Übung 8: Digitale Modulationen
|
|
|
- Jens Förstner
- vor 9 Jahren
- Abrufe
Transkript
1 ZHW, NTM, 25/6, Rur ufgabe : Modulationsarten. Übung 8: Digitale Modulationen Die Datensequenz wird bei einer festen Bitrate von Mb/s mittels 3 verschiedener Modulationsarten übertragen. Charakterisieren Sie die verwendeten Verfahren und stellen Sie jeweils die Wertigkeit M der Symbole fest. a) b) c)
2 ZHW, NTM, 25/6, Rur 2 ufgabe 2: IQ-Modulator für 8PSK. Für eine 8-PSK Modulation gelte die folgende Bit-Phasen-Zuordnung: d[.] φ Weiter gilt: Signalleistung S= 2 /2, Dauer eines modulierten Symbols T s =3µs. a) Zeichnen Sie die Signalraumdarstellung der 8-PSK Modulation. b) Zeichnen Sie ein Blockdiagramm des IQ-Modulators, mit dem Sie die 8-PSK Modulation realisieren können. c) Zeichnen Sie die Eingangssignale i(t) und q(t) des IQ-Modulators, wenn die angegebene Bitfolge übertragen werden soll. Bitte beschriften Sie die chsen. i(t) q(t) d) Bitte schätzen Sie die Bandbreite B des HF-Signals ab. Hinweis: Welche Modulation wird auf dem I- und dem Q-Pfad verwendet? ufgabe 3: BER Mit welchem der beiden im Signalraumdiagramm unten dargestellten 8-wertigen Modulationsschemas erhalten Sie für ein bestimmtes S/N die bessere bzw. kleinere Bitfehlerrate BER, wenn in beiden Fällen die gleiche Symbolrate, Pulswellenform und rt der Demodulation verwendet wird? 8-QM (+ 3) 8-PSK
3 ZHW, NTM, 25/6, Rur 3 ufgabe 4: Modulationsart. Bestimmen Sie die Modulationsart. Basisband-Signal: s(t) - Modulierter Träger t ufgabe 5: IQ-Modulator für MSK. Der abgebildete IQ-Modulator wird für die MSK-Modulation der folgenden Datensequenz d[n] =,, -, -, -,, -, verwendet. Das Bitintervall T b =ms, die Bitrate f b = kbit/s. Die Trägerfrequenz f =khz. i(t) cos(2πf t) a(t) cos(2πf t+φ(t)) q(t) -sin(2πf t) a) Bestimmen Sie allgemein die IQ-Komponenten i(t) und q(t) in Funktion von a(t) und φ(t). b) Bestimmen Sie das Phasen-Trellis-Diagramm für die gegebene Datensequenz d[n]. c) Zeichnen Sie den zeitlichen Verlauf der IQ-Komponenten i(t) und q(t) auf.
4 ZHW, NTM, 25/6, Rur 4 d) Bestimmen Sie die Momentanfrequenz f(t), wenn d[n] = bzw. d[n] = -.
5 ZHW, NTM, 25/6, Rur 5 Musterlösung ufgabe a) 8-PM: Pulsamplitudenmodulation mit M = 8 (3 Bit/Symbol) b) D(B)PSK: Differential (Binary) Phase Shift Keying mit M = 2 ( Bit/Symbol) Zum Unterschied BPSK und DPSK: BPSK: DPSK: => Phase gegenüber Träger um π verschoben => Phase gegenüber Träger nicht verschoben Die Phase springt zwischen zwei NICHT. => Phase springt um π gegenüber der vorhergehenden Phase => Phase springt nicht Die Phase springt also zwischen zwei. DPSK kann wie folgt realisiert werden: T differentieller Encoder BPSK- Modulator BPSK- Demodulator T m usgang des differentiellen Encoders resultiert die Datensequenz, die BPSK-moduliert das dargestellte Signal ergibt. c) QPSK: Quadri-Phase Shift Keying mit M = 4 (2 Bit/Symbol) ufgabe 2 a) Signalraumdarstellung b) Blockdiagramm IQ-Modulator: i(t) cos(ω t) y(t) = cos(ω t+φ(t)) q(t) -sin(ω t)
6 ZHW, NTM, 25/6, Rur 6 c) Folgende Phasenwerte sind zu übertragen: 9 (), 8 (), -45 (), (). i(t) = cos(φ(t)) / 2 - q(t) = sin(φ(t)) d) uf dem I- und dem Q-Pfad wird PM mit rechteckförmigen Symbolen der Dauer T s =3 µs verwendet. Das Spektrum ist sin(x)/x-förmig mit Mittenfrequenz f und ersten Nullstellen bei f ±/T s bzw. f ± 333 khz. Die 4-dB Bandbreite B=2 /(2T s )=333 khz. Durch die ddition entstehen keine neuen Frequenzkomponenten. Es könnte uslöschungen auf Grund gegenläufiger Phase geben. Hier ist das aber nicht der Fall. ufgabe 3 Die Signalleistungen für die beiden Modulationsschemas sind gleich, denn 8-QM: S = /2+.5 (+ 3) 2 2 /2 = /2 8-PSK: S = /2 = /2 Wenn die Signalleistung S und die Rauschleistung N gleich sind, hat das Modulations schema mit der grösseren Minimaldistanz zwischen den Signalpunkten die kleinere BER. Die Minimaldistanz für 8-QM ist 2 und damit grösser als die Minimaldistanz für 8-PSK, die.665 beträgt. Mit der dargestellten 8-QM kann für ein bestimmtes S/N eine kleinere BER erzielt werden als mit der 8-PSK. Das ist nicht erstaunlich, denn die Randbedingung, dass die Signalpunkte bei 8-PSK auf einem Kreis liegen müssen, lässt keine grossen Minimaldistanzen zu.
7 ZHW, NTM, 25/6, Rur 7 ufgabe 4 Die Information steckt in der (diskreten) Momentan-Frequenz. Es handelt sich also um eine Frequenzumtastung (FSK). Es ist eine 2-wertige Modulation. Für eine wird die Frequenz f + f und für eine die Frequenz f - f gesendet. Der Modulationsindex h kann aus der Zeichnung abgelesen werden: => (f + f) T = 2.25 Perioden => (f - f) T =.75 Perioden obere Zeile minus untere Zeile: 2 f T = h =.5 Es handelt sich also um die MSK. ufgabe 5 a) a(t) cos(2πf T t+φ(t)) = a(t) cos(φ(t)) cos(2πf T t) - a(t) sin(φ(t)) sin(2πf T t) I-Komponente i(t) = a(t) cos(φ(t)) Q-Komponete q(t) = a(t) sin(φ(t)) b) Der Modulationsindex beträgt für MSK h =.5. π π/2 φ(t) t/t b c) Mit den Resultaten aus den Teilaufgaben a) und b) findet man: d) Der Frequenzhub f = f b /4 = 25 Hz. f(t) = f + f = 25 Hz wenn d[n] = und f(t) = f - f = 975 Hz wenn d[n] = -.
Abschlussprüfung Nachrichtentechnik 03. August 2015
Abschlussprüfung Nachrichtentechnik 03. August 2015 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander
Analoge Modulationsverfahren. Roland Küng, 2013
Analoge Modulationsverfahren Roland Küng, 203 Amplitudenmodulation AM m s(t) y(t) A [+m s(t)] cos(2πf 0 t) Einfache Implementation Geringe Bandbreite Is(t)I A cos(2πf 0 t) Beispiel: m0.5, s(t) cos(2πf
Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 3 (6. Mai 10. Mai 2013)
Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Nadine Herold, M.Sc. Dipl.-Inf. Stephan Posselt Tutorübung zur Vorlesung Grundlagen
Digitale Bandpass Übertragung. Roland Küng, 2009
Digitale Bandpass Übertragung Roland Küng, 2009 1 Intro: Bandpass System ADSL2 (2-256-QAM) ISDN Pulsformung 2B1Q ADSL Upstream OFDM Downstream OFDM 1 MB/s 8 MB/s 2 Basisband RF Was ändert sich? Sender
Aufgabe 1 - Pegelrechnung und LTI-Systeme
KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können
Grundlagen Informationstechnik Labor (GIT-L) IQ-Modulation
IQ-Modulation Versuchsziel: Kennen lernen von: Modulation digitaler Signale mit dem Quadraturmodulator lineare Amplitudenmodulation von Quadraturkomponenten komplexes Tiefpasssignal und reelles Bandpasssignal
Nonreturn to Zero (NRZ)
Nonreturn to Zero (NRZ) Hi 0 Hi 0 Grundlagen der Rechnernetze Physikalische Schicht 40 Multilevel Binary 0 1 0 0 1 1 0 0 0 1 1 0 0 Grundlagen der Rechnernetze Physikalische Schicht 41 Das Clocking Problem
Analoge und digitale Modulationsverfahren
Rudolf Mäusl Jürgen Göbel Analoge und digitale Modulationsverfahren Basisband und Trägermodulation Hüthig Verlag Heidelberg 1 Einleitung 1 1.1 Warum modulieren? 1 1.2 Was ist Modulation? 4 1.3 Übersicht
NTM1-Modul Schlussprüfung
ZHAW, NTM1, HS, 1 NTM1-Modul Schlussprüfung Name: 5 + 5 + 5 + 5 + 5 + 5 = 30 Punkte Vorname: 1: 2: 3: 4: 5: 6. Punkte: Note: Teilaufgaben sind möglichst unabhängig gehalten. Benutzen sie immer die Vorgaben!
Encoding und Modulation. Grundlagen der Rechnernetze Physikalische Schicht 47
Encoding und Modulation Digitale it Dt Daten auf Analogen Signalen Grundlagen der Rechnernetze Physikalische Schicht 47 Amplitude Shift Keying (ASK) Formal: Signal s(t) für Carrier Frequenz f c : Bildquelle:
Musterlösung zur Prüfung Einführung in die Nachrichtentechnik 03. August 2015
Musterlösung zur Prüfung Einführung in die Nachrichtentechnik 3. August 5 Aufgabe : Pegelrechnung und LTI-Systeme (a) (a) ( 3 6 ) mw L T = log mw = 75 dbm (a) L A = 4 db+3log(5) db = 4 db+3 ( log(3)+log(5)+log(
Digitale Bandpass Übertragung
Digitale Bandpass Übertragung Roland Küng, 2014 1 Intro: Bandpass System ADSL2 (2-256-QAM) ISDN Pulsformung 2B1Q ADSL Upstream OFDM Downstream OFDM 1 MB/s 8 MB/s 2 Repetition ASV: Mischen TX Ausgangssignal:
Vektor-Signalanalyse
Nachrichtentechnik Labor Vektor-Signalanalyse Gruppe 8:... (Autor) Tong Cha Matr.Nr.:...... - 1 - Das Inhaltsverzeichnis ist leer, da keiner der Absatzstile, die in den Informationen Dokument ausgewählt
dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]:
dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: Beispiel: Leistungsgröße P out [dbw] bei Leistungsgröße P in [dbw] und Dämpfung L [db] Leistungsgröße P out [W] Grundlagen
Lösungen 4.1 Analoge Übertragung mit PCM
J. Lindner: Informationsübertragung Lösungen Kapitel 4 Lösungen 4. Analoge Übertragung mit PCM 4. a) Blockbild einer Übertragung mit PCM: q(t) A D 8 bit linear f Amin = 8kHz q(i) digitales ˆq(i) Übertragungs-
Kommunikationstechnik B Teil 1 Einführung. Ein Blick zurück. Inhalt. Modulationsverfahren. Einführung. Amplitudenmodulation
Modulationsverfahren Kommunikationstechnik B eil Einführung Stephan Rupp Nachrichtentechnik Einführung Amplitudenmodulation Frequenzmodulation www.dhbw-stuttgart.de Kommunikationstechnik B, S. Rupp, A.
Übung 3: Fouriertransformation
ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie
M-ary Modulation & OFDM
M-ary Modulation & OFDM Communications for the Digital Era Roland Küng, 2012 1 Mehr Datenrate 2 The Game to play Distanz Funkzulassung Sendeleistung Frequenz Kanaleigenschaften Rauschzahl Bitrate Empfindlichkeit
Systeme II. Christian Schindelhauer Sommersemester Vorlesung
Systeme II Christian Schindelhauer Sommersemester 2006 5. Vorlesung 10.04.2006 [email protected] 1 Basisband und Breitband Basisband (baseband) Das digitale Signal wird direkt in Strom-
Übung 4: Physical layer and limits
Wintersemester 217/218 Rechnernetze Universität Paderborn Fachgebiet Rechnernetze Übung 4: Physical layer and limits 217-11-3 1. Basisband/Breitband Diese Aufgabe soll den Unterschied zwischen Basisband-
Die Vorbereitungsaufgaben müssen vor dem Seminartermin gelöst werden.
Nachrichtentechnisches Praktikum Versuch 2: Analoge Winkelmodulation Fachgebiet: Nachrichtentechnische Systeme Name: Matr.-Nr.: Betreuer: Datum: N T S Die Vorbereitungsaufgaben müssen vor dem Seminartermin
Leitungscodierung. Modulation , G. Hirsch. bit. Slide 1
Leitungscodierung bit Slide 1 Spektren leitungscodierter Signale bit Slide 2 Übertragungsfunktion des Cosinus- Rolloff Filters -f g f g Im Fall von NRZ ist: f g 1 2 T bit Slide 3 Augendiagramm Die nachstehenden
1 Analoge und digitale Signale
Hochfrequenztechnik II Modulationsverfahren MOD/1 1 Analoge und digitale Signale Modulationsverfahren werden benötigt, um ein vorhandenes Basisbandsignal s(t) über ein hochfrequentes Trägersignal zu übertragen.
Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB
Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Wie kommen die Bits überhaupt vom Sender zum Empfänger? (und welche Mathematik steckt dahinter) Vergleichende Einblicke in digitale Übertragungsverfahren
Übung 4: Physical layer and limits
Universität Paderborn Fachgebiet Rechnernetze Wintersemester 217/218 Rechnernetze Übung 4: Physical layer and limits 217-11-3 1. Basisband/Breitband Diese Aufgabe soll den Unterschied zwischen Basisband-
Nachrichtenübertragung
Klausur im Lehrgebiet Nachrichtenübertragung Vorlesung II und Rechenübung II - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:..............................
Unterschiede zwischen analogen und digitalen Modulationsverfahren
Unterschiede zwischen analogen und digitalen Modulationsverfahren Die Grafik zeigt oben ein analoges Übertragungssystem und darunter gezeichnet ein Digitalsystem. Die wesentlichen Unterschiede sind rot
Frequenzplanung II. 3 Zellen/Cluster. 7 Zellen/Cluster. 3 Zellen/Cluster plus 3 Sektoren/Zelle. f 2. f 1. f 3. f 1 f 1. f 2 f 2. f 5 f 6. f 4.
Frequenzplanung II f 3 f 1 f 2 f 3 f 2 f 1 f 3 f 2 f 1 f 2 f 3 f 1 f 1 f 3 f 2 3 Zellen/Cluster f 3 f 3 f 3 7 Zellen/Cluster f 2 f 4 f 5 f 1 f 3 f 2 f 3 f 2 f 6 f 7 f 4 f 5 f 3 f 7 f 1 f 6 f 5 f 2 f 2
Dazu werden so genannte Modulationstechniken verschiedenster Art angewandt.
5. Modulation Für die Uebertragung eines Nutzsignals über Leitungen oder durch die Luft muss das informationstragende Signal, das Nutzsignal, an die Eigenschaften des Uebertragungswegs angepasst werden.
Grundlagen der Rechnernetze. Physikalische Schicht
Grundlagen der Rechnernetze Physikalische Schicht Übersicht Frequenz, Spektrum und Bandbreite Kanalkapazität Encoding und Modulation Beispiele für Übertragungsmedien Grundlagen der Rechnernetze Physikalische
Übungen zur Nachrichtenübertragung
Karl-Dirk Kammeyer Peter Kienner Mark Petermann Übungen zur Nachrichtenübertragung Übungs- und Aufgabenbuch Mit 107 Abbildungen und 15 Tabellen STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis I Signale und
Modemsignale am Beispiel einer Faxübertragung
Nachrichtentechnik Labor Modemsignale am Beispiel einer Faxübertragung Gruppe 8:... Matr.Nr.:... (Autor) Tong Cha Matr.Nr.:...... Matr.Nr.: - 1 - Das Inhaltsverzeichnis ist leer, da keiner der Absatzstile,
Sender / Empfänger. P&S Amateurfunkkurs HS Marco Zahner Institute of Electromagnetic Fields (IEF) ETH Zürich
P&S Amateurfunkkurs HS 2016 Sender / Empfänger Marco Zahner ([email protected]) Marco Zahner [email protected] 08.12.2016 1 HB9: Selbstbau Erlaubt! Marco Zahner [email protected] 08.12.2016 2 Prinzip NF HF NF
Digi-Mode Verfahren Einsatz Klang
Digi-Mode Verfahren Einsatz Klang (B)PSK-31 (B)PSK-1000 Phasenumtastung, ab 31,25 Baud und schneller mit größerer Bandbreite PSK-31: beliebter Ersatz für RTTY PSK-63: QSO per Tastatur vibrierender Einzelton
DSP-Modems für das DSP56002EVM. Workshop zum 12. Internationalen Packet Radio-Treff am 20./21. April 1996
DSP-Modems für das DSP56002EVM Workshop zum 12. Internationalen Packet Radio-Treff am 20./21. April 1996 Jürgen Hasch, D1SCR@DB0RBS 1 Das DSP56002EVM Bis vor ein paar Jahren mußte man noch recht tief in
ZHW, NTM, 2005/06, Rur 1. Übung 6: Funkkanal
ZHW, NTM, 2005/06, Rur 1 Aufgabe 1: Strahlungsdiagramme. Übung 6: Funkkanal Gegeben sind die Strahlungsdiagramme des (λ/2-) Dipols und des (λ/4-) Monopols (Stabantenne auf einer Grundfläche). Welche Antenne
PSK31 Eine neue Art des Fernschreibens. Wasserfalldiagramm PSK31 auf 7,0375 MHz in LSB
PSK31 Eine neue Art des Fernschreibens Wasserfalldiagramm PSK31 auf 7,0375 MHz in LSB PSK31 eine neue Art des Fernschreibens Inhalt: -Was heißt PSK? -Was ist Phasenumschaltung? -Beispiele zur Phasenumschaltung
Digi-Mode Verfahren Einsatz Klang
Digi-Mode Verfahren Einsatz Klang Contestia 40 Formate: Varianten mit 2-256 Tönen Bandbreite von 125-2000 Hz wie Olivia, aber mit doppelter Geschwindigkeit schnelle Tonfolgen recht unempfindlich gegen
Kapitel 8 QPSK, MSK, OFDM & Co
ZHAW, NTM1, HS2010, 8-1 Kapitel 8 QPSK, MSK, OFDM & Co Inhaltsverzeichnis 8.1 ÜBERBLICK... 2 8.2 QUADRATUR PHASE SHIFT KEYING (QPSK)... 3 8.3 MINIMUM SHIFT KEYING (MSK)... 8 8.4 HÖHERWERTIGE MODULATIONEN
A3.1: Ortskurve bei Phasenmodulation
Abschnitt: 3.1 Phasenmodulation (PM) A3.1: Ortskurve bei Phasenmodulation Die Grafik zeigt Ortskurven am Ausgang zweier Modulatoren M 1 und M 2. Real- und Imaginärteil sind in dieser Grafik jeweils auf
Zellengröße von z.b 100 m (Stadt) bis 35 km (ländliches Gebiet) bei GSM (auch kleiner bei höheren Frequenzen)
Zellenstruktur Realisierung des Raummultiplex: Basisstationen decken jeweils gewissen räumlichen Bereich (Zelle) ab Mobilstationen kommunizieren ausschließlich über Basisstationen Vorteile der Zellenstruktur:
FM PM FSK BPSK FDM PSK GMSK OFDM ASK 64-QAM AFSK. Analoge und digitale Modulationsarten im Amateurfunk
BPSK FM PM FSK ASK AM FDM PSK GMSK OFDM 64-QAM AFSK 1 von 28 Vortrag zur UKW-Tagung 2010 DL7MAJ - 09/2010 Die Amplitudenmodulation - AM u 0 (t) = A ( 1 + m cos(ϖ Μ t)) cos(ϖ Τ t) m = Modulationsgrad 0...
Modulationsverfahren
Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:
Nachrichtenübertragung
Nachrichtenübertragung (Vorlesung I + II und Rechenübung I + II) - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:...........................
Nachrichtenübertragung
Nachrichtenübertragung (Vorlesung I + II und Rechenübung I + II) - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:...........................
PSK-31 Modulation. DJ4FQ OV München-Süd (C18)
PSK-31 Modulation Vortrag und Einführung von DJ4FQ OV München-Süd (C18) Was ist PSK31? zuerst SP9VRC, Durchbruch : Peter G3PLX betrieblich vergleichbar TTY geeignet für QSO von Tastatur zu Tastatur Schrittgeschwindigkeit
Grundlagen der Nachrichtentechnik
Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.
Lösungsblatt 2 Signalverarbeitung und Klassifikation
Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber ([email protected]) S. Nguyen ([email protected]) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung
Nachrichtenübertragung
Nachrichtenübertragung (Vorlesung I + II und Rechenübung I + II) - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:............................... Matr.Nr:...........................
d 1 P N G A L S2 d 2
Abschlussprüfung Nachrichtentechnik 28. Juli 2014 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander
Grundlagen der Nachrichtentechnik
Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.
Kommunikation über Funk
Peter Hatzold Kommunikation über Funk Methoden und Meßtechnik digitaler Nachrichtenübermittlung PAM-Zeitmultiplex Quantisierung Synchronisationsprobleme Funkkanaleigenschaften Messungen an digital modulierten
Kanalkapazität. Gestörter Kanal. Grundlagen der Rechnernetze Physikalische Schicht 25
Kanalkapazität Gestörter Kanal Grundlagen der Rechnernetze Physikalische Schicht 25 Signalstärken und Dämpfung Spannung U, Strom I, Leistung P und Energie E: Dämpfung Signalstärke Distanz Grundlagen der
Vorlesung Grundlagen der Videotechnik. Vorlesung 8 QAM, ESB, FM
Vorlesung Grundlagen der Videotechnik Vorlesung 8 QAM, ESB, FM 1 8.1 Quadratur Amplituden Modulation Lösung des Problems mit dem Träger der AM: AM mit unterdrücktem Träger: s(t ) sin(ω T t) Empfänger muss
Übung 4. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer
Übung 4 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer Technische Universität München Fakultät für Informatik 09.05.2016 / 10.05.2016 1/12
Modulator. Digitales Signal(t) Modulationsarten: - Amplitudenmoulation, Frequenzmodulation, Phasenmodulation, hybride Verfahren...
8. Modulation Eine Form der Signaldimensionierung. Rechtecksignale haben ein sehr breites Spektrum. Das digitale Signal soll deshalb nicht direkt und ungefiltert auf die Leitung. Digital anfallende Information
Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:
ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750
Signale und Systeme II
TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Wintersemester 204/205 Signale und Systeme II Übungsaufgaben Übung Datum Themen Aufgaben
Labor Informationstechnik FSK
Labor Informationstechnik Prof. Dr. Ing. Lilia Lajmi Dipl. Ing. Irina Ikkert FSK Gruppennummer: eilnehmer: Name Vorname Matrikelnummer 1 2 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel
Kapitel 4 Leitungscodierung
Kapitel 4 Leitungscodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv
Digi-Mode Verfahren Einsatz Klang
Digi-Mode Verfahren Einsatz Klang (B)PSK-31 (B)PSK-1000 Phasenumtastung, ab 31,25 Baud und schneller mit größerer Bandbreite PSK-31: beliebter Ersatz für RTTY PSK-63: QSO per Tastatur vibrierender Einzelton
Einführung in die Nachrichtenübertragung
Klausur Einführung in die Nachrichtenübertragung Vorlesung und Rechenübung - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:................................... Matr.Nr:..........................
Praktikum 6: PSK Empfang & Sync
ZHAW, NTM1, HS2008, 1(10) Praktikum 6: PSK Empfang & Sync 1. Ziele BPSK und QPSK sind weit verbreitete und robuste Modulationen mit sehr guter BER Performance. Anwendungen im Satellitenfunk, ZigBee Funkknoten,
Systeme II 8. Die physikalische Schicht (Teil 4)
Systeme II 8. Die physikalische Schicht (Teil 4) Thomas Janson, Kristof Van Laerhoven*, Christian Ortolf Folien: Christian Schindelhauer Technische Fakultät : Rechnernetze und Telematik, *: Eingebettete
Puls-Code-Modulation. Thema: PCM. Ziele
Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden
P5: Digitale Modulation. Praxis
P5: Digitale Modulation Praxis Chair for Communications Prof. Dr.-Ing. Werner Rosenkranz 1 Einleitung 2 2 Theorie 4 2.1 Digitale Bandpassübertragung... 4 2.2 IQ-Modulator... 5 2.3 Oszilloskop... 6 3 TIMS
Grundlagen der Signalverarbeitung
Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:
Optische SNR Messung an modulierten Signalen. Optische Spektralanalyse Jörg Latzel Februar 2009
Optische SNR Messung an modulierten Signalen Optische Spektralanalyse Jörg Latzel Februar 2009 Wir beschäftigen uns im Folgenden mit Optische SNR Messung Standard Modulationen (RZ/NRZ) Neue Modulationen
Nachrichtenübertragung
Nachrichtenübertragung (Vorlesung I + II und Rechenübung I + II) - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:............................... Matr.Nr:...........................
Kanalkapazität. Grundlagen der Rechnernetze Physikalische Schicht 25
Kanalkapazität Gestörter t Kanal Grundlagen der Rechnernetze Physikalische Schicht 25 Signalstärken und Dämpfung Spannung U, Strom I, Leistung P und Energie E: Dämpfung Signalstärk ke Distanz Grundlagen
Die Weiterentwicklung von AMTOR über PACTOR-1, -2 und -3 ist nun bei PACTOR-4 angekommen HB9AUR * SWISS-ARTG GV 2011 *
Die Weiterentwicklung von AMTOR über PACTOR-1, -2 und -3 ist nun bei PACTOR-4 angekommen MUSEUM in RAPPERSWIL mit RTTY-Lochstreifen! SITOR: SImplex Telex Over Radio Entwickelt in den 60-/70er Jahren als
Labor Informationsübertragung FSK
Labor Informationsübertragung Prof. Dr. Ing. Lilia Lajmi Dipl. Ing. Irina Ikkert FSK Gruppennummer: eilnehmer: Name Vorname Matrikelnummer 1 2 Ostfalia Hochschule für angewandte Wissenschaften Hochschule
ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.
ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale
Sender- / Empfängerarchitekturen. Roland Küng, 2010
Sender- / Epfängerarchitekturen Roland Küng, 2010 1 Sender (TX) und Epfänger (RX) RF-Band wird genutzt u ehr Bandbreite zu haben und u sich an den Übertragungskanal anzupassen Moderne Sender Epfänger bestehen
Lösungsblatt 2 Signalverarbeitung
Fakultät für nformatik Übung zu Kognitive Systeme Sommersemester 208 S. Constantin ([email protected]) T. Nguyen ([email protected]) Lösungsblatt 2 Signalverarbeitung Aufgabe : Faltung Abbildung
Serie 5 Musterlösung
Serie 5 Musterlösung Lineare Algebra www.adams-science.org Klasse: 1Ea, 1Eb, 1Sb Datum: HS 17 1. Winkelfrequenz, Periodendauer 5IYBKE Berechnen Sie die fehlenden Grössen. (a) T = 4π (b) ω = (c) T = π/
Serie 12 Musterlösung
Serie 2 Musterlösung ineare Algebra www.adams-science.org Klasse: Ea, Eb, Sb Datum: HS 7 In dieser Serie werden alle echnungen in der Basis und in SI-Einheiten durchgeführt. e ˆ cos(ω t) und e 2 ˆ sin(ω
Aufgabensammlung Modulationsverfahren Seite 2
Aufgabensammlung Modulationsverfahren Seite 2 Aufgabe 1 Berechnen Sie die Hilberttransformierten ˆf(t) der folgenden Funktionen. { 1.1 Rechteckimpuls: f 1 (t) = 1 für t T 2 1.2.1 Exponentialschwingung:
Kapitel 5: Analoge Modulationsverfahren
ZHAW, NTM1, FS2008, 5-1 Kapitel 5: Analoge Modulationsverfahren Inhaltsverzeichnis 5.1. EINLEITUNG... 2 5.2. AMPLITUDENMODULATION... 3 5.2.1. FREQUENZTRANSLATION DURCH MISCHUNG... 3 5.2.2. KLASSISCHE AM
IQ-Daten erfassen mit NRA und IDA
Narda Remote Spectrum Analyzer, NRA Series Interference and Direction Analyzer, IDA Series Technical Note TN101 IQ-Daten erfassen mit NRA und IDA Ein kurzer theoretischer Abriss mit praktischen Beispielen
Signalraumdarstellung der linearen Modulation (1)
Signalraumdarstellung der linearen Modulation (1) Im bisherigen Kapitel 4 wurde die Struktur des optimalen Empfängers und die Signaldarstellung mittels Basisfunktionen am Beispiel der Basisbandübertragung
A1/Ü5: Die Aufgabe 1 von Übungsblatt 5 wird von jedem Studenten im Selbststudium erarbeitet.
Wirtschaftsingenieurwesen Grundlagen der Elektronik und Schaltungstechnik Prof. Dr. Ing. Hoffmann Übung 5 Operationsverstärker Übungstermin 21.06.2018 A1/Ü5: Die Aufgabe 1 von Übungsblatt 5 wird von jedem
Labor für Informationsübertragung. Quadratur-Amplitudenmodulation
Labor für Informationsübertragung Prof. Dr.-Ing. Lilia Lajmi Dipl.-Ing. Irina Ikkert Gruppennummer: Teilnehmer Name Vorname Matrikelnummer 1 2 3 Ostfalia Hochschule für angewandte Wissenschaften Hochschule
Übung zu Drahtlose Kommunikation. 6. Übung
Übung zu Drahtlose Kommunikation 6. Übung 26.11.2012 Aufgabe 1 (Multiplexverfahren) Erläutern Sie mit wenigen Worten die einzelnen Multiplexverfahren und nennen Sie jeweils ein Einsatzgebiet/-möglichkeit,
Übung 6: Analyse LTD-Systeme
ZHAW, DSV, FS2009, Übung 6: Analyse LTD-Systeme Aufgabe : Pol-Nullstellendarstellung, UTF und Differenzengleichung. Die folgenden Pol-Nullstellen-Darstellungen charakterisieren verschiedene LTD- Systeme,
