Klassifikation. Franz Pernkopf

Größe: px
Ab Seite anzeigen:

Download "Klassifikation. Franz Pernkopf"

Transkript

1 Klassifikation Franz Pernkopf Institute of Communications and Wave Propagation University of Technology Graz Inffeldgasse 16c, 8010 Graz, Austria Tel:

2 Ziel: Allgemeine Grundlagen zur Klassifikation AUTOMATISCHE Mustererkennung Entwicklung von Maschinen, die neue Objekte anhand ihrer Merkmale zu bekannten Klassen zuordnen können Attribute können qualitiativ oder quantitativ, kontinuierlich, diskret oder Bool sche Variable sein Merkmalsvektor: Statistisch Mustererkennung: Merkmale bestimmen, auftragen im Merkmalsraum, statistische Methoden zur Bestimmung von Trennflächen Beispiel: Klassifikation von Fehlern auf Lagerbolzen (5 Klassen)

3 Beispiel Beispiel: 5 Klassen von Fehlern Class 1: Material flaw (a) Class 2: Grinding flaw (b) Class 3: Scratch (c) Class 4: Chafe mark (d) Class 5: Spot (e) Gesamtsystem: Sensoren: Camera Vorverarbeitung (Filter) Segmentierung Merkmalsextraktor Entscheidungsmodul (Klassifikator) Ausgabemodul

4 Beispiel Extrahierte Merkmale

5 Merkmalsraum Objekte gleicher Klasse sollen im Merkmalsraum Cluster bilden. Probleme in der Übergangszone: RÜCKWEISUNGSKLASSE Oder: weitere Messungen einführen (z. B. Farbe) Jedes Objekt entspricht einem Punkt im Merkmalsraum > 3 Meßgrößen: Visualisierung nicht mehr möglich Dimension im Merkmalsraum: Raum, der von den einzelnen Meßwerten aufgespannt wird - hochdimensional (z. B. Lagerbolzen - 52 Dimensionen im Musterraum) Durch Kombination und Auswahl der Meßwerte: Reduktion der Dimension MERKMALSSELEKTION Meßwerte und Features werden so gewählt, dass zwischen den Klassen unterschieden werden kann. Distanz zu jedem Objekt derselben Klasse < Distanz zum nächsten Nachbarn jeder anderen Klasse Cluster sind leider selten kompakt

6 Merkmalsraum

7 Merkmalsraum

8 Klassen sind bekannt Überwachte Klassifikation Klassifikator wird durch LERNEN auf diese Klassen eingestellt Trainingsdaten sind Datenvektoren mit bekannter Klasseninformation sollen Struktur und Eigenschaften der gesamten Daten möglichst gut beschreiben Vorgangsweise: Trainingsdatensatz erstellen Trainingsdatensatz analysieren Klassifikator auswählen Klassifikator trainieren Genauigkeitsabschätzung Klassifikator ist einsatzbereit

9 Überwachte Statistische Klassifikation Notation: Merkmalvektoren Klassen Anzahl der Klassen Klassifikationsprozeß Entscheidungsfunktionen wobei bezüglich entscheidet Entscheidungsfunktion: maximale Aktivierung minimale Aktivierung

10 Bayes Klassifikator Minimierung der Fehlklassifikationen Entscheidungsfunktion Klassifikator liefert immer optimale Entscheidung ABER: nicht bekannt Satz von Bayes: damit ergibt sich die Entscheidungsfunktion Bayes Klassifikator wird anwendbar, wenn durch Modell geschätzt wird

11 Bayes Klassifikator

12 Maximum Likelihood Annahme: Wahrscheinlichkeitsdichte jeder Klasse ist eine multivariate Normalverteilung Abschätzung der bedingten Wahrscheinlichkeit für jede Klasse Abschätztung der a-priori Klassenwahrscheinlichkeit

13 Maximum Likelihood Entscheidungsfunktion (log-likelihood):

14 Schätzung der Verteilungsparameter (MLE) Gegeben: Die parametrische Struktur der Verteilungsdichten eine etikettierte Lernstichprobe Gesucht: Parameter und der Verteilungsdichten aus den Lerndaten: Form der Kovarianz-Matrix:

15 Iso-likelihood lines for the Gaussian pdf

16 Parametric Classifier Discriminant function: Case 1 (Minimum distance classifier) Assumption: Kovarianzmatrix aller Klassen sind gleich. Die Komponenten sind voneinander unabhängig und haben gleiche Varianz Discriminant function: weitere Vereinfachung: Verzicht auf a priori Wahrscheinlichkeit

17 Parametric Classifier Case 2 (Mahalanobis distance classifier) Assumption: Kovarianzmatrix aller Klassen ist gleich Discriminant function:

18 Parametric Classifier Case 3 (Covariance matrices are arbitrary)

19 Nichtparametrische Klassifikation Probleme beim Bayes Ansatz: Entscheidungsregeln nicht immer einfach Komplizierte Berechnung für nicht normalverteilte Parametrisierung Aufgrund der Minimierung der Fehlklassifikationen: Klassen mit geringer a priori Wahrscheinlichkeit haben wenig Einfluß aufs Design A priori Wahrscheinlichkeit ist schwer abzuschätzen Nearest Neighbor Klassifikator Ein Prototyp pro Klasse speichern, Distanz zu allen Prototypen bestimmen: Minimum Distanz Klassifikator Viele Prototypen pro Klasse speichern - Chancen für richtige Klasse steigen 1-NN Verbesserung entlang der Klassengrenzen: k nächste Nachbarn bestimmen und Mehrheit auswählen k-nn Klassifikator

20 k-nn Klassifikator Trainingsphase schnell - auswählen und speichern der Prototypen Klassifikation sehr rechenaufwendig - Vergleich mit allen Prototypen

21 k-nn Klassifikator mit Rückweisungsklasse 2-stufiger Schwellwert: (k,l) Methode: Mindestens l von k Nachbarn müssen dieselbe Entscheidung liefern, ansonsten wird das Objekt zurückgewiesen. ideal: Unendliche # von Prototypen aber: benötigt zuviel Speicherplatz und Rechenzeit Abhilfe: innere Prototypen sind redundant nur Prototypen entlang der Grenzen speichern

22 Vergleich der Klassifikatoren

23 Vergleich der Klassifikatoren

24 Vergleich der Klassifikatoren

25 Vergleich der Klassifikatoren

26 Warum? Methoden: aus den Lerndaten Holdout/Cross-Validation Leave one Out Genauigkeitsabschätzung n-fold Cross-Validation Genauigkeitsabschätzung aus den Lerndaten Fehlklassifikationstabelle: (optimistische Schätzung) Qualitätsbeurteilung Klassifikatorauswahl

27 Holdout/Cross-Validation Genauigkeitsabschätzung Aufteilung der Referenzdaten in Lerndatenset und Validationsdatenset (zufällige Auswahl!) Fehlerschätzung am Validationsdatenset Nachteil: nicht alle Referenzdaten werden zum Training verwendet liefert pessimistische Schätzung Leave-one-out p Referenzdaten aufspalten in p 1 Lerndaten und 1 Validationsdatum Klassifikatordesign für alle p Partitionen (p mal Lernen!) Fehlerschätzung durch Mittelwert über alle Validationsdaten wird vor allem bei kleinen Referenzdatensätzen verwendet

28 n-fold Cross-Validation Genauigkeitsabschätzung Aufteilung der Referenzdaten in n Teile, n 1 Teile als Lerndaten und 1 Teil als Validationsdaten Klassifikatordesign für alle n Partitionen (n-mal Lernen!) Qualitätsbeurteilung durch Mittelung über alle Validationsergebnisse Tatsächliches Design meist unter Verwendung aller Referenzdaten

29 Genauigkeitsabschätzung: n-fold Cross-Validation Evaluating the performance of a classifier: n-fold cross validation Partition the data set in n segments Do n times Train the classifier with the green segments Test accuracy on the red segments Compute statistics on the n runs Mean squared error Variance D 1 D 2 D 3 D n Run 1 Run 2 Run 3 Run n Data set

30 Unüberwachtes Lernen (Klassifikation) Unüberwachtes Lernen ist der Versuch, Strukturen in einer Menge von Beobachtungen ohne gegeben Klassenzuordnung (Unlabeled Samples) zu finden. Anwendungsgebiete: Datenreduktion durch Vektorquantisierung Klassenmodellierung mit Mischverteilungen (Mixtures of Gaussians) Wieviele Klassen kommen in den Daten vor? Wo liegen die Cluster?

31 Unüberwachtes Lernen: Vektorquantisierung

32 Unüberwachtes Lernen: Vektorquantisierung K

33 Unüberwachtes Lernen: Vektorquantisierung Bedingungen für das Kodebuch und die Zellenstruktur des minimal verzerrenden Quantisierers:

34 Unüberwachtes Lernen: Clustering Vorgangsweise: 1) Startwerte für Klassenzentren wählen (Anzahl der Cluster definieren), 2) Zuweisen eines Objektes zum nächsten Klassenzentrum (z.b.: Euklidischer Abstand), 3) Aufgrund der zugewiesenen Punkt Klassenzentren neu berechnen, 4) Zurück zu 2) solange bis Klassenzentren konstant bleiben. Algorithmen: k-means Clustering (Kriterium: Least Squared Distance) Expectation-Maximization (EM) Algorithmus (Kriterium: Maximum Likelihood)

35 Unüberwachtes Lernen: Clustering

36 Unüberwachtes Lernen: Clustering/EM

37 Unüberwachtes Lernen: Clustering/EM

38 Unüberwachtes Lernen: Clustering/EM

39 Gaussian Mixture Models Zur Modellierung von nicht uni-modalen Verteilungen Gaussian Mixture = Summe mehrerer Gauss-Verteilungen

40 Gaussian Mixture Models i i

41 Feature Selection Reduction of the number of features to a set of a few significant ones which optimize the classification performance. Basic steps of a genetic algorithm for automatic selection of the best features: 1. A generation procedure to generate the next subset of features X. 2. An evaluation criterion J to evaluate the quality of X. 3. A stopping criterion for concluding the search. In can either be based on the generation procedure or on the evaluation function. 4. A validation procedure for verifying the validity of the selected subset

42 Feature Selection: Merkmalraumtransformation Reduktion der Vektordimension Geringerer Klassifikationsaufwand Robustere Schätzung statistischer Parameter Gütekriterien für die Transformation: Varianzmaximierung Hauptkomponentenanalyse (PCA, Karhunen-Loève Transform) Klassenseparation Lineare Diskriminanzanalyse (LDA)

43 Feature Selection: Normierung der Merkmale Kompensieren unterschiedlicher Bereiche von Merkmalen. Um im Merkmalsraum Distanzmaße zum Klassifizieren verwenden zu können Musterraum Mittelwert für jede Spalte Standardabweichung für jede Spalte

44 Feature Selection: Normierung der Merkmale Mean absolute deviation (Einfluss von Outliern wird unterdrückt) Normierung:

45 Feature Selection: Hauptkomponentenanalyse 2 Dimensionen: 54 Dimensionen: Transformierte Daten Eigenwerte

46 Feature Selection: Linear Discriminant Analysis (LDA) LDA finds a linear projection on to the subspace spanned by the m largest eigenvectors of S w -1 S b 2 Class A 1 Class B 1 2 f 1 x 2 f 2 PCA x 1 Optimal for m+1 linear separable classes c

47 Feature Selection: Limitations of LDA Suboptimal for more than m+1 classes (m is the number of extracted features) Classes should be linear separable optimal decision boundary suboptimal decision boundary optimal decision boundaries Class A Class A f 1 f optimal suboptimal decision boundary f optimal Class B Class B Class C f

48 Referenzen R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis. Wiley&Sons, Inc., R. Bolter, Bildverarbeitung und Mustererkennung, Vorlesung ICG Graz, S. Bengio, An Introduction to Statistical Machine Learning EM for GMMs, Dalle Molle Institute for Perceptual Artificial Intelligence. E.G. Schukat-Talamazzini, Automatische Spracherkennung, Vieweg-Verlag, F. Pernkopf, Automatic Visual Inspection of Metallic Surfaces, PhD Thesis, Leoben C.R. Houck, J.A. Joines, G.M. Kay, A Genetic Algorithm for Function Optimization: A Matlab Implementation, North Carolina State University. M. Obikito, Introduction to Genetic Algorithms, Hochschule für Technik und Wirtschaft Dresden,

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle Mustererkennung Unüberwachtes Lernen R. Neubecker, WS 01 / 01 Übersicht (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren 1 Lernen Überwachtes Lernen Zum Training des Klassifikators

Mehr

Vorlesung Digitale Bildverarbeitung Sommersemester 2013

Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Vorlesung Digitale Bildverarbeitung Sommersemester 2013 Sebastian Houben (Marc Schlipsing) Institut für Neuroinformatik Inhalt Crash-Course in Machine Learning Klassifikationsverfahren Grundsätzliches

Mehr

Übungen zur Vorlesung Grundlagen der Bilderzeugung und Bildanalyse (Mustererkennung) WS 05/06. Musterlösung 11

Übungen zur Vorlesung Grundlagen der Bilderzeugung und Bildanalyse (Mustererkennung) WS 05/06. Musterlösung 11 ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG INSTITUT FÜR INFORMATIK Lehrstuhl für Mustererkennung und Bildverarbeitung Prof. Dr.-Ing. Hans Burkhardt Georges-Köhler-Allee Geb. 05, Zi 0-09 D-790 Freiburg Tel. 076-03

Mehr

Methoden zur Cluster - Analyse

Methoden zur Cluster - Analyse Kapitel 4 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator Überblick Grundlagen Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

k-nächste-nachbarn-schätzung

k-nächste-nachbarn-schätzung k-nächste-nachbarn-schätzung Mustererkennung und Klassifikation, Vorlesung No. 7 1 M. O. Franz 29.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Lineare Klassifikatoren

Lineare Klassifikatoren Lineare Klassifikatoren Mustererkennung und Klassifikation, Vorlesung No. 8 1 M. O. Franz 06.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht 1 Nächste-Nachbarn-

Mehr

Mustererkennung. Bayes-Klassifikator. R. Neubecker, WS 2016 / Bayes-Klassifikator

Mustererkennung. Bayes-Klassifikator. R. Neubecker, WS 2016 / Bayes-Klassifikator Mustererkennung Bayes-Klassifikator R. Neubecker, WS 2016 / 2017 Bayes-Klassifikator 2 Kontext Ziel: Optimaler Klassifikator ( = minimaler Klassifikationsfehler), basierend auf Wahrscheinlichkeitsverteilungen

Mehr

Inhaltliche Planung für die Vorlesung

Inhaltliche Planung für die Vorlesung Vorlesung: Künstliche Intelligenz - Mustererkennung - P LS ES S ST ME Künstliche Intelligenz Miao Wang 1 Inhaltliche Planung für die Vorlesung 1) Definition und Geschichte der KI, PROLOG 2) Expertensysteme

Mehr

Klassifikation und Ähnlichkeitssuche

Klassifikation und Ähnlichkeitssuche Klassifikation und Ähnlichkeitssuche Vorlesung XIII Allgemeines Ziel Rationale Zusammenfassung von Molekülen in Gruppen auf der Basis bestimmter Eigenschaften Auswahl von repräsentativen Molekülen Strukturell

Mehr

Lineare Methoden zur Klassifizierung

Lineare Methoden zur Klassifizierung Lineare Methoden zur Klassifizierung Kapitel 3 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität

Mehr

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3

1 Einleitung Definitionen, Begriffe Grundsätzliche Vorgehensweise... 3 Inhaltsverzeichnis 1 Einleitung 1 1.1 Definitionen, Begriffe........................... 1 1.2 Grundsätzliche Vorgehensweise.................... 3 2 Intuitive Klassifikation 6 2.1 Abstandsmessung zur Klassifikation..................

Mehr

Wenn PCA in der Gesichtserkennung eingesetzt wird heißen die Eigenvektoren oft: Eigenfaces

Wenn PCA in der Gesichtserkennung eingesetzt wird heißen die Eigenvektoren oft: Eigenfaces EFME-Zusammenfassusng WS11 Kurze Fragen: Wenn PCA in der Gesichtserkennung eingesetzt wird heißen die Eigenvektoren oft: Eigenfaces Unter welcher Bedingung konvergiert der Online Perceptron Algorithmus?

Mehr

1 Diskriminanzanalyse

1 Diskriminanzanalyse Multivariate Lineare Modelle SS 2008 1 Diskriminanzanalyse 1. Entscheidungstheorie 2. DA für normalverteilte Merkmale 3. DA nach Fisher 1 Problemstellungen Jedes Subjekt kann einer von g Gruppen angehören

Mehr

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation

Kapitel 4: Data Mining DATABASE SYSTEMS GROUP. Überblick. 4.1 Einleitung. 4.2 Clustering. 4.3 Klassifikation Überblick 4.1 Einleitung 4.2 Clustering 4.3 Klassifikation 1 Klassifikationsproblem Gegeben: eine Menge O D von Objekten o = (o 1,..., o d ) O mit Attributen A i, 1 i d eine Menge von Klassen C = {c 1,...,c

Mehr

1. Referenzpunkt Transformation

1. Referenzpunkt Transformation 2.3 Featurereduktion Idee: Anstatt Features einfach wegzulassen, generiere einen neuen niedrigdimensionalen Featureraum aus allen Features: Redundante Features können zusammengefasst werden Irrelevantere

Mehr

EFME Aufsätze ( Wörter) Der Aufbau von Entscheidungsbäumen...1

EFME Aufsätze ( Wörter) Der Aufbau von Entscheidungsbäumen...1 EFME Aufsätze (150 200 Wörter) Der Aufbau von Entscheidungsbäumen...1 PCA in der Gesichtserkennung... 2 Bias, Varianz und Generalisierungsfähigkeit... 3 Parametrische und nicht-parametrische Lernverfahren:

Mehr

Mustererkennung und Klassifikation

Mustererkennung und Klassifikation Mustererkennung und Klassifikation WS 2007/2008 Fakultät Informatik Technische Informatik Prof. Dr. Matthias Franz mfranz@htwg-konstanz.de www-home.htwg-konstanz.de/~mfranz/heim.html Grundlagen Überblick

Mehr

Maschinelles Lernen und Data Mining

Maschinelles Lernen und Data Mining Semestralklausur zur Vorlesung Maschinelles Lernen und Data Mining Prof. J. Fürnkranz / Dr. G. Grieser Technische Universität Darmstadt Wintersemester 2004/05 Termin: 14. 2. 2005 Name: Vorname: Matrikelnummer:

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 3: Lineares Modell, Klassifikation, PCA Randolf Altmeyer January 9, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Einführung in das Maschinelle Lernen I

Einführung in das Maschinelle Lernen I Einführung in das Maschinelle Lernen I Vorlesung Computerlinguistische Techniken Alexander Koller 26. Januar 2015 Maschinelles Lernen Maschinelles Lernen (Machine Learning): äußerst aktiver und für CL

Mehr

Einführung in Support Vector Machines (SVMs)

Einführung in Support Vector Machines (SVMs) Einführung in (SVM) Januar 31, 2011 Einführung in (SVMs) Table of contents Motivation Einführung in (SVMs) Outline Motivation Vektorrepräsentation Klassifikation Motivation Einführung in (SVMs) Vektorrepräsentation

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 3 Maschinelles Lernen und Klassifikation

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 3 Maschinelles Lernen und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt 3 Maschinelles Lernen und Klassifikation Aufgabe : Zufallsexperiment

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Spracherkennung gestern und morgen - 2 - Ziel Klassifikation von Signalen, Mustererkennung z.b. Sprache, Gestik, Handschrift, EKG, Verkehrssituationen, Sensor Signal Klasse 1 Klasse 2 Klasse n Vorverarbeitung:

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 13. Juli 2011 Ziel der Vorlesung Vermittlung von Grundkenntnissen der Statistik, Simulationstechnik und numerischen Methoden (Algorithmen) Aufgabe:

Mehr

Feature Selection / Preprocessing

Feature Selection / Preprocessing 1 Feature Selection / Preprocessing 2 Was ist Feature Selection? 3 Warum Feature Selection? Mehr Variablen führen nicht automatisch zu besseren Ergebnissen. Lernen von unwichtigen Daten Mehr Daten notwendig

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II

Eine Einführung in R: Hochdimensionale Daten: n << p Teil II Eine Einführung in R: Hochdimensionale Daten: n

Mehr

Hypothesenbewertungen: Übersicht

Hypothesenbewertungen: Übersicht Hypothesenbewertungen: Übersicht Wie kann man Fehler einer Hypothese abschätzen? Wie kann man einschätzen, ob ein Algorithmus besser ist als ein anderer? Trainingsfehler, wirklicher Fehler Kreuzvalidierung

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn

Ideen und Konzepte der Informatik. Maschinelles Lernen. Kurt Mehlhorn Ideen und Konzepte der Informatik Maschinelles Lernen Kurt Mehlhorn Übersicht Lernen: Begriff Beispiele für den Stand der Kunst Spamerkennung Handschriftenerkennung mit und ohne Trainingsdaten Gesichts-

Mehr

Multivariate Verfahren

Multivariate Verfahren Multivariate Verfahren Oliver Muthmann 31. Mai 2007 Gliederung 1 Einführung 2 Varianzanalyse (MANOVA) 3 Regressionsanalyse 4 Faktorenanalyse Hauptkomponentenanalyse 5 Clusteranalyse 6 Zusammenfassung Komplexe

Mehr

10.5 Maximum-Likelihood Klassifikation (I)

10.5 Maximum-Likelihood Klassifikation (I) Klassifikation (I) Idee Für die Klassifikation sind wir interessiert an den bedingten Wahrscheinlichkeiten p(c i (x,y) D(x,y)). y Wenn man diese bedingten Wahrscheinlichkeiten kennt, dann ordnet man einem

Mehr

Klassifikation von Textabschnitten

Klassifikation von Textabschnitten Klassifikation von Textabschnitten Am Beispiel von Stellenanzeigen (JASC - Job Ads Section Classifier) Gliederung 1. Einführung: Zu welchem Zweck machen wir das? 2. Klassifikation ein kurzer Überblick

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Niels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer Ansatz:

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Modellevaluierung. Niels Landwehr Universität Potsdam Institut für Informatik ehrstuhl Maschinelles ernen Modellevaluierung Niels andwehr ernen und Vorhersage Klassifikation, Regression: ernproblem Eingabe: Trainingsdaten Ausgabe: Modell

Mehr

Einige Grundbegriffe der Statistik

Einige Grundbegriffe der Statistik Einige Grundbegriffe der Statistik Philipp Mitteröcker Basic terms Statistik (statistics) stammt vom lateinischen statisticum ( den Staat betreffend ) und dem italienischen statista ( Staatsmann" oder

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Klassifikation und Regression: nächste Nachbarn Katharina Morik, Uwe Ligges 14.05.2013 1 von 24 Gliederung Funktionsapproximation 1 Funktionsapproximation Likelihood 2 Kreuzvalidierung

Mehr

Projekt-INF Folie 1

Projekt-INF Folie 1 Folie 1 Projekt-INF Entwicklung eines Testbed für den empirischen Vergleich verschiedener Methoden des maschinellen Lernens im Bezug auf die Erlernung von Produktentwicklungswissen Folie 2 Inhalt Ziel

Mehr

Clusteranalyse: Gauß sche Mischmodelle

Clusteranalyse: Gauß sche Mischmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Probabilistische Analyse regionaler Klimasimulationen

Probabilistische Analyse regionaler Klimasimulationen Probabilistische Analyse regionaler Klimasimulationen Christian Schölzel und Andreas Hense Meteorologisches Institut der Universität Bonn Fachgespräch Ableitung von regionalen Klimaszenarien aus Multi-Modell-Ensembles,

Mehr

A linear-regression analysis resulted in the following coefficients for the available training data

A linear-regression analysis resulted in the following coefficients for the available training data Machine Learning Name: Vorname: Prof. Dr.-Ing. Klaus Berberich Matrikel: Aufgabe 1 2 3 4 Punkte % % (Bonus) % (Gesamt) Problem 1 (5 Points) A linear-regression analysis resulted in the following coefficients

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Kapitel 11* Grundlagen ME. Aufbau eines ME-Systems Entwicklung eines ME-Systems. Kapitel11* Grundlagen ME p.1/12

Kapitel 11* Grundlagen ME. Aufbau eines ME-Systems Entwicklung eines ME-Systems. Kapitel11* Grundlagen ME p.1/12 Kapitel 11* Kapitel11* Grundlagen ME p.1/12 Grundlagen ME Aufbau eines ME-Systems Entwicklung eines ME-Systems Kapitel11* Grundlagen ME p.2/12 Aufbau eines ME-Systems (1) on line Phase digitalisiertes

Mehr

Datenmodelle, Regression

Datenmodelle, Regression Achte Vorlesung, 15. Mai 2008, Inhalt Datenmodelle, Regression Anpassen einer Ausgleichsebene Polynomiale Regression rationale Approximation, Minimax-Näherung MATLAB: polyfit, basic fitting tool Regression

Mehr

Kapitel 5. Bayes Klassifikator

Kapitel 5. Bayes Klassifikator Kapitel 5 Bayes Klassifikator Theoretische Grundlagen Bayes Entscheidungstheorie Allgemeiner Bayes Klassifikator Bayes Klassifikator bei Normalverteilung Parameterschätzung Nichtparametrische Klassifikatoren

Mehr

Clustering. Ausarbeitung von Michael Speckner. Proseminar Data Mining

Clustering. Ausarbeitung von Michael Speckner. Proseminar Data Mining Clustering Ausarbeitung von Michael Speckner Proseminar Data Mining Einleitung Das Clustering wird verwendet, wenn man keine Klassen vorhersagen kann, aber die Instanzen in natürliche Gruppen einteilen

Mehr

Multivariate Verfahren

Multivariate Verfahren Multivariate Verfahren Lineare Regression Zweck: Vorhersage x Dimensionsreduktion x x Klassifizierung x x Hauptkomponentenanalyse Korrespondenzanalyse Clusteranalyse Diskriminanzanalyse Eigenschaften:

Mehr

Emotion Recognition of Call Center Conversations Robert Bosch Engineering and Business Solutions Private Limited

Emotion Recognition of Call Center Conversations Robert Bosch Engineering and Business Solutions Private Limited Emotion Recognition of Call Center Conversations Robert Bosch Engineering and Business Solutions Private Limited 1 Agenda 1 Introduction 2 Problem Definition 3 Solution Overview 4 Why Consider Emotions

Mehr

Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016

Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016 ETH Zürich D-USYS Institut für Agrarwissenschaften Lösungen zur Prüfung Angewandte Statistische Methoden in den Nutzierwissenschaften FS 2016 Peter von Rohr Datum 30. Mai 2016 Beginn 08:00 Uhr Ende 08:45

Mehr

Analytics Entscheidungsbäume

Analytics Entscheidungsbäume Analytics Entscheidungsbäume Professional IT Master Prof. Dr. Ingo Claßen Hochschule für Technik und Wirtschaft Berlin Regression Klassifikation Quellen Regression Beispiel Baseball-Gehälter Gehalt: gering

Mehr

Einführung R. Neubecker, WS 2018 / 2019

Einführung R. Neubecker, WS 2018 / 2019 Mustererkennung Einführung R. Neubecker, WS 2018 / 2019 1 Übersicht Hyperebenen-Mathematik Anmerkungen Zusammenfassung Mustererkennung (Pattern recognition) Mustererkennung ist die Fähigkeit, in einer

Mehr

Objekt: wird in diesem Kapitel mit einem zugeordneten Merkmalstupel (x 1,..., x M ) identifiziert (Merkmalsextraktion wird also vorausgesetzt)

Objekt: wird in diesem Kapitel mit einem zugeordneten Merkmalstupel (x 1,..., x M ) identifiziert (Merkmalsextraktion wird also vorausgesetzt) 9. Clusterbildung und Klassifikation Begriffsklärung (nach Voss & Süße 1991): Objekt: wird in diesem Kapitel mit einem zugeordneten Merkmalstupel (x 1,..., x M ) identifiziert (Merkmalsextraktion wird

Mehr

Bio-Inspired Credit Risk Analysis

Bio-Inspired Credit Risk Analysis Bio-Inspired Credit Risk Analysis Computational Intelligence with Support Vector Machines Bearbeitet von Lean Yu, Shouyang Wang, Kin Keung Lai, Ligang Zhou 1. Auflage 2008. Buch. XVI, 244 S. Hardcover

Mehr

Computer Vision: Kalman Filter

Computer Vision: Kalman Filter Computer Vision: Kalman Filter D. Schlesinger TUD/INF/KI/IS D. Schlesinger () Computer Vision: Kalman Filter 1 / 8 Bayesscher Filter Ein Objekt kann sich in einem Zustand x X befinden. Zum Zeitpunkt i

Mehr

Entscheidungen bei der Durchführung einer Cluster-Analyse

Entscheidungen bei der Durchführung einer Cluster-Analyse 7712Clusterverfahren Entscheidungen bei der Durchführung einer Cluster-Analyse nach: Eckes, Thomas, und Helmut Roßbach, 1980: Clusteranalysen; Stuttgart:Kohlhammer A. Auswahl der Merkmale Festlegung des

Mehr

Lineare Regression 2: Gute Vorhersagen

Lineare Regression 2: Gute Vorhersagen Lineare Regression 2: Gute Vorhersagen Markus Kalisch 23.09.2014 1 Big Picture: Statistisches Lernen Supervised Learning (X,Y) Unsupervised Learning X VL 7, 11, 12 Regression Y kontinuierlich VL 1, 2,

Mehr

Einleitung. Komplexe Anfragen. Suche ist teuer. VA-File Verfeinerungen. A0-Algo. GeVAS. Schluß. Folie 2. Einleitung. Suche ist teuer.

Einleitung. Komplexe Anfragen. Suche ist teuer. VA-File Verfeinerungen. A0-Algo. GeVAS. Schluß. Folie 2. Einleitung. Suche ist teuer. Anwendung Input: Query-Bild, Ergebnis: Menge ähnlicher Bilder. Kapitel 8: Ähnlichkeitsanfragen und ihre effiziente Evaluierung Wie zu finden? Corbis, NASA: EOS Bilddatenbank Folie Folie 2 Ähnlichkeitssuche

Mehr

Unit 9. Prototype-Based Clustering. Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 176

Unit 9. Prototype-Based Clustering. Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 176 Unit 9 Prototype-Based Clustering Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 176 Introduction Instead of a complete set description, every cluster C i is represented

Mehr

Schnelles Denken - Maschinelles Lernen mit Apache Spark 2

Schnelles Denken - Maschinelles Lernen mit Apache Spark 2 Schnelles Denken - Maschinelles Lernen mit Apache Spark 2 Heiko Spindler Apache Spark - Components Machine Learning Machine learning explores the construction and study of algorithms that can learn from

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Multivariate Analysemethoden

Multivariate Analysemethoden Multivariate Analysemethoden Multivariate Distanz Multivariate Normalverteilung Minimum Distance Classifier Bayes Classifier Günter Meinhardt Johannes Gutenberg Universität Mainz Ziele Methoden Multivariate

Mehr

Überblick. 4.1 Einleitung 42Cl 4.2 Clustering 4.3 Klassifikation. 4.4 Outlier Detection

Überblick. 4.1 Einleitung 42Cl 4.2 Clustering 4.3 Klassifikation. 4.4 Outlier Detection Überblick 4.1 Einleitung 42Cl 4.2 Clustering 4.3 Klassifikation 4.4 Einführung in die Informatik: Systeme und Anwendungen SoSe 2013 32 Was ist ein Outlier? Definition nach Hawkins [Hawkins 1980]: Ein Outlier

Mehr

Lineare Klassifikationsmethoden

Lineare Klassifikationsmethoden Verena Krieg Fakultät für Mathematik und Wirtschaftswissenschaften 08. Mai 2007 Inhaltsverzeichnis 1. Einführung 2. Lineare Regression 3. Lineare Diskriminanzanalyse 4. Logistische Regression 4.1 Berechnung

Mehr

Unüberwachtes Lernen

Unüberwachtes Lernen Unüberwachtes Lernen Mustererkennung und Klassifikation, Vorlesung No. 12 M. O. Franz 17.01.2008 Übersicht 1 Hauptkomponentenanalyse 2 Nichtlineare Hauptkomponentenanalyse 3 K-Means-Clustering Übersicht

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen

INTELLIGENTE DATENANALYSE IN MATLAB. Evaluation & Exploitation von Modellen INTELLIGENTE DATENANALYSE IN MATLAB Evaluation & Exploitation von Modellen Überblick Schritte der Datenanalyse: Datenvorverarbeitung Problemanalyse Problemlösung Anwendung der Lösung Aggregation und Selektion

Mehr

Clustering. Herbert Stoyan Stefan Mandl. 18. Dezember 2003

Clustering. Herbert Stoyan Stefan Mandl. 18. Dezember 2003 Clustering Herbert Stoyan Stefan Mandl 18. Dezember 2003 Einleitung Clustering ist eine wichtige nicht-überwachte Lernmethode Andwenungen Marketing: Finde Gruppen von Kunden mit gleichem Kaufverhalten,

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Tobias Scheffer Christoph Sawade

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Tobias Scheffer Christoph Sawade Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Christoph Sawade Heute: Niels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz:

Mehr

Andere Methoden zur Klassikation und Objekterkennung

Andere Methoden zur Klassikation und Objekterkennung Andere Methoden zur Klassikation und Objekterkennung Heike Zierau 05. Juni 2007 1. Einführung 2. Prototypmethoden K-means Clustering Gaussian Mixture Gaussian Mixture vs. K-means Clustering 3. nächste-nachbarn

Mehr

Charakterisierung von 1D Daten

Charakterisierung von 1D Daten Charakterisierung von D Daten Mittelwert: µ, Schätzung m x = x i / n Varianz σ2, Schätzung: s2 = (s: Standardabweichung) Höhere Momente s 2 = ( x i m x ) 2 n ( ) Eine Normalverteilung ist mit Mittelwert

Mehr

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Warum überhaupt Gedanken machen? Was fehlt, ist doch weg, oder? Allgegenwärtiges Problem in psychologischer Forschung Bringt Fehlerquellen

Mehr

Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection

Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection P. Belhumeur, J. Hespanha, D. Kriegman IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, July

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr/Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Christoph Sawade/Niels Landwehr/Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Christoph Sawade/Niels Landwehr/Tobias Scheffer Überblick Problemstellung/Motivation Deterministischer i ti Ansatz:

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT) 0 KIT 06.01.2012 Universität des Fabian Landes Hoffmann Baden-Württemberg und nationales Forschungszentrum

Mehr

Bild-Erkennung & -Interpretation

Bild-Erkennung & -Interpretation Kapitel I Bild-Erkennung & -Interpretation FH Aachen / Jülich, FB 9 Prof. Dr. rer.nat. Walter Hillen (Dig Img I) 1 Einführung Schritte zur Bilderkennung und Interpretation: Bild-Erfassung Vorverarbeitung

Mehr

Klassifikation von Daten Einleitung

Klassifikation von Daten Einleitung Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung

Mehr

Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013

Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013 Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013 Klausurnummer Name: Vorname: Matr.Nummer: Bachelor: Master: Aufgabe 1 2 3 4 5 6 7 8 max. Punkte 10 5 6 7 5 10 9 8 tats. Punkte

Mehr

Naive Bayes für Regressionsprobleme

Naive Bayes für Regressionsprobleme Naive Bayes für Regressionsprobleme Vorhersage numerischer Werte mit dem Naive Bayes Algorithmus Nils Knappmeier Fachgebiet Knowledge Engineering Fachbereich Informatik Technische Universität Darmstadt

Mehr

9. Clusterbildung, Klassifikation und Mustererkennung

9. Clusterbildung, Klassifikation und Mustererkennung 9. Clusterbildung, Klassifikation und Mustererkennung Begriffsklärungen (nach Voss & Süße 1991): Objekt: wird in diesem Kapitel mit einem zugeordneten Merkmalstupel (x 1,..., x M ) identifiziert (Merkmalsextraktion

Mehr

Vorlesung 2. Maschinenlernen: Klassische Ansätze I

Vorlesung 2. Maschinenlernen: Klassische Ansätze I Vorlesung 2 Maschinenlernen: Klassische Ansätze I Martin Giese Martin.giese@tuebingen.mpg.de Übersicht! Statistische Formulierung des überwachten Lernproblems! Einfache Klassifikatoren! Regression I. Statistiche

Mehr

Objektmerkmale für die räumlich-spektrale Klassifikation

Objektmerkmale für die räumlich-spektrale Klassifikation Objektmerkmale für die räumlich-spektrale Klassifikation AG Geomatik Geographisches Institut Ruhr-Universität Bochum AK Fernerkundung, Bochum 2012 Übersicht Ansatz zur automatischen Bildinterpretation:

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

SBWL Tourismusanalyse und Freizeitmarketing

SBWL Tourismusanalyse und Freizeitmarketing SBWL Tourismusanalyse und Freizeitmarketing Vertiefungskurs 4: Multivariate Verfahren 2 Teil 3: Mischmodelle / Modellgestützte Clusteranalyse Achim Zeileis & Thomas Rusch Institute for Statistics and Mathematics

Mehr

Entwicklung chemometrischer Methoden fur die Klassifikation von Bakterien mittels Mikro-Raman-Spektroskopie

Entwicklung chemometrischer Methoden fur die Klassifikation von Bakterien mittels Mikro-Raman-Spektroskopie Entwicklung chemometrischer Methoden fur die Klassifikation von Bakterien mittels Mikro-Raman-Spektroskopie Von der Fakultat fur Lebenswissenschaften der Technischen Universitat Carolo-Wilhelmina zu Braunschweig

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Hypothesenbewertung Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hypothesenbewertung Christoph Sawade/Niels Landwehr Dominik Lahmann Tobias Scheffer Überblick Hypothesenbewertung, Risikoschätzung

Mehr

Ahnlichkeitsbestimmung von Bildern

Ahnlichkeitsbestimmung von Bildern Seminar: Content Based Image Retrieval Lehrstuhl fur Mustererkennung und Bildverarbeitung 10. Januar 2005 Ubersicht Einfuhrung Problemstellung: Vergleiche Merkmale verschiedener Bilder und bewerte deren

Mehr

MEHR ALS LINEAR ODER LOGISTISCH?

MEHR ALS LINEAR ODER LOGISTISCH? MEHR ALS LINEAR ODER LOGISTISCH? QUANTILS EN UND ADAPTIVE SPLINES IN SAS MIHAI PAUNESCU QUANTILE proc univariate data=dat; ods select moments quantiles; var sales; Basic Statistical Measures Location Variability

Mehr

Extraktion der Tabellen aus XML-Dokumenten und Erkennung deren Semantik. Exposé zur Bachelorarbeit

Extraktion der Tabellen aus XML-Dokumenten und Erkennung deren Semantik. Exposé zur Bachelorarbeit Extraktion der Tabellen aus XML-Dokumenten und Erkennung deren Semantik Exposé zur Bachelorarbeit eingereicht von Irina Glushanok 23.04.2015 1 Einführung Um eine bequeme Suche nach passender Literatur

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Diskriminanzanalyse

Wahrscheinlichkeitsrechnung und Statistik für Biologen Diskriminanzanalyse Wahrscheinlichkeitsrechnung und Statistik für Biologen Diskriminanzanalyse Martin Hutzenthaler & Dirk Metzler http://evol.bio.lmu.de/_statgen 6. Juli 2010 Übersicht 1 Ruf des Kleinspechts 2 Modell Vorgehen

Mehr