Teilbarkeit, Zahlenkunde
|
|
|
- Mathias Heinrich
- vor 9 Jahren
- Abrufe
Transkript
1 Math 6. Klasse Dossier 4 Teilbarkeit, Zahlenkunde Lernziele Teilbarkeitsregeln kennen und anwenden 1-3 Zahlenkunde Theorie 3 Primzahlen erkennen 4 Quadratzahlen 4 Teiler einer Zahl bestimmen 5 grösster gemeinsamer Teiler 5 Vielfache einer Zahl bestimmen 6 kleinstes gemeinsames Vielfaches 6 Übungsproben 7-8 Übungsprobe mit Lösungen 9-10 provisorisches Testdatum: Freitag
2 Kapitel 1 : Teilbarkeit Teilbarkeitsregeln: :2 letzte Ziffer ist durch 2 teilbar. (0,2,4,6,8) Bsp: 3456 :3 Quersumme ist teilbar durch 3 Bsp: 723 = Quersumme 12 :4 letzte 2 Ziffern sind durch 4 teilbar. Bsp: 724 :5 letzte Ziffer ist 0 oder 5. Bsp: 2355, 7560 :6 Quersumme ist teilbar durch 3 und letzte Ziffer ist teilbar durch 2. Bsp: 732 :7 Mit Ausprobieren. :8 letzte 3 Ziffern sind durch 8 teilbar. Bsp :9 Quersumme ist teilbar durch 9. Bsp: 7353 :10 letzte Ziffer ist eine 0. Bsp: Kreuze an, durch was die Zahlen teilbar sind: :2 :3 :4 :5 :6 :7 :8 :9 :10 2. Kreuze an, durch was die Zahlen teilbar sind: Kreuze an, durch was folgende Zahlen teilbar sind: Kreuze an, durch was die Zahlen teilbar sind
3 Zahlen gesucht 1. In den folgenden Zahlen ist je eine Ziffer mit _ ersetzt worden. Welche Ziffern braucht es, damit die Zahlen entsprechend teilbar sind. Suche alle möglichen Ziffern! a) :3 34_5 L = ( ) 9_051 L = ( ) b): 6 345_ L = ( ) 40_32 L = ( ) c) :4 326_ L = ( ) 56_4 L = ( ) d) :10 329_ L = ( ) 347_0 L = ( ) 2. Setze die fehlende Ziffer ein, damit die Zahl durch 9 teilbar wird: a) b) 5 03 c) 10_1 3. Suche alle möglichen Lösungen: 21_3 : 3 L = 262 : 6 L = 413 : 4 L = 32 8 : 10 L = 4. Suche alle möglichen Lösungen: 25_3 : 3 L = 267 : 6 L = 415 : 4 L = 328 : 10 L = 5. Setze die fehlende Ziffer ein, damit die Zahl durch 9 teilbar wird. a) 12_8 b) 100_4 c) 3467_ d) 23_4 oder (2 Lösungen) 6. Suche alle möglichen Lösungen: 25_2 : 3 L = 26 2 : 6 L = : 4 L = 32 8 : 10 L =
4 Verschiedene Aufgaben zur Teilbarkeit 1. Sind folgende Behauptungen richtig oder falsch? Richtig Falsch Wenn eine Zahl durch 4 teilbar ist, dann ist sie auch durch 2 teilbar. Jede Zahl mit der Ziffer 0 am Schluss ist durch 5 teilbar. Jede Zahl, die durch 6 teilbar ist, hat eine gerade Ziffer am Schluss. Jede Zahl mit der Ziffer 3 am Schluss ist durch 3 teilbar. Wenn die Quersumme einer Zahl durch 3 teilbar ist, und die Quersumme eine gerade Zahl ergibt, dann ist die Zahl durch 6 teilbar. 2. Sind folgende Behauptungen richtig oder falsch? Richtig Falsch Ist eine Zahl durch 6 teilbar, dann ist sie auch durch 3 teilbar. Jede dreistellige Zahl mit den Ziffern 2,3,7 ist durch 3 teilbar. Jede Zahl mit der Ziffer 0 ist durch 10 teilbar. Jede Zahl mit der Ziffer 8 am Schluss ist durch teilbar. Kapitel 2 Zahlenkunde
5 Primzahlen Kreuze alle Primzahlen an. Quadratzahlen 1. Schreibe alle Quadratzahlen zwischen 100 und 200 auf. 2. Welche Quadratzahl liegt am nächsten bei 300? 3. Fülle die Tabellen aus: 13 x x x x x x x x
6 Teiler gesucht und ggt 1. Löse die Aufgabe im Übungsheft Seite 26 Nummer 2, 3a, 3b, 3c 2. Schreibe alle Teiler der Zahlen auf: Bestimme alle Teiler der Zahlen, bestimmte die gemeinsamen Teiler und den ggt Zahlen Teiler gemeinsame Teiler ggt
7 Vielfache gesucht und kgv 1. Löse die Aufgaben im Übungsheft Seite 27 Nummer 5a, 5b, 5c 2. Bestimme das kgv der folgenden Zahlenpaare: Zahlen kgv 9 und und und Färbe in der Tafel alle Vielfachen von 8 mit rot. Färbe alle Vielfachen von 12 mit blau. Welches sind die gemeinsamen Vielfachen? Welches ist das kgv?
8 Übungsprobe Teilbarkeit, Kreuze an, durch was die Zahlen teilbar sind: Setze die fehlende Ziffer ein, damit die Zahl durch 9 teilbar wird: a) b) Suche alle möglichen Lösungen: 25_3 : 3 L = 267 : 6 L = 415 : 4 L = 328 : 10 L = 4. Schreibe alle Quadratzahlen zwischen 50 und 150 auf. 5. Welche Quadratzahl liegt am nächsten bei 600? 6. Schreibe alle Primzahlen zwischen 40 und 60 auf. 7. Schreibe mit einem Satz, was eine Primzahl ist 8. Schreibe alle echten Teiler der Zahlen auf: Suche die gemeinsamen Teiler und den ggt der Zahlen: Zahlen gemeinsame Teiler ggt 24 und und und Zeichne in das Hunderterfeld rechts ein: Mit rot alle Vielfachen von 8 Mit blau alle Vielfachen von 12 Welches sind die gemeinsamen Vielfachen? 12. Bestimme das kgv der folgenden Zahlenpaare: Zahlen kgv 9 und und und 72
9 Uebungstest Teilbarkeit 2 Name Punkte Note 4. Kreuze an, durch was die Zahlen teilbar sind: Setze die fehlende Ziffer ein, damit die Zahl durch 9 teilbar wird: a) b) Suche alle möglichen Lösungen: 21_78 : 3 L = 26 2 : 6 L = 41 3 : 4 L = 32 : 6 L = 9. Schreibe alle Quadratzahlen zwischen 200 und 300 auf. 10. Welche Quadratzahl liegt am nächsten bei 800? 11. Schreibe alle Primzahlen zwischen 100 und 120 auf. 12. Schreibe alle Teiler der Zahlen auf: Nimm die beiden Zahlen 75 und 90 a) Bestimme alle Teiler der Zahlen b) Bestimme alle gemeinsamen Teiler von 75 und 90 c) Bestimme den ggt von 75 und Bestimme das kgv der folgenden Zahlenpaare: Zahlen kgv 10 und und und 18
10 Uebungstest Teilbarkeit Name Punkte Note 1. Kreuze an, durch was die Zahlen teilbar sind: Setze die fehlende Ziffer ein, damit die Zahl durch 9 teilbar wird: a) b) Suche alle möglichen Lösungen: 21_7 : 3 L = 261 : 6 L = 415 : 4 L = : 10 L = 4. Schreibe alle Quadratzahlen zwischen 300 und 400 auf. 5. Welche Quadratzahl liegt am nächsten bei 250? 6. Schreibe alle Primzahlen zwischen 80 und 100 auf. 7. Schreibe mit einem Satz, was eine Primzahl ist: 8. Schreibe alle Teiler der Zahlen auf: Nimm die beiden Zahlen 72 und 120 a) Bestimme alle Teiler der Zahlen b) Bestimme alle gemeinsamen Teiler von 72 und 120 c) Bestimme den ggt von 72 und Bestimme das kgv der folgenden Zahlenpaare: Zahlen kgv 9 und und und 36
11 Uebungstest Teilbarkeit Loesungen Name Punkte Note 1. Kreuze an, durch was die Zahlen teilbar sind: 248 x - x - - x x x x x x x x x - x - - x - 2. Setze die fehlende Ziffer ein, damit die Zahl durch 9 teilbar wird: a) b) Suche alle möglichen Lösungen: 21_7 : 3 L = ( 2,5,8) 261 : 6 L = (0,6) 415 : 4 L = (2,6) : 10 L = (0,1,2,3,4,5,6,7,8,9,) 4. Schreibe alle Quadratzahlen zwischen 300 und 400 auf. 324, 361, Welche Quadratzahl liegt am nächsten bei Schreibe alle Primzahlen zwischen 80 und 100 auf 83,89,97 7. Schreibe mit einem Satz, was eine Primzahl ist. Eine Zahl, die nur durch 1 und sich selbst teilbar ist. 8. Schreibe alle Teiler der Zahlen auf: 32 1,32,2,16,4,8 64 1,64,2,32,4,16,8 90 1,90,2,45,3,30,5,18,6,15,9,10 9. Nimm die beiden Zahlen 72 und 120 a) Bestimme alle Teiler der Zahlen 72 1,72,2,36,3,24,4,18,6,12,8, ,120,2,60,3,40,4,30,5,24,6,20,8,15,10,12 b) Bestimme alle gemeinsamen Teiler von 72 und 120 1,2,3,4,6,8,12,24 c) Bestimme den ggt dvon 72 und 120 ggt = Bestimme das kgv der folgenden Zahlenpaare: Zahlen kgv 9 und und und
Teilbarkeitsregeln. Teilbarkeitsregeln Seite 1 von 6
Teilbarkeitsregeln Teilbarkeit durch 2 Eine Zahl ist durch 2 teilbar, wenn die letzte Stelle 0, 2, 4, 6, oder 8 lautet. Beispiel: 2524 ist durch 2 teilbar, weil die letzte Stelle 4 lautet. 1483 ist nicht
teilbar durch
Teilbarkeit und Brüche KV Was kann ich? Vervollständige. V = { } T = { } Kreuze an, wenn die Zahl durch teilbar ist. teilbar durch 0 9 90 Welcher Bruchteil ist dargestellt? Welcher Bruchteil fehlt noch
Ich mache eine saubere, klare Darstellung, schreibe die Aufgabenstellung ab und unterstreiche das Resultat doppelt.
Mathplan 8.2.1 Arithmetik Algebra Grundoperationen Terme über Q Teil I Name: (112) 3 = 14 Hilfsmittel : Algebra 2 / AB 8 Zeitvorschlag: 3 Wochen von: Lernkontrolle am: bis Probe 8.2.1 Wichtige Punkte:
Grundlagen Algebra Aufgaben und Lösungen
Grundlagen Algebra Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 201 Inhaltsverzeichnis 1 Primfaktoren - ggt - kgv 2 1.1 ggt (a, b) kgv (a, b)...............................................
Trainings und Übungstext. für Klasse 5 oder 6. Auch ggt und kgv ohne Primfaktorzerlegung. Datei Nr. 10101. Friedrich W. Buckel. Stand 11.
Orientierungsstufe 5/6 Teiler und Vielfache Trainings und Übungstext für Klasse 5 oder 6 Auch ggt und kgv ohne Primfaktorzerlegung Datei Nr. 00 Friedrich W. Buckel Stand. Juli 2 DEMO für INTERNETBIBLIOTHEK
Teilermengen Vielfachmengen Teste dein Wissen! Station 1
Teilermengen Vielfachmengen Teste dein Wissen! Station 1 1. Bestimme die Teilermengen. a.) T18 = b.) T81 = a.) T24 = 2. Nenne jeweils die ersten 4 Elemente der Vielfachmenge. a.) V3 = b.) V4 = b.) V17
Teilbarkeit natürlicher Zahlen
Teiler einer Zahl - Teilermengen Aufgabe: Teilbarkeit natürlicher Zahlen Eine Klasse besteht aus 30 Schülern und soll in Gruppen mit gleich vielen Schülern eingeteilt werden. Welche Möglichkeiten gibt
Teilbarkeitsregeln 3, 6 und 9
Teilbarkeitsregeln 3, 6 und 9 Klasse 1-4 Dauer: ca. 45 Minuten Lernziele: Die Schüler sollen - Die Teilbarkeitsregeln für das Teilen durch 3, 6 und 9 können. - Diese Teilbarkeitsregeln anwenden können.
Faktorisierungen und Teilbarkeiten natürlicher Zahlen. Teiler natürlicher Zahlen
Faktorisierungen und Teilbarkeiten natürlicher Zahlen Erinnerung: Eine natürliche Zahl heißt faktorisierbar, wenn sie als Produkt mit Faktoren geschrieben werden kann. Beispiel: 21= 1 21 oder 21= 3 7 Natürlich
perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche StrandMathe GbR
perfekt für Klassenarbeiten Videos zu jeder Übungsaufgabe alle Themen sehr übersichtlich alle Anforderungsbereiche Unsere Übungshefte sind für alle Schülerinnen und Schüler, die keine Lust auf 300-seitige
Aufgaben zu Lambacher Schweizer 5 Hessen
Aufgaben zu Kapitel I Kopfrechenaufgaben 1 Berechne im Kopf. a) 60 + 32 b) 57 + 41 c) 130 + 72 d) 504 + 91 e) 75 + 47 f) 76 + 85 g) 124 + 127 h) 295 + 76 i) 129 + 396 j) 747 + 239 2 a) 3800 + 4600 b) 5700
Teiler und Vielfache
Teiler und Vielfache Dividend : Divisor = Quotient 12 : 3 = 4 (a) 12 : 5 = 2; 2 Rest (b) Geht eine Division ohne Rest auf, dann ist der Divisor "Teiler" des Dividenden (a). Teiler der Zahl 12: 1, 2, 3,
2b Variablen 2c Teiler, Vielfache und Primzahlen
Mathematik Niveau A Repetitorium 1.OS 2b Variablen 2c Teiler, Vielfache und Primzahlen Name: MA I OS2 I Oktober 18 I NeA 1 Inhaltsverzeichnis THEMENBEREICH 2B (VARIABLEN) 3 WAS IST ALGEBRA ÜBERHAUPT? 3
In die Vielfachenmengen haben sich jeweils vier falsche Zahlen eingeschlichen. Streiche diese falschen Zahlen durch!
Teilbar oder nicht? - ielfache oder nicht? 1. Hier stimmt etwas nicht. In die ielfachenmengen haben sich jeweils vier falsche Zahlen eingeschlichen. Streiche diese falschen Zahlen durch! 9 27 39 45 63
Kartei. Halbschriftliche Multiplikation und Division. Überlege aus welchen Reihen die Ausschnitte. gehören und setze die Reihe nach beiden Seiten
Halbschriftliche Multiplikation und Division / Karte 00 Kartei Halbschriftliche Multiplikation und Division Halbschriftliche Multiplikation und Division / Karte 01 Schriftliche Multiplikation und Division
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik
UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100
Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse
Seite 1 Turmzimmer 1: Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 7. Ist die Zahl ein Teiler? 2. Teilbarkeit durch 5 und 10 8. Teiler in der Zahlentafel suchen 3. Quersummen berechnen 9. Ist die
Im Original veränderbare Word-Dateien
Üben, Üben, Üben Aufgabe 1 Das Sieb des Eratosthenes Zerlegen in Faktoren Eratosthenes von Kyrene war ein griechischer Gelehrter und lebte von ca. 275 v. Chr. bis ca. 194 v. Chr. Nach ihm ist ein Verfahren
Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1
Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 1. Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 2. Teilbarkeit durch 5 und 10 3. Quersummen berechnen 4. Teilbarkeit durch 3, 6 und 9 5. Gemischte
Musterlösung Zahlentheorie Frühlingssemester 2015, Aufgabenblatt 1
Aufgabenblatt 1 40 Punte Aufgabe 1 (Teilermengen) Seien a = 128 und b = 129. a) Beschreiben Sie die Teilermengen T(a) und T(b) in aufzählender Form. 2 b) Seien p, q zwei verschiedene Primzahlen. (i) Wie
Repetition Mathematik 6. Klasse (Zahlenbuch 6)
Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von
Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten:
1 Beweisen und Argumentieren für Lehrer(innen) Die Aufgaben, die hier vorgestellt werden, befassen sich mit den folgenden Punkten: Beweise, die eine Behauptung nicht nur bestätigen, sondern auch erklären,
Bruchrechnen. 1. Teil. Brüche kennen lernen Erweitern und Kürzen. Schüler-Lese- und Übungstext für Klasse 6
Bruchrechnen. Teil Brüche kennen lernen Erweitern und Kürzen Schüler-Lese- und Übungstext für Klasse Die Aufgaben dieses Textes findet man auch noch als Sammlung von Aufgabenblättern im Text 020 Datei
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.
Elementare Zahlentheorie Anwendungen 3 - Lösungen
1. Notieren Sie alle Zahlen zwischen 999 und 2001, welche durch 125 teilbar sind: 1000, 1125, 1250, 1375, 1500, 1625, 1750, 1875, 2000 2. Welche der folgenden Zahlen sind durch 8 teilbar? Für den Stern
Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse
Seite 1 Turmzimmer 1: Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 7. Schreibe mit arabischen Ziffern! 1 2. Nachbarzahlen 8. Schreibe mit arabischen Ziffern! 2 3. Zahlenrätsel
Trainingsaufgaben und Übungstexte. für Klasse 5 oder 6
Teilbarkeitsregeln Primfaktorzerlegung Trainingsaufgaben und Übungstexte für Klasse 5 oder 6 Dieser Text setzt Grundkenntnisse über Teiler und Vielfache voraus. Diese stehen im Text 10101. Datei Nr. 10102
Brüche. 3 Zä hler Bruchstrich Nenner. Wie kann man einen Bruch erkennen / ablesen? Beispiel:
8 Brüche Zä hler Bruchstrich Nenner Wie kann man einen Bruch erkennen / ablesen? Zähle zuerst alle Bruchstücke cke eines Ganzen. Die Anzahl sagt dir, wie der Nenner heißt. Jetzt zählst z du alle gefärbten
Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse
Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse 1. Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 2. Nachbarzahlen 3. Zahlenrätsel 1/2 4. Zahlenrätsel 2/2 5. Zahlen ordnen
1 Winkel messen und zeichnen... 26
A Teilbarkeit und Rechnen mit Brüchen Seite 1 Teiler und Teilbarkeitsregeln... 4 2 Primzahlen und Primfaktorzerlegung... 5 3 ggt und kgv... 6 4 Bruchzahlen und gemischte Zahlen... 7 5 Erweitern und Kürzen...
Schriftlich dividieren durch einstellige Zahlen
1 Schriftlich dividieren durch einstellige Zahlen VORANSI 1. Dividiere schriftlich. 8 4 6 4 2 : 2 = 9 3 6 6 : 3 = 2. Welches Auto parkt in welche Lücke? Verbinde. 690 000 : = 230 000 280 000 : = 140 000
Begriffe zur Gliederung von Termen, Potenzen 5
Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend
Kantiprüfungsvorbereitung basierend auf den Kanti- und DMS/FMS Prüfungen in SH von 1987-2012. Teil 1: Terme, Termumformungen, Gleichungen, Brüche
Kantiprüfungsvorbereitung basierend auf den Kanti- und DMS/FMS Prüfungen in SH von 1987-2012 Teil 1: Terme, Termumformungen, Gleichungen, Brüche Version Oktober 2013 verf. v. Adrian Christen SchulArena.com
Mengenlehre / Reelle Zahlen Prüfung 2A
Name: Vorname: Klasse: Datum: Möge die Übung gelingen! Punkte: Note: Aufgabe 1: Geben Sie an, ob die folgenden Aussagen eine Menge im mathematischen Sinn beschreiben: a) Die Menge der hübschen Girls, die
MATHEMATIK 6. Schulstufe Schularbeiten
MATHEMATIK 6. Schulstufe Schularbeiten 1. Schularbeit Gleichungen Teilbarkeitsregeln Primzahlen ggt kgv Rechnen mit Bruchzahlen Löse die Gleichungen und mache die Probe durch Einsetzen! a) 24 x + 1 = 313
Aufgabe 3: Teiler und Vielfache
Aufgabe 3: Teiler und Vielfache LERNZIELE: Mengen von Teilern und Vielfachen bestimmen Schnittmengen erkennen und ihre Elemente aufzählen Achte darauf: 1. Du zeigst mit deinen Antworten, was Teiler und
Aufgabe 1: Hausnummernaufgabe
Aufgabe 1: Hausnummernaufgabe Nana sagt: Meine Hausnummer liegt zwischen 94 und 129. Sie ist durch 2, 3 und 5 teilbar. Kannst du die Hausnummer erraten? Diese Aufgabe lässt sich gut mit Hilfe einer Tabelle
Eine Hilfe, wenn du mal nicht mehr weiterweisst...
Rechnen./. Klasse 0 Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Zeichenerklärungen Addition Subtraktion Multiplikation Division Durchschnitt Massstab Primzahlen Teilbarkeit von Zahlen
Mengenlehre / Reelle Zahlen Prüfung 2B - Lösungen
Name: Vorname: Klasse: Datum: Möge die Übung gelingen! Punkte: Note: Aufgabe 1: Geben Sie an, ob die folgenden Aussagen eine Menge im mathematischen Sinn beschreiben: a) Alle Primzahlen zwischen 6 und
5. bis 10. Klasse. Schnell-Merk-System. Mathematik. Kompaktwissen Testfragen SMS. Mit Lernquiz fürs Handy
5. bis 10. Klasse SMS Schnell-Merk-System Mathematik Kompaktwissen Testfragen Mit Lernquiz fürs Handy 2 Zahlen und Rechnen Rechnen mit natürlichen Zahlen Multiplikation ist die mehrfache Addition gleicher
Download. Teilbarkeit von natürlichen Zahlen. Antje Barth, Melanie Grünzig, Simone Ruhm, Hardy Seifert Auer Führerscheine Mathematik Klasse 6
Download Antje Barth, Melanie Grünzig, Simone Ruhm, Hardy Seifert Auer Führerscheine Mathematik Klasse 6 Teilbarkeit von natürlichen Zahlen Sekundarstufe I Antje Barth Melanie Grünzig Simone Ruhm Hardy
Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen
Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen Arbeitsblatt 01: Teiler und Teilbarkeitsregeln a) durch 2: 1247, 33654, 149, 512, 6418 b) durch 3: 538, 1236, 8142, 972, 44780 c) durch 4: 4711,
Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit
Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900
Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade
Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit
Lösungen der Aufgaben
Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.
1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3
Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Genial! Mathematik 2 (Klasse 7/8) - Übungen für die Schulferien
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Genial! Mathematik 2 (Klasse 7/8) - Übungen für die Schulferien Das komplette Material finden Sie hier: School-Scout.de Vorwort Zu
Klassenarbeit - Abschlussarbeit
Klassenarbeit - Abschlussarbeit Größen; Schriftlich addieren; Schriftlich subtrahieren; Vielfache; Grundrechenarten; Rechenrätsel; Teilbarkeit; Runden; Flächen 3. Klasse / Mathematik Aufgabe 1 Der Preis
Mathematische Grundkompetenzen - Bruchrechnung
Mathe Leuchtturm-Übungen-2.Kl.-Nr.07-Brüche-Grundkompetenzen C by Joh Zerbs Mathe Leuchtturm Übungsleuchtturm Übungskapitel 07 Arithmetik: Mathematische Grundkompetenzen - Bruchrechnung Erforderlicher
Mathematik 6. differenziert & kompetenzorientiert. Mathematik 6. Teiler und Vielfache. Sandra Jacob, Karlheinz Rohe, Walter Scheffczik
Sandra Jacob, Karlheinz Rohe, Walter Scheffczik Mathematik 6 differenziert & kompetenzorientiert Teiler und Vielfache Downloadauszug aus dem Originaltitel: Sekundarstufe ufe I Sandra Jacob, Karlheinz Rohe,
Grundlagen der Mathematik
Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =
Algebra Primzahlen ggt kgv PRÜFUNG 04. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :
GEOMETRIE PRÜFUNGSVORBEREITUNG Algebra Primzahlen ggt kgv Name: Klasse: Datum: : PRÜFUNG 0 Note: Klassenschnitt/ Maximalnote : / Ausgabe: 17. März 2011 Selbsteinschätzung: (freiwillig) Für alle Berechnungsaufgaben
Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion
Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung
7. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen
7. Mathematik Olympiade. Stufe (Bezirksolympiade) Klasse 9 Saison 967/968 Aufgaben und Lösungen OJM 7. Mathematik-Olympiade. Stufe (Bezirksolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
Mögliche inhaltliche Ergänzungen zur Teilbarkeit
Vorbemerkungen: Mögliche inhaltliche Ergänzungen zur Teilbarkeit nach U.Wagner, OHG Tuttlingen Es ist keineswegs an alle Inhalte gedacht eine sehr beschränkte Auswahl ist sinnvoll. Insbesondere das Thema
Download. Mathematik6. Teilbarkeit von natürlichen Zahlen. Antje Barth, Melanie Grünzig, Simone Ruhm, Hardy Seifert Klassenarbeiten
Download Antje Barth, Melanie Grünzig, Simone Ruhm, Hardy Seifert Klassenarbeiten Mathematik 6 Teilbarkeit von natürlichen Zahlen Sekundarstufe I Antje Barth/Melanie Grünzig/ Simone Ruhm/Hardy Seifert
Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen)
4 Inhalt 1 Teiler und Teilbarkeitsregeln 6 2 Primzahlen und Primfaktorzerlegung 8 3 ggt und kgv 10 4 Bruchzahlen und gemischte Zahlen 12 5 Erweitern und Kürzen 14 6 Addition und Subtraktion von Bruchzahlen
Zahlen und Größen Beitrag 46 Teilbarkeit, Teiler und Vielfache 1 von 18
Zahlen und Größen Beitrag 46 Teilbarkeit, Teiler und Vielfache 1 von 18 Teilen leicht gemacht eine Lerntheke zu Teilbarkeit, Teiler und Vielfache natürlicher Zahlen Von Ilse Gretenkord, Ahaus Illustriert
Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 6
1 Teilbarkeit und Brüche Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Verfahren mit eigenen Worten und geeigneten Fachbegriffen erläutern Kommunizieren über eigene und vorgegebenen Lösungswege,
Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen.
ruchrechnen 2 2.1 Teilbarkeit von Zahlen Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. Das kleinste gemeinsame Vielfache (kgv) mehrerer Zahlen ist die
Teilbarkeitslehre und Restklassenarithmetik
Vorlesung Teilbarkeitslehre und Restklassenarithmetik.1 Gruppentheorie WiewirinVorlesung2gesehenhaben,hatdieMengeZmitderAdditiongewisse Eigenschaften. Wir fassen nun bestimmte Eigenschaften zusammen und
2 Teilbarkeit in Z. (a) Aus a b folgt a b und a b und a b und a b. (b) Aus a b und b c folgt a c.
2 Teilbarkeit in Z Bis auf weiteres stehen kleine Buchstaben für ganze Zahlen. Teilbarkeit. Sei a 0. Eine Zahl b heißt durch a teilbar, wenn es ein q gibt mit b = qa. Wir sagen dann auch: a teilt b (ist
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Gerecht teilen - ggt, kgv und anderes. Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Gerecht teilen - ggt, kgv und anderes Das komplette Material finden Sie hier: Download bei School-Scout.de S 1 Gerecht teilen ggt,
Grundwissen Mathematik
Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den
Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. teilbar, wenn die letzte Ziffer der Zahl
6.. Schuljahr Natürliche Zahlen 1 Teilbarkeit und Primzahlen Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. Endzifferregel Eine Zahl ist durch 5 teilbar,
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Teilen leicht gemacht - Teilbarkeit, Teiler und Vielfache natürlicher Zahlen
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Teilen leicht gemacht - Teilbarkeit, Teiler und Vielfache natürlicher Zahlen Das komplette Material finden Sie hier: School-Scout.de
Kompetenztest. Wiederholung aus der 2. Klasse. Das ist Mathematik. Kompetenztest. Testen und Fördern. Wiederholung aus der 2.
Name: Klasse: Datum: 1) Ordne richtig zu. Verkauf Einnahmen Arbeiter für die Arbeit benötigte Zeit direkte Proportionalität Anzahl der Kühe Platz im Stall pro Kuh Anzahl der Pferde Zeit die der Futtervorrat
Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung
Äquivalenzrelation Tischler-Problem Euklidischer Algorithmus Erweiterter euklidischer Algorithmus Lineare diophantische Gleichung Rechnen mit Resten Restklassen Teilbarkeit in Z Beispiel einer Kongruenzgleichung
ggt (a, b, c) kgv (a, b, c) a b c d e f P w = p G G = Pw 100 p = Pw 100 a b c d
ggt (a, b) kgv (a, b) ggt (a, b, c) kgv (a, b, c) a b c d a b c d e f P w = G 00 G = Pw 00 = Pw 00 G P w = G 000 G = Pw 000 = Pw 000 G E = q A A = E q = E A ,,, 7,,, 7, 9,, 9,, 7, 4, 4, 47,, 9, 6, 67,
Erarbeitung der gemeinsamen Teiler und dem größten gemeinsamen Teiler (ggt) durch die Planung des Indiaka Turniers mit zwei Klassen.
Naturwissenschaft Stefan Wichmann Erarbeitung der gemeinsamen Teiler und dem größten gemeinsamen Teiler (ggt) durch die Planung des Indiaka Turniers mit zwei Klassen. Unterrichtsentwurf Studienseminar
Fachwissenschaftliche Grundlagen
Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen
Inhaltsverzeichnis. 1. Aufbau des Zahlensystems. 2. Die vier Grundrechenarten. 3. Teilbarkeit natürlicher Zahlen. 4. Größen
Inhaltsverzeichnis 1. Aufbau des Zahlensystems 1.1 Anordnung der natürlichen Zahlen... 3 1.2 Ordnen der natürlichen Zahlen kleiner und größer... 4 1.3 Das Dezimalsystem... 5 1.4 Runden von natürlichen
Teilbarkeitsregeln.
Teilbarkeitsregeln http://www.olympiade-mathematik.de Inhaltsverzeichnis 1 Begrie..................................................... 2 2 Einfache Regeln................................................
Tipp: Ab jetzt Taschenrechner oder Scilab einsetzen!
- Übungsblatt 02 Lösungsvorschläge Aufgabe 1 Beweisen Sie, dass 3 eine irrationale Zahl ist, also nicht durch einen Bruch dargestellt werden kann. Annahme: 3 ist eine rationale Zahl 3= m. Der Bruch soll
Wiederholung aus der 2. Klasse Lösungen
1) Ordne richtig zu. Verkauf Einnahmen Arbeiter für die Arbeit benötigte Zeit direkte Proportionalität Anzahl der Kühe Platz im Stall pro Kuh Anzahl der Pferde Zeit die der Futtervorrat reicht indirekte
Mathematik-Dossier Grundoperationen in Q Stoffsicherung und repetition.
Name: Mathematik-Dossier Grundoperationen in Q Stoffsicherung und repetition. Inhalt: Teilbarkeit von Zahlen aus N0 (Teilbarkeitsregeln, ggt, kgv) Brüche und ihre Eigenschaften Erweitern und Kürzen von
Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6
Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6 1. Bestimme jeweils die Teilermenge der folgenden Zahlen: a) 62 b) 25 c)71 d) 28 Lösungsbeispiel: T 62 = {...} (Einzelne Elemente der
10. Teilbarkeit in Ringen
70 Andreas Gathmann 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie man ein Ringelement
Bild Nummer 1: Bild Nummer 2: Seite B 1
Bild Nummer 1: Bild Nummer 2: Seite B 1 Bild Nummer 3: Bild Nummer 4: Seite B 2 Bild Nummer 5: Bild Nummer 6: Seite B 3 Bild Nummer 7: Bild Nummer 8: Seite B 4 Bild Nummer 9: Bild Nummer 10: Seite B 5
mit ganzen Zahlen 1.4 Berechnen Sie: a b c d e
1 Rechnen mit ganzen Zahlen Führen Sie die nachfolgenden Berechnungen aus: 1.1 a. 873 112 1718 157 3461 + b. 1578 9553 7218 212 4139 + 1.3 Berechnen Sie: a. 34 89 b. 67 46 c. 61 93 d. 55 11 e. 78 38 1.2
Austausch in den Tischgruppen. Mathematik in Klassenstufe 5. Die Mathematikolympiade
Elternseminar am Max-Planck-Gymnasium Mathematik in der Klassenstufe 5 Inhalte Austausch in den Tischgruppen Mathematik in Klassenstufe 5 Die Mathematik-Arbeitsgemeinschaften Die Mathematikolympiade Weitere
Diskrete Mathematik ICE SS Übungsblatt 01
Diskrete Mathematik ICE SS2019 12.03.2019 Übungsblatt 01 Aufgabe 1. Beweise durch vollständige Induktion die folgende Formel für die Summe: n n(3n 1) (3k 2) =. 2 k=1 ( ) Zusatzaufgabe. Finde die Folge
UE Zahlentheorie. Markus Fulmek
UE Zahlentheorie (Modul: Elementare Algebra (EAL)) Markus Fulmek Sommersemester 2015 Aufgabe 1: Betrachte folgende Partition der Menge r9s t1, 2, 3, 4, 5, 6, 7, 8, 9u Ă N: r9s t1, 4, 7u 9Y t2, 5, 8u 9Y
ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018
ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sport Training erfordert, erfordert Mathematik das selbständige Lösen von Übungsaufgaben. Das wesentliche an den Übungen ist das
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Teilen leicht gemacht. Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Teilen leicht gemacht Das komplette Material finden Sie hier: School-Scout.de I Zahlen und Größen Beitrag 46 Teilbarkeit, Teiler und
Grundlagen der Arithmetik und Zahlentheorie
Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend
Orientierungsmodul Oberstufe OS 1. Zahlen auf dem Zahlenstrahl darstellen und interpretieren. natürliche Zahlen bis 2 Millionen lesen und schreiben
Inhalt/ Orientierungsmodul Oberstufe O 1 Zahlendarstellung Zahlen auf dem Zahlenstrahl darstellen und interpretieren O 1 _Mathematik_71 A1, A2, A4 natürliche Zahlen bis 2 Millionen lesen und schreiben
Verlauf Material LEK Glossar Lösungen. Teilen leicht gemacht Teilbarkeit, Teiler und Vielfache natürlicher Zahlen. Ilse Gretenkord, Ahaus VORANSICHT
Reihe 20 S 1 Verlauf Material LEK Glossar Lösungen Teilen leicht gemacht Teilbarkeit, Teiler und Vielfache natürlicher Zahlen Ilse Gretenkord, Ahaus Vergnügungspark Klasse: 5/6 Dauer: Inhalt: 8 Stunden
Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg
1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung
Lambacher Schweizer. Mathematik für Gymnasien G9 Kapitel Teilbarkeit. Hessen
Lambacher Schweizer Mathematik für Gymnasien G9 Kapitel Teilbarkeit 6 Hessen bearbeitet von Edmund Herd Andreas König Reinhard Oldenburg Michael Stanzel Ernst Klett Verlag Stuttgart Leipzig Inhalt In diesem
Rechnen mit natürlichen Zahlen 2
. Rechnen mit natürlichen Zahlen L E R N - U N D A U F G A B E N P L A N Zum Gebrauch dieses Plans Hier wird kurz beschrieben, was im Unterricht gemacht wird und welche Aufgaben zu erledigen sind. Diese
Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie
FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 09.04.2015 Name: Vorname:
M2 Übungen zur 1. Schularbeit
M2 Übungen zur 1. Schularbeit 1) Schreib stellenwertrichtig untereinander und subtrahiere! Rechne auch eine Probe! a) 9,1 -, 1, - 1,2 c) -,1 2) Schreib stellenwertrichtig untereinander und berechne! a),2
Teilbarkeit. 1. Maria stellt zwei Behauptungen auf:
1. Maria stellt zwei Behauptungen auf: Teilbarkeit (a) Die Zahl 123456789 ist durch 9 teilbar. (b) Wenn man die Ziffern einer 53-stelligen Zahl, die durch 9 teilbar ist, auf irgend eine Weise vertauscht,
Elemente der Stochastik (SoSe 2016) 3. Übungsblatt
Dr. M. Weimar 18.04.016 Elemente der Stochastik (SoSe 016) 3. Übungsblatt Aufgabe 1 (1++=5 Punkte) Das nachfolgende Glücksrad wird einmal gedreht. Ferner bezeichne P eine Abbildung mit den Eigenschaften
