Teilbarkeit, Zahlenkunde

Größe: px
Ab Seite anzeigen:

Download "Teilbarkeit, Zahlenkunde"

Transkript

1 Math 6. Klasse Dossier 4 Teilbarkeit, Zahlenkunde Lernziele Teilbarkeitsregeln kennen und anwenden 1-3 Zahlenkunde Theorie 3 Primzahlen erkennen 4 Quadratzahlen 4 Teiler einer Zahl bestimmen 5 grösster gemeinsamer Teiler 5 Vielfache einer Zahl bestimmen 6 kleinstes gemeinsames Vielfaches 6 Übungsproben 7-8 Übungsprobe mit Lösungen 9-10 provisorisches Testdatum: Freitag

2 Kapitel 1 : Teilbarkeit Teilbarkeitsregeln: :2 letzte Ziffer ist durch 2 teilbar. (0,2,4,6,8) Bsp: 3456 :3 Quersumme ist teilbar durch 3 Bsp: 723 = Quersumme 12 :4 letzte 2 Ziffern sind durch 4 teilbar. Bsp: 724 :5 letzte Ziffer ist 0 oder 5. Bsp: 2355, 7560 :6 Quersumme ist teilbar durch 3 und letzte Ziffer ist teilbar durch 2. Bsp: 732 :7 Mit Ausprobieren. :8 letzte 3 Ziffern sind durch 8 teilbar. Bsp :9 Quersumme ist teilbar durch 9. Bsp: 7353 :10 letzte Ziffer ist eine 0. Bsp: Kreuze an, durch was die Zahlen teilbar sind: :2 :3 :4 :5 :6 :7 :8 :9 :10 2. Kreuze an, durch was die Zahlen teilbar sind: Kreuze an, durch was folgende Zahlen teilbar sind: Kreuze an, durch was die Zahlen teilbar sind

3 Zahlen gesucht 1. In den folgenden Zahlen ist je eine Ziffer mit _ ersetzt worden. Welche Ziffern braucht es, damit die Zahlen entsprechend teilbar sind. Suche alle möglichen Ziffern! a) :3 34_5 L = ( ) 9_051 L = ( ) b): 6 345_ L = ( ) 40_32 L = ( ) c) :4 326_ L = ( ) 56_4 L = ( ) d) :10 329_ L = ( ) 347_0 L = ( ) 2. Setze die fehlende Ziffer ein, damit die Zahl durch 9 teilbar wird: a) b) 5 03 c) 10_1 3. Suche alle möglichen Lösungen: 21_3 : 3 L = 262 : 6 L = 413 : 4 L = 32 8 : 10 L = 4. Suche alle möglichen Lösungen: 25_3 : 3 L = 267 : 6 L = 415 : 4 L = 328 : 10 L = 5. Setze die fehlende Ziffer ein, damit die Zahl durch 9 teilbar wird. a) 12_8 b) 100_4 c) 3467_ d) 23_4 oder (2 Lösungen) 6. Suche alle möglichen Lösungen: 25_2 : 3 L = 26 2 : 6 L = : 4 L = 32 8 : 10 L =

4 Verschiedene Aufgaben zur Teilbarkeit 1. Sind folgende Behauptungen richtig oder falsch? Richtig Falsch Wenn eine Zahl durch 4 teilbar ist, dann ist sie auch durch 2 teilbar. Jede Zahl mit der Ziffer 0 am Schluss ist durch 5 teilbar. Jede Zahl, die durch 6 teilbar ist, hat eine gerade Ziffer am Schluss. Jede Zahl mit der Ziffer 3 am Schluss ist durch 3 teilbar. Wenn die Quersumme einer Zahl durch 3 teilbar ist, und die Quersumme eine gerade Zahl ergibt, dann ist die Zahl durch 6 teilbar. 2. Sind folgende Behauptungen richtig oder falsch? Richtig Falsch Ist eine Zahl durch 6 teilbar, dann ist sie auch durch 3 teilbar. Jede dreistellige Zahl mit den Ziffern 2,3,7 ist durch 3 teilbar. Jede Zahl mit der Ziffer 0 ist durch 10 teilbar. Jede Zahl mit der Ziffer 8 am Schluss ist durch teilbar. Kapitel 2 Zahlenkunde

5 Primzahlen Kreuze alle Primzahlen an. Quadratzahlen 1. Schreibe alle Quadratzahlen zwischen 100 und 200 auf. 2. Welche Quadratzahl liegt am nächsten bei 300? 3. Fülle die Tabellen aus: 13 x x x x x x x x

6 Teiler gesucht und ggt 1. Löse die Aufgabe im Übungsheft Seite 26 Nummer 2, 3a, 3b, 3c 2. Schreibe alle Teiler der Zahlen auf: Bestimme alle Teiler der Zahlen, bestimmte die gemeinsamen Teiler und den ggt Zahlen Teiler gemeinsame Teiler ggt

7 Vielfache gesucht und kgv 1. Löse die Aufgaben im Übungsheft Seite 27 Nummer 5a, 5b, 5c 2. Bestimme das kgv der folgenden Zahlenpaare: Zahlen kgv 9 und und und Färbe in der Tafel alle Vielfachen von 8 mit rot. Färbe alle Vielfachen von 12 mit blau. Welches sind die gemeinsamen Vielfachen? Welches ist das kgv?

8 Übungsprobe Teilbarkeit, Kreuze an, durch was die Zahlen teilbar sind: Setze die fehlende Ziffer ein, damit die Zahl durch 9 teilbar wird: a) b) Suche alle möglichen Lösungen: 25_3 : 3 L = 267 : 6 L = 415 : 4 L = 328 : 10 L = 4. Schreibe alle Quadratzahlen zwischen 50 und 150 auf. 5. Welche Quadratzahl liegt am nächsten bei 600? 6. Schreibe alle Primzahlen zwischen 40 und 60 auf. 7. Schreibe mit einem Satz, was eine Primzahl ist 8. Schreibe alle echten Teiler der Zahlen auf: Suche die gemeinsamen Teiler und den ggt der Zahlen: Zahlen gemeinsame Teiler ggt 24 und und und Zeichne in das Hunderterfeld rechts ein: Mit rot alle Vielfachen von 8 Mit blau alle Vielfachen von 12 Welches sind die gemeinsamen Vielfachen? 12. Bestimme das kgv der folgenden Zahlenpaare: Zahlen kgv 9 und und und 72

9 Uebungstest Teilbarkeit 2 Name Punkte Note 4. Kreuze an, durch was die Zahlen teilbar sind: Setze die fehlende Ziffer ein, damit die Zahl durch 9 teilbar wird: a) b) Suche alle möglichen Lösungen: 21_78 : 3 L = 26 2 : 6 L = 41 3 : 4 L = 32 : 6 L = 9. Schreibe alle Quadratzahlen zwischen 200 und 300 auf. 10. Welche Quadratzahl liegt am nächsten bei 800? 11. Schreibe alle Primzahlen zwischen 100 und 120 auf. 12. Schreibe alle Teiler der Zahlen auf: Nimm die beiden Zahlen 75 und 90 a) Bestimme alle Teiler der Zahlen b) Bestimme alle gemeinsamen Teiler von 75 und 90 c) Bestimme den ggt von 75 und Bestimme das kgv der folgenden Zahlenpaare: Zahlen kgv 10 und und und 18

10 Uebungstest Teilbarkeit Name Punkte Note 1. Kreuze an, durch was die Zahlen teilbar sind: Setze die fehlende Ziffer ein, damit die Zahl durch 9 teilbar wird: a) b) Suche alle möglichen Lösungen: 21_7 : 3 L = 261 : 6 L = 415 : 4 L = : 10 L = 4. Schreibe alle Quadratzahlen zwischen 300 und 400 auf. 5. Welche Quadratzahl liegt am nächsten bei 250? 6. Schreibe alle Primzahlen zwischen 80 und 100 auf. 7. Schreibe mit einem Satz, was eine Primzahl ist: 8. Schreibe alle Teiler der Zahlen auf: Nimm die beiden Zahlen 72 und 120 a) Bestimme alle Teiler der Zahlen b) Bestimme alle gemeinsamen Teiler von 72 und 120 c) Bestimme den ggt von 72 und Bestimme das kgv der folgenden Zahlenpaare: Zahlen kgv 9 und und und 36

11 Uebungstest Teilbarkeit Loesungen Name Punkte Note 1. Kreuze an, durch was die Zahlen teilbar sind: 248 x - x - - x x x x x x x x x - x - - x - 2. Setze die fehlende Ziffer ein, damit die Zahl durch 9 teilbar wird: a) b) Suche alle möglichen Lösungen: 21_7 : 3 L = ( 2,5,8) 261 : 6 L = (0,6) 415 : 4 L = (2,6) : 10 L = (0,1,2,3,4,5,6,7,8,9,) 4. Schreibe alle Quadratzahlen zwischen 300 und 400 auf. 324, 361, Welche Quadratzahl liegt am nächsten bei Schreibe alle Primzahlen zwischen 80 und 100 auf 83,89,97 7. Schreibe mit einem Satz, was eine Primzahl ist. Eine Zahl, die nur durch 1 und sich selbst teilbar ist. 8. Schreibe alle Teiler der Zahlen auf: 32 1,32,2,16,4,8 64 1,64,2,32,4,16,8 90 1,90,2,45,3,30,5,18,6,15,9,10 9. Nimm die beiden Zahlen 72 und 120 a) Bestimme alle Teiler der Zahlen 72 1,72,2,36,3,24,4,18,6,12,8, ,120,2,60,3,40,4,30,5,24,6,20,8,15,10,12 b) Bestimme alle gemeinsamen Teiler von 72 und 120 1,2,3,4,6,8,12,24 c) Bestimme den ggt dvon 72 und 120 ggt = Bestimme das kgv der folgenden Zahlenpaare: Zahlen kgv 9 und und und

Teilbarkeitsregeln. Teilbarkeitsregeln Seite 1 von 6

Teilbarkeitsregeln. Teilbarkeitsregeln Seite 1 von 6 Teilbarkeitsregeln Teilbarkeit durch 2 Eine Zahl ist durch 2 teilbar, wenn die letzte Stelle 0, 2, 4, 6, oder 8 lautet. Beispiel: 2524 ist durch 2 teilbar, weil die letzte Stelle 4 lautet. 1483 ist nicht

Mehr

teilbar durch

teilbar durch Teilbarkeit und Brüche KV Was kann ich? Vervollständige. V = { } T = { } Kreuze an, wenn die Zahl durch teilbar ist. teilbar durch 0 9 90 Welcher Bruchteil ist dargestellt? Welcher Bruchteil fehlt noch

Mehr

Ich mache eine saubere, klare Darstellung, schreibe die Aufgabenstellung ab und unterstreiche das Resultat doppelt.

Ich mache eine saubere, klare Darstellung, schreibe die Aufgabenstellung ab und unterstreiche das Resultat doppelt. Mathplan 8.2.1 Arithmetik Algebra Grundoperationen Terme über Q Teil I Name: (112) 3 = 14 Hilfsmittel : Algebra 2 / AB 8 Zeitvorschlag: 3 Wochen von: Lernkontrolle am: bis Probe 8.2.1 Wichtige Punkte:

Mehr

Grundlagen Algebra Aufgaben und Lösungen

Grundlagen Algebra Aufgaben und Lösungen Grundlagen Algebra Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 201 Inhaltsverzeichnis 1 Primfaktoren - ggt - kgv 2 1.1 ggt (a, b) kgv (a, b)...............................................

Mehr

Trainings und Übungstext. für Klasse 5 oder 6. Auch ggt und kgv ohne Primfaktorzerlegung. Datei Nr. 10101. Friedrich W. Buckel. Stand 11.

Trainings und Übungstext. für Klasse 5 oder 6. Auch ggt und kgv ohne Primfaktorzerlegung. Datei Nr. 10101. Friedrich W. Buckel. Stand 11. Orientierungsstufe 5/6 Teiler und Vielfache Trainings und Übungstext für Klasse 5 oder 6 Auch ggt und kgv ohne Primfaktorzerlegung Datei Nr. 00 Friedrich W. Buckel Stand. Juli 2 DEMO für INTERNETBIBLIOTHEK

Mehr

Teilermengen Vielfachmengen Teste dein Wissen! Station 1

Teilermengen Vielfachmengen Teste dein Wissen! Station 1 Teilermengen Vielfachmengen Teste dein Wissen! Station 1 1. Bestimme die Teilermengen. a.) T18 = b.) T81 = a.) T24 = 2. Nenne jeweils die ersten 4 Elemente der Vielfachmenge. a.) V3 = b.) V4 = b.) V17

Mehr

Teilbarkeit natürlicher Zahlen

Teilbarkeit natürlicher Zahlen Teiler einer Zahl - Teilermengen Aufgabe: Teilbarkeit natürlicher Zahlen Eine Klasse besteht aus 30 Schülern und soll in Gruppen mit gleich vielen Schülern eingeteilt werden. Welche Möglichkeiten gibt

Mehr

Teilbarkeitsregeln 3, 6 und 9

Teilbarkeitsregeln 3, 6 und 9 Teilbarkeitsregeln 3, 6 und 9 Klasse 1-4 Dauer: ca. 45 Minuten Lernziele: Die Schüler sollen - Die Teilbarkeitsregeln für das Teilen durch 3, 6 und 9 können. - Diese Teilbarkeitsregeln anwenden können.

Mehr

Faktorisierungen und Teilbarkeiten natürlicher Zahlen. Teiler natürlicher Zahlen

Faktorisierungen und Teilbarkeiten natürlicher Zahlen. Teiler natürlicher Zahlen Faktorisierungen und Teilbarkeiten natürlicher Zahlen Erinnerung: Eine natürliche Zahl heißt faktorisierbar, wenn sie als Produkt mit Faktoren geschrieben werden kann. Beispiel: 21= 1 21 oder 21= 3 7 Natürlich

Mehr

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR

perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche Unsere Übungshefte sind für alle Schülerinnen und Schüler, die keine Lust auf 300-seitige

Mehr

Aufgaben zu Lambacher Schweizer 5 Hessen

Aufgaben zu Lambacher Schweizer 5 Hessen Aufgaben zu Kapitel I Kopfrechenaufgaben 1 Berechne im Kopf. a) 60 + 32 b) 57 + 41 c) 130 + 72 d) 504 + 91 e) 75 + 47 f) 76 + 85 g) 124 + 127 h) 295 + 76 i) 129 + 396 j) 747 + 239 2 a) 3800 + 4600 b) 5700

Mehr

Teiler und Vielfache

Teiler und Vielfache Teiler und Vielfache Dividend : Divisor = Quotient 12 : 3 = 4 (a) 12 : 5 = 2; 2 Rest (b) Geht eine Division ohne Rest auf, dann ist der Divisor "Teiler" des Dividenden (a). Teiler der Zahl 12: 1, 2, 3,

Mehr

2b Variablen 2c Teiler, Vielfache und Primzahlen

2b Variablen 2c Teiler, Vielfache und Primzahlen Mathematik Niveau A Repetitorium 1.OS 2b Variablen 2c Teiler, Vielfache und Primzahlen Name: MA I OS2 I Oktober 18 I NeA 1 Inhaltsverzeichnis THEMENBEREICH 2B (VARIABLEN) 3 WAS IST ALGEBRA ÜBERHAUPT? 3

Mehr

In die Vielfachenmengen haben sich jeweils vier falsche Zahlen eingeschlichen. Streiche diese falschen Zahlen durch!

In die Vielfachenmengen haben sich jeweils vier falsche Zahlen eingeschlichen. Streiche diese falschen Zahlen durch! Teilbar oder nicht? - ielfache oder nicht? 1. Hier stimmt etwas nicht. In die ielfachenmengen haben sich jeweils vier falsche Zahlen eingeschlichen. Streiche diese falschen Zahlen durch! 9 27 39 45 63

Mehr

Kartei. Halbschriftliche Multiplikation und Division. Überlege aus welchen Reihen die Ausschnitte. gehören und setze die Reihe nach beiden Seiten

Kartei. Halbschriftliche Multiplikation und Division. Überlege aus welchen Reihen die Ausschnitte. gehören und setze die Reihe nach beiden Seiten Halbschriftliche Multiplikation und Division / Karte 00 Kartei Halbschriftliche Multiplikation und Division Halbschriftliche Multiplikation und Division / Karte 01 Schriftliche Multiplikation und Division

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Turmzimmer 1: Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 7. Ist die Zahl ein Teiler? 2. Teilbarkeit durch 5 und 10 8. Teiler in der Zahlentafel suchen 3. Quersummen berechnen 9. Ist die

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Üben, Üben, Üben Aufgabe 1 Das Sieb des Eratosthenes Zerlegen in Faktoren Eratosthenes von Kyrene war ein griechischer Gelehrter und lebte von ca. 275 v. Chr. bis ca. 194 v. Chr. Nach ihm ist ein Verfahren

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 1. Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 2. Teilbarkeit durch 5 und 10 3. Quersummen berechnen 4. Teilbarkeit durch 3, 6 und 9 5. Gemischte

Mehr

Musterlösung Zahlentheorie Frühlingssemester 2015, Aufgabenblatt 1

Musterlösung Zahlentheorie Frühlingssemester 2015, Aufgabenblatt 1 Aufgabenblatt 1 40 Punte Aufgabe 1 (Teilermengen) Seien a = 128 und b = 129. a) Beschreiben Sie die Teilermengen T(a) und T(b) in aufzählender Form. 2 b) Seien p, q zwei verschiedene Primzahlen. (i) Wie

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten:

Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten: 1 Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten: Beweise, die eine Behauptung nicht nur bestätigen, sondern auch erklären,

Mehr

Bruchrechnen. 1. Teil. Brüche kennen lernen Erweitern und Kürzen. Schüler-Lese- und Übungstext für Klasse 6

Bruchrechnen. 1. Teil. Brüche kennen lernen Erweitern und Kürzen. Schüler-Lese- und Übungstext für Klasse 6 Bruchrechnen. Teil Brüche kennen lernen Erweitern und Kürzen Schüler-Lese- und Übungstext für Klasse Die Aufgaben dieses Textes findet man auch noch als Sammlung von Aufgabenblättern im Text 020 Datei

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

Elementare Zahlentheorie Anwendungen 3 - Lösungen

Elementare Zahlentheorie Anwendungen 3 - Lösungen 1. Notieren Sie alle Zahlen zwischen 999 und 2001, welche durch 125 teilbar sind: 1000, 1125, 1250, 1375, 1500, 1625, 1750, 1875, 2000 2. Welche der folgenden Zahlen sind durch 8 teilbar? Für den Stern

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse Seite 1 Turmzimmer 1: Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 7. Schreibe mit arabischen Ziffern! 1 2. Nachbarzahlen 8. Schreibe mit arabischen Ziffern! 2 3. Zahlenrätsel

Mehr

Trainingsaufgaben und Übungstexte. für Klasse 5 oder 6

Trainingsaufgaben und Übungstexte. für Klasse 5 oder 6 Teilbarkeitsregeln Primfaktorzerlegung Trainingsaufgaben und Übungstexte für Klasse 5 oder 6 Dieser Text setzt Grundkenntnisse über Teiler und Vielfache voraus. Diese stehen im Text 10101. Datei Nr. 10102

Mehr

Brüche. 3 Zä hler Bruchstrich Nenner. Wie kann man einen Bruch erkennen / ablesen? Beispiel:

Brüche. 3 Zä hler Bruchstrich Nenner. Wie kann man einen Bruch erkennen / ablesen? Beispiel: 8 Brüche Zä hler Bruchstrich Nenner Wie kann man einen Bruch erkennen / ablesen? Zähle zuerst alle Bruchstücke cke eines Ganzen. Die Anzahl sagt dir, wie der Nenner heißt. Jetzt zählst z du alle gefärbten

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse 1. Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 2. Nachbarzahlen 3. Zahlenrätsel 1/2 4. Zahlenrätsel 2/2 5. Zahlen ordnen

Mehr

1 Winkel messen und zeichnen... 26

1 Winkel messen und zeichnen... 26 A Teilbarkeit und Rechnen mit Brüchen Seite 1 Teiler und Teilbarkeitsregeln... 4 2 Primzahlen und Primfaktorzerlegung... 5 3 ggt und kgv... 6 4 Bruchzahlen und gemischte Zahlen... 7 5 Erweitern und Kürzen...

Mehr

Schriftlich dividieren durch einstellige Zahlen

Schriftlich dividieren durch einstellige Zahlen 1 Schriftlich dividieren durch einstellige Zahlen VORANSI 1. Dividiere schriftlich. 8 4 6 4 2 : 2 = 9 3 6 6 : 3 = 2. Welches Auto parkt in welche Lücke? Verbinde. 690 000 : = 230 000 280 000 : = 140 000

Mehr

Begriffe zur Gliederung von Termen, Potenzen 5

Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend

Mehr

Kantiprüfungsvorbereitung basierend auf den Kanti- und DMS/FMS Prüfungen in SH von 1987-2012. Teil 1: Terme, Termumformungen, Gleichungen, Brüche

Kantiprüfungsvorbereitung basierend auf den Kanti- und DMS/FMS Prüfungen in SH von 1987-2012. Teil 1: Terme, Termumformungen, Gleichungen, Brüche Kantiprüfungsvorbereitung basierend auf den Kanti- und DMS/FMS Prüfungen in SH von 1987-2012 Teil 1: Terme, Termumformungen, Gleichungen, Brüche Version Oktober 2013 verf. v. Adrian Christen SchulArena.com

Mehr

Mengenlehre / Reelle Zahlen Prüfung 2A

Mengenlehre / Reelle Zahlen Prüfung 2A Name: Vorname: Klasse: Datum: Möge die Übung gelingen! Punkte: Note: Aufgabe 1: Geben Sie an, ob die folgenden Aussagen eine Menge im mathematischen Sinn beschreiben: a) Die Menge der hübschen Girls, die

Mehr

MATHEMATIK 6. Schulstufe Schularbeiten

MATHEMATIK 6. Schulstufe Schularbeiten MATHEMATIK 6. Schulstufe Schularbeiten 1. Schularbeit Gleichungen Teilbarkeitsregeln Primzahlen ggt kgv Rechnen mit Bruchzahlen Löse die Gleichungen und mache die Probe durch Einsetzen! a) 24 x + 1 = 313

Mehr

Aufgabe 3: Teiler und Vielfache

Aufgabe 3: Teiler und Vielfache Aufgabe 3: Teiler und Vielfache LERNZIELE: Mengen von Teilern und Vielfachen bestimmen Schnittmengen erkennen und ihre Elemente aufzählen Achte darauf: 1. Du zeigst mit deinen Antworten, was Teiler und

Mehr

Aufgabe 1: Hausnummernaufgabe

Aufgabe 1: Hausnummernaufgabe Aufgabe 1: Hausnummernaufgabe Nana sagt: Meine Hausnummer liegt zwischen 94 und 129. Sie ist durch 2, 3 und 5 teilbar. Kannst du die Hausnummer erraten? Diese Aufgabe lässt sich gut mit Hilfe einer Tabelle

Mehr

Eine Hilfe, wenn du mal nicht mehr weiterweisst...

Eine Hilfe, wenn du mal nicht mehr weiterweisst... Rechnen./. Klasse 0 Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Zeichenerklärungen Addition Subtraktion Multiplikation Division Durchschnitt Massstab Primzahlen Teilbarkeit von Zahlen

Mehr

Mengenlehre / Reelle Zahlen Prüfung 2B - Lösungen

Mengenlehre / Reelle Zahlen Prüfung 2B - Lösungen Name: Vorname: Klasse: Datum: Möge die Übung gelingen! Punkte: Note: Aufgabe 1: Geben Sie an, ob die folgenden Aussagen eine Menge im mathematischen Sinn beschreiben: a) Alle Primzahlen zwischen 6 und

Mehr

5. bis 10. Klasse. Schnell-Merk-System. Mathematik. Kompaktwissen Testfragen SMS. Mit Lernquiz fürs Handy

5. bis 10. Klasse. Schnell-Merk-System. Mathematik. Kompaktwissen Testfragen SMS. Mit Lernquiz fürs Handy 5. bis 10. Klasse SMS Schnell-Merk-System Mathematik Kompaktwissen Testfragen Mit Lernquiz fürs Handy 2 Zahlen und Rechnen Rechnen mit natürlichen Zahlen Multiplikation ist die mehrfache Addition gleicher

Mehr

Download. Teilbarkeit von natürlichen Zahlen. Antje Barth, Melanie Grünzig, Simone Ruhm, Hardy Seifert Auer Führerscheine Mathematik Klasse 6

Download. Teilbarkeit von natürlichen Zahlen. Antje Barth, Melanie Grünzig, Simone Ruhm, Hardy Seifert Auer Führerscheine Mathematik Klasse 6 Download Antje Barth, Melanie Grünzig, Simone Ruhm, Hardy Seifert Auer Führerscheine Mathematik Klasse 6 Teilbarkeit von natürlichen Zahlen Sekundarstufe I Antje Barth Melanie Grünzig Simone Ruhm Hardy

Mehr

Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen

Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen Arbeitsblatt 01: Teiler und Teilbarkeitsregeln a) durch 2: 1247, 33654, 149, 512, 6418 b) durch 3: 538, 1236, 8142, 972, 44780 c) durch 4: 4711,

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Genial! Mathematik 2 (Klasse 7/8) - Übungen für die Schulferien

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Genial! Mathematik 2 (Klasse 7/8) - Übungen für die Schulferien Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Genial! Mathematik 2 (Klasse 7/8) - Übungen für die Schulferien Das komplette Material finden Sie hier: School-Scout.de Vorwort Zu

Mehr

Klassenarbeit - Abschlussarbeit

Klassenarbeit - Abschlussarbeit Klassenarbeit - Abschlussarbeit Größen; Schriftlich addieren; Schriftlich subtrahieren; Vielfache; Grundrechenarten; Rechenrätsel; Teilbarkeit; Runden; Flächen 3. Klasse / Mathematik Aufgabe 1 Der Preis

Mehr

Mathematische Grundkompetenzen - Bruchrechnung

Mathematische Grundkompetenzen - Bruchrechnung Mathe Leuchtturm-Übungen-2.Kl.-Nr.07-Brüche-Grundkompetenzen C by Joh Zerbs Mathe Leuchtturm Übungsleuchtturm Übungskapitel 07 Arithmetik: Mathematische Grundkompetenzen - Bruchrechnung Erforderlicher

Mehr

Mathematik 6. differenziert & kompetenzorientiert. Mathematik 6. Teiler und Vielfache. Sandra Jacob, Karlheinz Rohe, Walter Scheffczik

Mathematik 6. differenziert & kompetenzorientiert. Mathematik 6. Teiler und Vielfache. Sandra Jacob, Karlheinz Rohe, Walter Scheffczik Sandra Jacob, Karlheinz Rohe, Walter Scheffczik Mathematik 6 differenziert & kompetenzorientiert Teiler und Vielfache Downloadauszug aus dem Originaltitel: Sekundarstufe ufe I Sandra Jacob, Karlheinz Rohe,

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Algebra Primzahlen ggt kgv PRÜFUNG 04. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Algebra Primzahlen ggt kgv PRÜFUNG 04. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Algebra Primzahlen ggt kgv Name: Klasse: Datum: : PRÜFUNG 0 Note: Klassenschnitt/ Maximalnote : / Ausgabe: 17. März 2011 Selbsteinschätzung: (freiwillig) Für alle Berechnungsaufgaben

Mehr

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung

Mehr

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade. Stufe (Bezirksolympiade) Klasse 9 Saison 967/968 Aufgaben und Lösungen OJM 7. Mathematik-Olympiade. Stufe (Bezirksolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen

Mehr

Mögliche inhaltliche Ergänzungen zur Teilbarkeit

Mögliche inhaltliche Ergänzungen zur Teilbarkeit Vorbemerkungen: Mögliche inhaltliche Ergänzungen zur Teilbarkeit nach U.Wagner, OHG Tuttlingen Es ist keineswegs an alle Inhalte gedacht eine sehr beschränkte Auswahl ist sinnvoll. Insbesondere das Thema

Mehr

Download. Mathematik6. Teilbarkeit von natürlichen Zahlen. Antje Barth, Melanie Grünzig, Simone Ruhm, Hardy Seifert Klassenarbeiten

Download. Mathematik6. Teilbarkeit von natürlichen Zahlen. Antje Barth, Melanie Grünzig, Simone Ruhm, Hardy Seifert Klassenarbeiten Download Antje Barth, Melanie Grünzig, Simone Ruhm, Hardy Seifert Klassenarbeiten Mathematik 6 Teilbarkeit von natürlichen Zahlen Sekundarstufe I Antje Barth/Melanie Grünzig/ Simone Ruhm/Hardy Seifert

Mehr

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen)

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen) 4 Inhalt 1 Teiler und Teilbarkeitsregeln 6 2 Primzahlen und Primfaktorzerlegung 8 3 ggt und kgv 10 4 Bruchzahlen und gemischte Zahlen 12 5 Erweitern und Kürzen 14 6 Addition und Subtraktion von Bruchzahlen

Mehr

Zahlen und Größen Beitrag 46 Teilbarkeit, Teiler und Vielfache 1 von 18

Zahlen und Größen Beitrag 46 Teilbarkeit, Teiler und Vielfache 1 von 18 Zahlen und Größen Beitrag 46 Teilbarkeit, Teiler und Vielfache 1 von 18 Teilen leicht gemacht eine Lerntheke zu Teilbarkeit, Teiler und Vielfache natürlicher Zahlen Von Ilse Gretenkord, Ahaus Illustriert

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 6

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 6 1 Teilbarkeit und Brüche Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Verfahren mit eigenen Worten und geeigneten Fachbegriffen erläutern Kommunizieren über eigene und vorgegebenen Lösungswege,

Mehr

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen.

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. ruchrechnen 2 2.1 Teilbarkeit von Zahlen Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. Das kleinste gemeinsame Vielfache (kgv) mehrerer Zahlen ist die

Mehr

Teilbarkeitslehre und Restklassenarithmetik

Teilbarkeitslehre und Restklassenarithmetik Vorlesung Teilbarkeitslehre und Restklassenarithmetik.1 Gruppentheorie WiewirinVorlesung2gesehenhaben,hatdieMengeZmitderAdditiongewisse Eigenschaften. Wir fassen nun bestimmte Eigenschaften zusammen und

Mehr

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c.

2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c. 2 Teilbarkeit in Z Bis auf weiteres stehen kleine Buchstaben für ganze Zahlen. Teilbarkeit. Sei a 0. Eine Zahl b heißt durch a teilbar, wenn es ein q gibt mit b = qa. Wir sagen dann auch: a teilt b (ist

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Gerecht teilen - ggt, kgv und anderes. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Gerecht teilen - ggt, kgv und anderes. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Gerecht teilen - ggt, kgv und anderes Das komplette Material finden Sie hier: Download bei School-Scout.de S 1 Gerecht teilen ggt,

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. teilbar, wenn die letzte Ziffer der Zahl

Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. teilbar, wenn die letzte Ziffer der Zahl 6.. Schuljahr Natürliche Zahlen 1 Teilbarkeit und Primzahlen Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. Endzifferregel Eine Zahl ist durch 5 teilbar,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Teilen leicht gemacht - Teilbarkeit, Teiler und Vielfache natürlicher Zahlen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Teilen leicht gemacht - Teilbarkeit, Teiler und Vielfache natürlicher Zahlen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Teilen leicht gemacht - Teilbarkeit, Teiler und Vielfache natürlicher Zahlen Das komplette Material finden Sie hier: School-Scout.de

Mehr

Kompetenztest. Wiederholung aus der 2. Klasse. Das ist Mathematik. Kompetenztest. Testen und Fördern. Wiederholung aus der 2.

Kompetenztest. Wiederholung aus der 2. Klasse. Das ist Mathematik. Kompetenztest. Testen und Fördern. Wiederholung aus der 2. Name: Klasse: Datum: 1) Ordne richtig zu. Verkauf Einnahmen Arbeiter für die Arbeit benötigte Zeit direkte Proportionalität Anzahl der Kühe Platz im Stall pro Kuh Anzahl der Pferde Zeit die der Futtervorrat

Mehr

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung Äquivalenzrelation Tischler-Problem Euklidischer Algorithmus Erweiterter euklidischer Algorithmus Lineare diophantische Gleichung Rechnen mit Resten Restklassen Teilbarkeit in Z Beispiel einer Kongruenzgleichung

Mehr

ggt (a, b, c) kgv (a, b, c) a b c d e f P w = p G G = Pw 100 p = Pw 100 a b c d

ggt (a, b, c) kgv (a, b, c) a b c d e f P w = p G G = Pw 100 p = Pw 100 a b c d ggt (a, b) kgv (a, b) ggt (a, b, c) kgv (a, b, c) a b c d a b c d e f P w = G 00 G = Pw 00 = Pw 00 G P w = G 000 G = Pw 000 = Pw 000 G E = q A A = E q = E A ,,, 7,,, 7, 9,, 9,, 7, 4, 4, 47,, 9, 6, 67,

Mehr

Erarbeitung der gemeinsamen Teiler und dem größten gemeinsamen Teiler (ggt) durch die Planung des Indiaka Turniers mit zwei Klassen.

Erarbeitung der gemeinsamen Teiler und dem größten gemeinsamen Teiler (ggt) durch die Planung des Indiaka Turniers mit zwei Klassen. Naturwissenschaft Stefan Wichmann Erarbeitung der gemeinsamen Teiler und dem größten gemeinsamen Teiler (ggt) durch die Planung des Indiaka Turniers mit zwei Klassen. Unterrichtsentwurf Studienseminar

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

Inhaltsverzeichnis. 1. Aufbau des Zahlensystems. 2. Die vier Grundrechenarten. 3. Teilbarkeit natürlicher Zahlen. 4. Größen

Inhaltsverzeichnis. 1. Aufbau des Zahlensystems. 2. Die vier Grundrechenarten. 3. Teilbarkeit natürlicher Zahlen. 4. Größen Inhaltsverzeichnis 1. Aufbau des Zahlensystems 1.1 Anordnung der natürlichen Zahlen... 3 1.2 Ordnen der natürlichen Zahlen kleiner und größer... 4 1.3 Das Dezimalsystem... 5 1.4 Runden von natürlichen

Mehr

Teilbarkeitsregeln.

Teilbarkeitsregeln. Teilbarkeitsregeln http://www.olympiade-mathematik.de Inhaltsverzeichnis 1 Begrie..................................................... 2 2 Einfache Regeln................................................

Mehr

Tipp: Ab jetzt Taschenrechner oder Scilab einsetzen!

Tipp: Ab jetzt Taschenrechner oder Scilab einsetzen! - Übungsblatt 02 Lösungsvorschläge Aufgabe 1 Beweisen Sie, dass 3 eine irrationale Zahl ist, also nicht durch einen Bruch dargestellt werden kann. Annahme: 3 ist eine rationale Zahl 3= m. Der Bruch soll

Mehr

Wiederholung aus der 2. Klasse Lösungen

Wiederholung aus der 2. Klasse Lösungen 1) Ordne richtig zu. Verkauf Einnahmen Arbeiter für die Arbeit benötigte Zeit direkte Proportionalität Anzahl der Kühe Platz im Stall pro Kuh Anzahl der Pferde Zeit die der Futtervorrat reicht indirekte

Mehr

Mathematik-Dossier Grundoperationen in Q Stoffsicherung und repetition.

Mathematik-Dossier Grundoperationen in Q Stoffsicherung und repetition. Name: Mathematik-Dossier Grundoperationen in Q Stoffsicherung und repetition. Inhalt: Teilbarkeit von Zahlen aus N0 (Teilbarkeitsregeln, ggt, kgv) Brüche und ihre Eigenschaften Erweitern und Kürzen von

Mehr

Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6

Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6 Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6 1. Bestimme jeweils die Teilermenge der folgenden Zahlen: a) 62 b) 25 c)71 d) 28 Lösungsbeispiel: T 62 = {...} (Einzelne Elemente der

Mehr

10. Teilbarkeit in Ringen

10. Teilbarkeit in Ringen 70 Andreas Gathmann 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie man ein Ringelement

Mehr

Bild Nummer 1: Bild Nummer 2: Seite B 1

Bild Nummer 1: Bild Nummer 2: Seite B 1 Bild Nummer 1: Bild Nummer 2: Seite B 1 Bild Nummer 3: Bild Nummer 4: Seite B 2 Bild Nummer 5: Bild Nummer 6: Seite B 3 Bild Nummer 7: Bild Nummer 8: Seite B 4 Bild Nummer 9: Bild Nummer 10: Seite B 5

Mehr

mit ganzen Zahlen 1.4 Berechnen Sie: a b c d e

mit ganzen Zahlen 1.4 Berechnen Sie: a b c d e 1 Rechnen mit ganzen Zahlen Führen Sie die nachfolgenden Berechnungen aus: 1.1 a. 873 112 1718 157 3461 + b. 1578 9553 7218 212 4139 + 1.3 Berechnen Sie: a. 34 89 b. 67 46 c. 61 93 d. 55 11 e. 78 38 1.2

Mehr

Austausch in den Tischgruppen. Mathematik in Klassenstufe 5. Die Mathematikolympiade

Austausch in den Tischgruppen. Mathematik in Klassenstufe 5. Die Mathematikolympiade Elternseminar am Max-Planck-Gymnasium Mathematik in der Klassenstufe 5 Inhalte Austausch in den Tischgruppen Mathematik in Klassenstufe 5 Die Mathematik-Arbeitsgemeinschaften Die Mathematikolympiade Weitere

Mehr

Diskrete Mathematik ICE SS Übungsblatt 01

Diskrete Mathematik ICE SS Übungsblatt 01 Diskrete Mathematik ICE SS2019 12.03.2019 Übungsblatt 01 Aufgabe 1. Beweise durch vollständige Induktion die folgende Formel für die Summe: n n(3n 1) (3k 2) =. 2 k=1 ( ) Zusatzaufgabe. Finde die Folge

Mehr

UE Zahlentheorie. Markus Fulmek

UE Zahlentheorie. Markus Fulmek UE Zahlentheorie (Modul: Elementare Algebra (EAL)) Markus Fulmek Sommersemester 2015 Aufgabe 1: Betrachte folgende Partition der Menge r9s t1, 2, 3, 4, 5, 6, 7, 8, 9u Ă N: r9s t1, 4, 7u 9Y t2, 5, 8u 9Y

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sport Training erfordert, erfordert Mathematik das selbständige Lösen von Übungsaufgaben. Das wesentliche an den Übungen ist das

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Teilen leicht gemacht. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Teilen leicht gemacht. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Teilen leicht gemacht Das komplette Material finden Sie hier: School-Scout.de I Zahlen und Größen Beitrag 46 Teilbarkeit, Teiler und

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Orientierungsmodul Oberstufe OS 1. Zahlen auf dem Zahlenstrahl darstellen und interpretieren. natürliche Zahlen bis 2 Millionen lesen und schreiben

Orientierungsmodul Oberstufe OS 1. Zahlen auf dem Zahlenstrahl darstellen und interpretieren. natürliche Zahlen bis 2 Millionen lesen und schreiben Inhalt/ Orientierungsmodul Oberstufe O 1 Zahlendarstellung Zahlen auf dem Zahlenstrahl darstellen und interpretieren O 1 _Mathematik_71 A1, A2, A4 natürliche Zahlen bis 2 Millionen lesen und schreiben

Mehr

Verlauf Material LEK Glossar Lösungen. Teilen leicht gemacht Teilbarkeit, Teiler und Vielfache natürlicher Zahlen. Ilse Gretenkord, Ahaus VORANSICHT

Verlauf Material LEK Glossar Lösungen. Teilen leicht gemacht Teilbarkeit, Teiler und Vielfache natürlicher Zahlen. Ilse Gretenkord, Ahaus VORANSICHT Reihe 20 S 1 Verlauf Material LEK Glossar Lösungen Teilen leicht gemacht Teilbarkeit, Teiler und Vielfache natürlicher Zahlen Ilse Gretenkord, Ahaus Vergnügungspark Klasse: 5/6 Dauer: Inhalt: 8 Stunden

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

Lambacher Schweizer. Mathematik für Gymnasien G9 Kapitel Teilbarkeit. Hessen

Lambacher Schweizer. Mathematik für Gymnasien G9 Kapitel Teilbarkeit. Hessen Lambacher Schweizer Mathematik für Gymnasien G9 Kapitel Teilbarkeit 6 Hessen bearbeitet von Edmund Herd Andreas König Reinhard Oldenburg Michael Stanzel Ernst Klett Verlag Stuttgart Leipzig Inhalt In diesem

Mehr

Rechnen mit natürlichen Zahlen 2

Rechnen mit natürlichen Zahlen 2 . Rechnen mit natürlichen Zahlen L E R N - U N D A U F G A B E N P L A N Zum Gebrauch dieses Plans Hier wird kurz beschrieben, was im Unterricht gemacht wird und welche Aufgaben zu erledigen sind. Diese

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 09.04.2015 Name: Vorname:

Mehr

M2 Übungen zur 1. Schularbeit

M2 Übungen zur 1. Schularbeit M2 Übungen zur 1. Schularbeit 1) Schreib stellenwertrichtig untereinander und subtrahiere! Rechne auch eine Probe! a) 9,1 -, 1, - 1,2 c) -,1 2) Schreib stellenwertrichtig untereinander und berechne! a),2

Mehr

Teilbarkeit. 1. Maria stellt zwei Behauptungen auf:

Teilbarkeit. 1. Maria stellt zwei Behauptungen auf: 1. Maria stellt zwei Behauptungen auf: Teilbarkeit (a) Die Zahl 123456789 ist durch 9 teilbar. (b) Wenn man die Ziffern einer 53-stelligen Zahl, die durch 9 teilbar ist, auf irgend eine Weise vertauscht,

Mehr

Elemente der Stochastik (SoSe 2016) 3. Übungsblatt

Elemente der Stochastik (SoSe 2016) 3. Übungsblatt Dr. M. Weimar 18.04.016 Elemente der Stochastik (SoSe 016) 3. Übungsblatt Aufgabe 1 (1++=5 Punkte) Das nachfolgende Glücksrad wird einmal gedreht. Ferner bezeichne P eine Abbildung mit den Eigenschaften

Mehr