wie groß ist die Bahngeschwindigkeit eines Punktes in diesem Abstand? (in km/h) Aufgaben zu Roaion 1. Die Spize de Minuenzeige eine Tuuh ha die Gechwindigkei 1,5-1. Wie lang i de Zeige?. Eine Ulazenifuge eeich 3 940 Udehungen po Minue bei eine Radiu von 10 c. Welchen Weg leg ein Teilchen

Mehr

Die besprochenen Formen der Arbeit führen zu einer Änderung des Energieinhalts eines Körpers.

Die besprochenen Formen der Arbeit führen zu einer Änderung des Energieinhalts eines Körpers. 5 nergie Die beprocenen Foren der Arbeit füren zu einer Änderung de nergieinalt eine Körper. Definition: nergie it die in eine Körper gepeicerte Arbeit. W n v Die nergie eine Körper it eine kalare Größe

Mehr

1. Klausur Physik Leistungskurs Klasse

1. Klausur Physik Leistungskurs Klasse 1. Kluur Phyik Leiungkur Kle 11 1.1.1 1. uf einer gerden, horizonlen Srße fähr ein Moorrd i der konnen Gechwindigkei 9kh -1. pier zur Zei eine Mrke M. Zu elben Zeipunk re i Punk P ein Moorrd (Me einchließlich

Mehr

Ein Pendel führt in 2 Minuten 90 Schwingungen aus. Bestimmen Sie die Frequenz der Schwingung in Hz. (f=0,75hz)

Ein Pendel führt in 2 Minuten 90 Schwingungen aus. Bestimmen Sie die Frequenz der Schwingung in Hz. (f=0,75hz) in Pende ühr in inuen 90 Schwinunen au. Beien Sie die Frequenz der Schwinun in Hz. (0,75Hz Wie viee Schwinunen ühr ein Fadenpende in inuen au, wenn e eine Frequenz von 0,8 Hz beiz? (n Schw. Weche Schwindauer

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 5. Semester ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 5. Semester ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE Mahemaik: Mag. Schmid Wolfgang Arbeibla 7. Semeer ARBEITSBLATT 7 PARAMETERDARSTELLUNG EINER EBENE Im Raum möche man naürlich nich nur Geraden ondern auch Flächen darellen. Diee Flächen bezeichne man al

Mehr

Klausur Grundlagen der Elektrotechnik B

Klausur Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joacim Böcker Klausur Grundlagen der Elekroecnik B 5.09.009 Name: Marikelnummer: Vorname: Sudiengang: Facprüfung Aufgabe: (Punke) () (8) 3 (30) 4 (3) 5 (8) Leisungsnacweis Noe Noe Noe Klausur

Mehr

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen

um (x + X) 4 auszurechnen verwenden wir den Binomischen Lehrsatz (a+b) n = a n + ( n 1 )a n-1* b 1 + + b n ( n k ) = in Gleichung einsetzen Mahemaik I Übungsaufgaben 8 Lösungsorschläge on T. Meyer Era-Mahemaik-Übung: 005--06 Aufgabe Berechnen Sie die Ableiung der Funkion f an einer beliebigen Selle 0 ohne Verwendung irgendwelcher Vorkennnisse

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

2 Messen von Längen, Flächen und Rauminhalten

2 Messen von Längen, Flächen und Rauminhalten Pyik Vorkur Höere Facculen für Geundeitberufe Meen von Längen, Fläcen und Rauminalten Meen von Längen, Fläcen und Rauminalten Übung 1 Ein Recteck weit eine Länge von 1,3 m und eine Breite von 4,8 dm auf.

Mehr

stößt mit der Geschwindigkeit v 1 gegen einen ruhenden Körper mit der Masse m 2

stößt mit der Geschwindigkeit v 1 gegen einen ruhenden Körper mit der Masse m 2 Afaben z Ipleraltnatz 95. in Güterwaon der Mae 5 t rollt ein 5 lane, nter een die Horizontale eneite Glei inab nd tößt dann af einen dort abetellten, renden Güterwaon der Mae M 8 t. Bei Antoßen kppeln

Mehr

Musterlösungen zur Klausur. Grundlagen der Regelungstechnik. vom

Musterlösungen zur Klausur. Grundlagen der Regelungstechnik. vom Muserlösungen zur Klausur Grundlagen der Regelungsecni vom 4.9. Aufgabe : Linearisierung Pune A. Linearisierung des niclinearen Terms der Modellgleicungen, wobei und die üllsände im Gleicgewic sind. B.

Mehr

Aufgaben Arbeit und Energie

Aufgaben Arbeit und Energie Aufgaben Arbei und Energie 547. Ein Tank oll i Hilfe einer Pupe i aer gefüll werden. Der Tank ha für den Schlauch zwei Anchlüe, oben und unen. ie verhäl e ich i der durch die Pupe zu verricheen Arbei,

Mehr

0 = Ruhmasse des Elektrons!

0 = Ruhmasse des Elektrons! Leitungfac Pyik 13/ Klauur Aufgabe 1: Ctneffekt Unteruct an die unter de Streuwinkel 10 getreute Röntgentralung it der Wellenlänge 1 = 48 10 nac de Bragg cen Verfaren, ergibt ic die Intenitätverteilung

Mehr

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2

Messgrößen und gültige Ziffern 7 / 1. Bewegung mit konstanter Geschwindigkeit 7 / 2 Die Genauigkei einer Megröße wird durch die güligen Ziffern berückichig. Al gülige Ziffern einer Maßzahl gelen alle Ziffern und alle Nullen, die rech nach der eren Ziffer ehen. Megrößen und gülige Ziffern

Mehr

Kraft F in N Dehnung s in m

Kraft F in N Dehnung s in m . Klausur Pysik Leistungskurs Klasse 7. 9. 00 Dauer: 90 in. Wilel T., ein junger, talentierter Bogenscütze darf sic einen neuen Bogen kaufen. Er kann den Bogen it axial 50 N spannen und seine Are reicen

Mehr

Institut für Allgemeine Mechanik der RWTH Aachen

Institut für Allgemeine Mechanik der RWTH Aachen Insiu für Allgemeine Mecanik der RWTH Aacen Prof. Dr.-Ing. D. Weicer 7.Übung Mecanik II SS 7 4.6.7 Abgabeermin 7.Übung:.6.7 4: Ur. Aufgabe Zwei fläcengleice Querscnie a) und b) werden wie dargesell belase.

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 6. Übungsblatt

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 6. Übungsblatt Karlruher Iniu für Technologie KIT Iniu für Analyi Dr Ioanni Anapoliano Dr Semjon Wugaler WS 25/26 Höhere Mahemaik III für die Fachrichung Elekroechnik und Informaionechnik Löungvorchläge zum 6 Übungbla

Mehr

Der Raum C liegt dicht in L p

Der Raum C liegt dicht in L p Universiä Posdam Vorlesung Funkionalanalysis, SS 2009. (Dr. Seen Frölic Maias Ludewig Marikelnummer 73580 Daum: 8.05.2009 Der Raum C lieg dic in L p Überblick Aus der Vorlesung is bekann, dass der Raum

Mehr

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein.

= 4. = 2 π. s t. Lösung: Aufgabe 1.a) Der Erdradius beträgt 6.371km. Aufgabe 1.b) Das Meer nimmt 71% der Erdoberfläche ein. Aufgabe : Die Die ist der fünftgrößte der neun Planeten unseres Sonnensystems und wiegt 5,98* 0 4 kg. Sie ist zwiscen 4 und 4,5 Millionen Jaren alt und bewegt sic auf einer elliptiscen Ban in einem durcscnittlicen

Mehr

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt.

ZUU AUUFFGGAABBEE :: Die Wann läuft zunächst voll. Nach einiger Zeit wird etwas Wasser abgelassen und dann wird etwas zugeführt. Lineare Funkionen. Lösungen Lö LÖÖSSUUNNGGEENN ZZUUM.. KPPI IITTEELL ZZUU UUFFGGEE..: : a) as Pfeildiagramm zeig keine Funkion, da von h kein Pfeil ausgeh und von a zwei Pfeile. b) Is eine Funkion, denn

Mehr

10. Von der Spitze eines Turmes lässt man einen Stein fallen. Nach 4 Sekunden sieht man

10. Von der Spitze eines Turmes lässt man einen Stein fallen. Nach 4 Sekunden sieht man Aufaben zu freien Fall 8. Au welcher Höhe üen Fallchirpriner zu Übunzwecken frei herab prinen, u i derelben Gechwindikei (7 - ) anzukoen wie bei Abprun i Fallchir au roßer Höhe? 0. Von der Spize eine Ture

Mehr

Freier Fall. Quelle: Lösung: (a) 1 2 mv2 = mgh h = v2. 2g = (344m s )2. 2 9,81 m s 2 = 6, m

Freier Fall. Quelle:  Lösung: (a) 1 2 mv2 = mgh h = v2. 2g = (344m s )2. 2 9,81 m s 2 = 6, m Freier Fall 1. Der franzöiche Fallchirpringer Michel Fournier (geb. 14.5.1944) verfolg ei ehr al 1 Jahren da Ziel in ca. 4 Höhe i eine Sraophärenballon aufzueigen und von dor abzupringen. Dabei will er

Mehr

498. Über ein kräftiges Holzbrett soll ein Heizkessel aus Stahl auf einen LKW gezogen werden. Das

498. Über ein kräftiges Holzbrett soll ein Heizkessel aus Stahl auf einen LKW gezogen werden. Das Aufgben zur eibung 498. Über ein kräfige olzbre oll ein eizkeel u Shl uf einen LKW gezogen werden. D Bre i 4 lng, die LKW-Priche befinde ich,0 über de Erdboden. Der eizkeel h eine Me von 60 kg. ) Welche

Mehr

Übungsblatt 2 Physik für Ingenieure 1

Übungsblatt 2 Physik für Ingenieure 1 Übunbla Phyik für Inenieure 1 Ohmar Mari, (ohmar.mari@phyik.uni-ulm.de) 3. 1. 1 1 Aufaben für die Übununden Kinemaik 1 1. Ein Maepunk bewe ich nach der Gleichun () = in(ω). Konruieren ie und berechnen

Mehr

Energieformeln. Mechanische Energieformen (Kurzüberblick) Energie. Energieformen (auch nicht-mechanische) Energieumwandlung

Energieformeln. Mechanische Energieformen (Kurzüberblick) Energie. Energieformen (auch nicht-mechanische) Energieumwandlung Mecanice nergieforen (Kurzüberblick) nergie it augeprocen cwierig, den Begriff nergie in allgeeiner For zu erklären. Tatäclic it e ein Kuntbegriff, den ic die Pyiker augedact aben, u ein Syte in die unübercaubare

Mehr

1. Klausur Physik Klasse 11 Grundkurs, Dauer: 45 min

1. Klausur Physik Klasse 11 Grundkurs, Dauer: 45 min 1. Klauur Phik Klae 11 Grundkur, 3.11.011 Dauer: 45 in 1. Skizzieren Sie für die leichförie und die leichäßi bechleunie Beweun die --, - und a--diarae. (6). Beor ein Dach neu einedeck wird, werden die

Mehr

Zusammenfassung: Lineare mechanische Wellen

Zusammenfassung: Lineare mechanische Wellen LGÖ K Ph -ündig Shuljahr 08/09 Zuammenfaung: Lineare mehanihe Wellen Inhalverzeihni Forhreiende ranveralwellen... Sehende ranveralwellen... 3 Refleion von ranveralwellen... ranverale Eigenhwingungen...

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auzug au dem Lernmaerial Forildunglehrgang Saalich geprüfe Techniker Auzug au dem Lernmaerial Naurwienchaf DAA-Technikum Een / www.daa-echnikum.de, Infoline: 00 83 6 50 Definiion: Die Gechwindigkei eine

Mehr

2 Geradlinige Bewegung eines Massenpunkts

2 Geradlinige Bewegung eines Massenpunkts 13 2 Gerdlinige Bewegung eine Menpunk Bei ielen Bewegungufgben knn die Drehbewegung eine Körper ernchläig werden, wenn nur deen rnloriche Bewegung inereier. In dieem Fll drf der Körper l Menpunk berche

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorihmen II Vorleung am 24.10.2013 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Univeriä de Lande Baden-Würemberg und Algorihmen naionale Forchungzenrum II Wineremeer 2013/2014

Mehr

Musterbeispiele "Setzungen"

Musterbeispiele Setzungen Vorleung Geotecnik I Aufgabe 1: Konolidationetzungen Bei eine Verkerwegeprojekt oll ein langer Straenda durc ein Niederunggebiet gefürt werden. Der Da it 4 Meter oc und oll in 4 Etappen it je 1,0 Meter

Mehr

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet.

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet. Aufgabe S1 F10 Die auteile 1,2,3 sind gelenkig miteinander verbunden, in A und gelagert und durc das Gewict G 1 der Sceibe 1 belastet. Annamen: Die Gelenke seien reibungsfrei. Das Material der Sceibe 1

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012 Landeswettbewerb Matematik aden-württemberg Musterlösungen. Runde 0/0 Aufgabe avid wirft einen besonderen Würfel und screibt jeweils die oben liegende Zal auf. ie Abbildung zeigt ein Netz seines Würfels.

Mehr

(x) 2tx t 2 1, x R, t R 0.

(x) 2tx t 2 1, x R, t R 0. Aufgaben zu Geradenscharen. Folgende Funkionen beschreiben Geradenscharen. Sellen Sie diese Scharen dar, inde sie die Geraden für k = -, k = 0, k = und k = 3 zeichnen. a) f k (x) (k )x, x R, k R b) f k

Mehr

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte

Analysis: Ganzrationale Funktionen Analysis Ganzrationale Funktionen Differenzialrechnung, Extrem- und Wendepunkte www.mahe-aufgaben.com Analysis: Ganzraionale Funkionen Analysis Ganzraionale Funkionen Differenzialrechnung, Exrem- und Wendepunke Gymnasium Klasse 0 Alexander Schwarz www.mahe-aufgaben.com Juni 0 www.mahe-aufgaben.com

Mehr

Übungsblatt 5 (Gleichungen 1)

Übungsblatt 5 (Gleichungen 1) Facocscule Nordwestscweiz (FHNW) Hocscule für Tecnik Institut für Matematik- und Naturwissenscaft Übungsblatt 5 (Gleicungen ) Roger Burkardt 208 Matematik. Aufgabe Bestimmen Sie die Lösungsmengen der folgenden

Mehr

Analytische Geometrie Übungsaufgaben 1 gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 1 gesamtes Stoffgebiet Analyiche Geomeie Übungaufgaben geame Soffgebie Pflicheil (ohne GTR und ohne Fomelammlung): P: Zeichne die folgenden Ebenen mi Hilfe ihe Spugeaden in ein kaeiche Koodinaenyem ein: a) E: b) E: 8 c) E: P:

Mehr

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x Aufgabe : Berecne a) 4x 5x 5x 4x b) 4x 9x 4 x x 4 4x 5x 5x : 4x x x 4x x 4x 5x 4x x 4x 4x 4x 9x 4 : x x 4 x x x 8x x x 4 x x 4 c) 4x 4 x 8x 4x 4 x 4x 4 x 4 x 4x x : x x x x 4 4x 4x x x x x Aufgabe : Bestimme

Mehr