Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 3 Maschinelles Lernen und Klassifikation

Größe: px
Ab Seite anzeigen:

Download "Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester Lösungsblatt 3 Maschinelles Lernen und Klassifikation"

Transkript

1 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester M. Sperber S. Nguyen Lösungsblatt 3 Maschinelles Lernen und Klassifikation Aufgabe : Zufallsexperiment a) Nehmen Sie eine Stoppuhr und lassen Sie eine andere Person diese starten. Versuchen Sie, ohne die Stoppuhr zu sehen, nach Ablauf von 5 Sekunden,,Stopp zu sagen, woraufhin die andere Person die Uhr stoppt und den darauf angezeigten Wert notiert. Wiederholen Sie den Versuch n mal, ohne die bereits notierten Werte zu betrachten. Wählen Sie einen sinnvollen Wert für n, um einen Naiven Bayes-Klassifikator zu trainieren. b) Nehmen Sie an, das Experiment in Teilaufgabe a) unterliegt einem Zufallsprozess, der mit einer Gauß schen Normalverteilung beschrieben werden kann. Somit lässt sich für jede Person, die den beschriebenen Versuch durchführt, eine spezifische Wahrscheinlichkeitsdichtefunktion beschreiben. Schätzen Sie die Parameter Ihrer persönlichen Verteilung mit den gemessenen Ergebnissen mit der Maximum Likelihood-Methode. c) Die in Teilaufgabe b) beschriebene Verteilungsfunktion soll die Wahrscheinlichkeitsdichte für eine Klasse ω beschreiben. Nehmen Sie an, eine Kommilitonin hat einen ähnlichen Versuch durchgeführt. Aus ihren Messungen ergibt sich eine Klasse ω, die ebenfalls einer Normalverteilung unterliegt mit dem Erwartungswert µ = 5.5 und der Varianz σ =. Führen Sie einen einzelnen weiteren Versuch wie beim Zufallsexperiment in Teilaufgabe a) durch und versuchen Sie, mit einem Naiven Bayes-Klassifikator zu ermitteln, ob das Ergebnis zu Ihnen selbst oder Ihrer Kommilitonin passt (ω oder ω ). Sie haben dabei die Handschrift analysiert, mit der das Ergebnis notiert wurde; Sie vermuten deshalb von vornherein, dass es mit einer Wahrscheinlichkeit von.3 zu ω gehört und mit einer Wahrscheinlichkeit von.7 zu ω. Lösung: a) when n = ; random numbers: 5.95;.9;.9;.9;.7; 5.59;.;.95;.;.3; b) Expected value and variance: µ = n n i= x i = ( ) 5.59 Lösungsblatt 3 zu Kognitive Systeme Seite

2 σ = n i= (x i µ) n = ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + (. 5.59) + ( ) + (. 5.59) + ( ).5 σ.3 Therefore, the class follows following distribution: p(x ω ) N(5.59;.5) for chosen random numbers. c) Posterior probability in Bayes theorem is defined: P (ω c x) = p(x ω c)p (ω c ) p(x) p(x ωc)p (ωc) p(x) where p(x) is same for C = {; }. Therefore, implies that we need to find the ω c which maximizes p(x ω c )P (ω c ). = arg max c Generate another random number, for example, x = 5.5. Then when C =, is proportional to p(x ω c )P (ω c ). This p(x ω c )P (ω c ) P (ω x) = p(x ω )P (ω ) p(x) p(x ω )P (ω ) = e ( ( x µ ) σ ) P (ω ) πσ = π.3 e ( ( ) ).3.97 e.3.3. Lösungsblatt 3 zu Kognitive Systeme Seite

3 When C =, P (ω x) = p(x ω )P (ω ) p(x) p(x ω )P (ω ) = e ( ( x µ ) σ ) P (ω ) πσ = π e ( ( ) ) e Therefore from the pervious calculation we have following probabilities. p(x ω )P (ω ). p(x ω )P (ω ).93 p(x ωc)p (ωc) p(x) where p(x ω )p(ω ) is higher than p(x ω )p(ω ). As P (ω c x) = is proportional to p(x ω c )P (ω c ), we can conclude that P (ω x) < P (ω x) implies arg max p(x ω c )P (ω c ) for C = {, } yields C =. Therefore, when x = 5.5, it is assigned to the class ω according to the MAP-crieteria. c Lösungsblatt 3 zu Kognitive Systeme Seite 3

4 Aufgabe : Fehlerwahrscheinlichkeit Für zwei Klassen ω und ω mit den A-Priori-Wahrscheinlichkeiten P (ω ) = 5 und P (ω ) = 5 sind die folgenden Wahrscheinlichkeitsdichtefunktionen definiert: p(x ω ) = π e x und p(x ω ) = π e (x 3) a) Wie hoch ist die Fehlerwahrscheinlichkeit in Abhängigkeit eines Schwellwerts θ, wenn sich eine Entscheidungsfunktion für ω entscheidet wenn x < θ und ansonsten für ω? b) Online-Frage Nr. : Wie lautet der optimale Schwellwert θ opt? (i).37 (ii).53 (iii).5 (iv).5 (v).3 c) Berechnen Sie den kleinsten möglichen Klassifikationsfehler. Hinweis: Formen Sie die Integrale aus der Funktion zur Berechnung der Fehlerwahrscheinlichkeit aus Teilaufgabe a) so um, dass sich deren Lösungen aus einer Tabelle zur Standardnormalverteilung Φ(z) ablesen lassen (z.b. unter d) Sie haben eine Reihe von Messungen durchgeführt und die Messdaten mit einem Naiven Bayes- Klassifikator, bei dem Sie den Schwellwert auf das zuvor errechnete θ opt gesetzt haben, klassifiziert. Sie stellen dabei fest, dass die tatsächliche Fehlerrate höher liegt als die in Teilaufgabe c) errechnete Fehlerwahrscheinlichkeit. Warum ist dies so? Lösung: a) P F ehler (θ) = θ = 5 p(x ω )P (ω )dx + θ e x dx + π 5 θ θ p(x ω )P (ω )dx π e (x 3) dx Lösungsblatt 3 zu Kognitive Systeme Seite

5 b) Der optimale Schwellwert θ opt liegt an der Stelle an der sich die Fehlerwahrscheinlichkeitsfunktionen kreuzen. Der richtige Wert kann auch über eine grafische Darstellung am Schnittpunkt der beiden Funktionen abgelesen werden. P (ω )p(x ω )! = P (ω )p(x ω ) e θ opt = e (θ opt 3) 5 π 5 π e θ opt = e (θ opt 3) e θ opt +(θ opt 3) = e 3θopt+.5 = 3θ opt +.5 = ln θ opt =.5 ln 3.3 Gaussian Distribution μ =., σ =. μ = 3., σ = decision boudary: x = Lösungsblatt 3 zu Kognitive Systeme Seite 5

6 c) The minimum error probility is when the threshold θ is the optimum value. Therefore, we need to z calculate P error (θ opt ). Standard normal distribution is: Φ ; (z) = π e t dt. P error (θ) = θ = 5 = 5 = 5 = 5 = 5 p(x ω )P (ω )dx + θ.3 e x dx + π 5 π π π θ θ π e x dx p(x ω )P (ω )dx π e (x 3) dx.3 e x dx + 5 e x dx + 5 e x dx + 5 e (x 3) dx π.3 π.3 3 π.9 π e (x 3) dx e x dx e x dx = 5 (.3 e x dx) + π 5 (.9 e x dx) π = 5 ( Φ(.3)) + ( Φ(.9)) 5 5 (.5) + (.975) 5 = d) Die Wahrscheinlichkeitsdichtefunktion ist immer nur eine Schätzung, die der realen Verteilung möglichst nahe kommen soll, sie aber nicht perfekt abbildet. Zu wenige oder verzerrte Messdaten. Aufgabe 3: k-nearest-neighbors Gegeben sei der folgende Datensatz mit zwei Klassen (Kreise und Kreuze). Klassifizieren Sie das mit einer Raute markierte Merkmal an den Koordinaten (5, 5) mit dem k-nearest-neighbors Algorithmus für k = und k = 5. Benutzen Sie dabei zur Gewichtung die euklidische Distanz. Lösungsblatt 3 zu Kognitive Systeme Seite

7 Lösung für k = : Die Raute wird als Kreis klassifiziert. Lösung für k = 5: Die Raute wird als Kreuz klassifiziert. Lösungsblatt 3 zu Kognitive Systeme Seite 7

8 Online-Frage Nr. : Wie wird die Raute für k = 5 klassifiziert? (i) keine Klasse (ii) Kreis (iii) Kreuz Lösungsblatt 3 zu Kognitive Systeme Seite

9 Aufgabe : Perzeptronen In den Grafiken (a) bis (d) sind jeweils Datenpunkte zweier Klassen eingezeichnet. (a) b) (c) Online-Frage Nr. 3: Welche der folgenden Aussagen sind für die jeweils angegebene Abbildung wahr? Bitte alle richtigen Antworten im Online-Formular ankreuzen. (i) Abbildung a) Die beiden Klassen sind linear separierbar. (ii) Abbildung b) Die beiden Klassen lassen sich mit einem einfachen Perzeptron trennen. (iii) Abbildung c) Die beiden Klassen sind linear separierbar. (iv) Abbildung d) Nach einer Umrechnung in Polarkoordinaten sind die beiden Klassen linear separierbar. (v) Abbildung d) Die beiden Klassen lassen sich mit einem einfachen Perzeptron trennen. (vi) Abbildung d) Die beiden Klassen lassen sich mit einem Multi Layer Perceptron mit einer versteckten Schicht, die aus zwei Neuronen besteht, trennen. Lösung: (i) Falsch. (ii) Richtig. (iii) Falsch. (iv) Falsch. (v) Falsch. d) Lösungsblatt 3 zu Kognitive Systeme Seite 9

10 (vi) Richtig. Aufgabe 5: Neuronale Netze Gegeben seien die folgenden Punktwolken mit zweidimensionalen Merkmalsvektoren, die der positiven Klasse A und{( negativen ) ( Klasse)} B zugeordnet sind: {( ) ( )}.3. A = { a, a } = ; und B = {.. b,..7 b } = ;... a) Berechnen Sie ein einfaches Perzeptron mit binärer Schwellwertfunktion, das die Klassen A und B trennt. Verwenden Sie den folgenden iterativen Algorithmus: ( ) ( ) wi+ wi = [ ( )] e δ b i+ b e i e E b i entspricht dem Schwellenwert in Iterationsschritt i. ( ) wi w i = ist der Gewichtsvektor im Iterationsschritt i. w i E i = { e i, e i,... } { a, a, b, b } ist die Menge aller fehlerhaft klassifizierten Merkmalsvektoren in Iteration i. δ e ist das Fehlersignal: δ e = falls e a und δ e = falls e b. ( ) Beginnen Sie die Iteration mit den Werten w = und b = und skizzieren Sie die Trenngerade nach jeder Iteration i. Der Algorithmus terminiert in Iteration n, sobald alle Punkte richtig klassifiziert werden, d.h. E n =. b) Onlinefrage Nr. : Welchen Wert erhält man für {w n, w n, b n } wenn der Algorithmus terminiert? i)., -., - ii) -.,., iii) -., -., iv)., -., - v).,., Lösung: a) Die lineare Diskriminierungsfunktion eines einfachen Perzeptrons mit zwei Neuronen hat allgemein die Form: g(x) = w x + w x + b. Die Klassenzuordnung erfolgt über den Wert von g(x): Falls g(x) > = Klasse A und falls g(x) < = Klasse B. Die Trenngerade zwischen den beiden Klassen verläuft entsprechend bei g(x) =. Zur Zeichnung in ein Achsenkreuz mit den beiden Achsen x und x wird die Trenngerade bei g(x) = nach x aufgelöst: Lösungsblatt 3 zu Kognitive Systeme Seite

11 w x + w x + b = w x = w x b x = w w x w b Als Trenngerade für die initialen Werte ergibt sich aus g (x) = x x demnach die Geradengleichung x = x für ein zweidimensionales Achsenkreuz. Der Algorithmus durchläuft die folgenden Iterationsschritte: ( ). w = ; b = = g (x) = x x! g ( a ) =.3 = B (Fehlklassifikation)! g ( a ) =. = B (Fehlklassifikation) g ( b ) =. = B g ( b ) =.9 = B Damit sind zwei Punkte aus Klasse A falsch klassifiziert, E = { a, a }. Daraus ergibt sich nach dem ersten Iterationsschritt: ( ) w = ( ) a b ( ) a.3..9 = ( ). ( ). =. = g (x) =.9x +.x + Geradengleichung für die Zeichnung: x =.9x. =.5x 9. g ( a ) = 5.5 = A g ( a ) = 3. = A! g ( b ) = 3. = A (Fehlklassifikation) g ( b ) =.73! = A (Fehlklassifikation) Damit sind zwei Punkte aus Klasse B falsch klassifiziert: E = { b, b } ( ).9 w =. () b b ().9..7 b =. (). (). =. = g (x) =.x +.x Geradengleichung für die Zeichnung: x =.. x =.5x Lösungsblatt 3 zu Kognitive Systeme Seite

12 3. g ( a ) =. = A g ( a ) =. = A g ( b ) =. = B g ( b ) =. = B Alle Trainingsdatenpunkte werden damit korrekt klassifiziert: E = terminiert mit den Werten ( w, b ) = (.,., ) T. = der Algorithmus g(x) = x - x g(x) = x +.x g(x) =.9x +.x Lösungsblatt 3 zu Kognitive Systeme Seite

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Klassifikation von Daten Einleitung

Klassifikation von Daten Einleitung Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 29, 2017 Dr. Michael O. Distler

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Mustererkennung. Bayes-Klassifikator. R. Neubecker, WS 2016 / Bayes-Klassifikator

Mustererkennung. Bayes-Klassifikator. R. Neubecker, WS 2016 / Bayes-Klassifikator Mustererkennung Bayes-Klassifikator R. Neubecker, WS 2016 / 2017 Bayes-Klassifikator 2 Kontext Ziel: Optimaler Klassifikator ( = minimaler Klassifikationsfehler), basierend auf Wahrscheinlichkeitsverteilungen

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In

Mehr

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle Mustererkennung Unüberwachtes Lernen R. Neubecker, WS 01 / 01 Übersicht (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren 1 Lernen Überwachtes Lernen Zum Training des Klassifikators

Mehr

Computergestützte Datenanalyse in der Kern- und Teilchenphysik

Computergestützte Datenanalyse in der Kern- und Teilchenphysik Computergestützte Datenanalysein der Kern- und Teilchenphysik p. 1/?? Computergestützte Datenanalyse in der Kern- und Teilchenphysik Vorlesung 4 Jan Friedrich Computergestützte Datenanalysein der Kern-

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Lösungsblatt 2 Signalverarbeitung und Klassifikation

Lösungsblatt 2 Signalverarbeitung und Klassifikation Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 06 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Lösungsblatt Signalverarbeitung und Klassifikation Aufgabe : Faltung

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator

Überblick. Überblick. Bayessche Entscheidungsregel. A-posteriori-Wahrscheinlichkeit (Beispiel) Wiederholung: Bayes-Klassifikator Überblick Grundlagen Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

k-nächste-nachbarn-schätzung

k-nächste-nachbarn-schätzung k-nächste-nachbarn-schätzung Mustererkennung und Klassifikation, Vorlesung No. 7 1 M. O. Franz 29.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010 Stochastic Processes SS 2010 Prof. Anton Wakolbinger Klausur am 16. Juli 2010 Vor- und Nachname: Matrikelnummer: Studiengang: Tutor(in): In der Klausur können 100 Punkte erreicht werden. Die Gesamtpunktezahl

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Klassifikation linear separierbarer Probleme

Klassifikation linear separierbarer Probleme Klassifikation linear separierbarer Probleme Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation linear

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 24. Mai 2011 3. Schätzung von Parametern Problemstellung: Aus fehlerbehafteten Messungen möglichst genaue Ergebnisse erarbeiten zusammen mit Aussagen

Mehr

Abitur 2015 Mathematik Infinitesimalrechnung I

Abitur 2015 Mathematik Infinitesimalrechnung I Seite 1 Abiturloesung.de - Abituraufgaben Abitur 215 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion f : x ( x 3 8 ) (2 + ln x) mit maximalem Definitionsbereich D. Teilaufgabe Teil A 1a (1

Mehr

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.

Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc. Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Aufgabe Punkte

Aufgabe Punkte Institut für Mathematik Freie Universität Berlin Carsten Hartmann, Stefanie Winkelmann Musterlösung für die Nachklausur zur Vorlesung Stochastik I im WiSe 20/202 Name: Matr.-Nr.: Studiengang: Mathematik

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Normalverteilung und Standardisierung

Normalverteilung und Standardisierung Normalverteilung und Standardisierung N(0,1) z 0 z N(µ,) }{{}}{{} µ µ z z z µ+z Die Normalverteilungen N(µ, ) ergeben sich aus der Standardnormalverteilung N(0, 1) (Gaussche Glockenkurve) durch strecken

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 5. Vorlesung Verteilungsfunktion (VF) Definition 9 Die Verteilungsfunktion (VF) einer Zufallsgröße X ist F : R R definiert als F (x) := P({ω Ω : X (ω) x}) = P( X x ) für jedes x R. Satz 9 - Eigenschaften

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler

Bestimmte Zufallsvariablen sind von Natur aus normalverteilt. - naturwissenschaftliche Variablen: originär z.b. Intelligenz, Körpergröße, Messfehler 6.6 Normalverteilung Die Normalverteilung kann als das wichtigste Verteilungsmodell der Statistik angesehen werden. Sie wird nach ihrem Entdecker auch Gaußsche Glockenkurve genannt. Die herausragende Stellung

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Syntaktische und Statistische Mustererkennung. Bernhard Jung

Syntaktische und Statistische Mustererkennung. Bernhard Jung Syntaktische und Statistische Mustererkennung VO 1.0 840.040 (UE 1.0 840.041) Bernhard Jung bernhard@jung.name http://bernhard.jung.name/vussme/ 1 Rückblick Entscheidungstheorie Bayes'sche Klassifikation

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 4 12.03.2008 1 Aufgabe 4.1 Die monatliche Aufwendung X [CHF] für den Wasserverbrauch einschliesslich h der Abwassergebühren eines 2 Personenhaushalts seien

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

15.5 Stetige Zufallsvariablen

15.5 Stetige Zufallsvariablen 5.5 Stetige Zufallsvariablen Es gibt auch Zufallsvariable, bei denen jedes Elementarereignis die Wahrscheinlich keit hat. Beispiel: Lebensdauer eines radioaktiven Atoms Die Lebensdauer eines radioaktiven

Mehr

Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze

Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze Erich Schubert 6. Juli 2003 LMU München, Institut für Informatik, Erich Schubert Zitat von R. P. Feynman Richard P. Feynman (Nobelpreisträger

Mehr

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung

Heute. Die Binomialverteilung. Poissonverteilung. Approximation der Binomialverteilung durch die Normalverteilung Heute Die Binomialverteilung Poissonverteilung Approximation der Binomialverteilung durch die Normalverteilung Arbeiten mit Wahrscheinlichkeitsverteilungen Die Binomialverteilung Man werfe eine Münze n

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Exponential Family, Maximum Likelihood, EM Algorithmus und Gaussian Mixture Models

Exponential Family, Maximum Likelihood, EM Algorithmus und Gaussian Mixture Models Exponential Family, Maximum Likelihood, EM Algorithmus und Gaussian Mixture Models Korbinian Schwinger 3. November 003 Inhaltsverzeichnis Inhaltsverzeichnis Exponential Family 3. Definition...............................

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

BZQ II: Stochastikpraktikum

BZQ II: Stochastikpraktikum BZQ II: Stochastikpraktikum Block 5: Markov-Chain-Monte-Carlo-Verfahren Randolf Altmeyer February 1, 2017 Überblick 1 Monte-Carlo-Methoden, Zufallszahlen, statistische Tests 2 Nichtparametrische Methoden

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Linearer und quadratischer Mittelwert

Linearer und quadratischer Mittelwert Linearer und quadratischer ittelwert Erwartungswerte (auch Schar- oder Ensemblemittelwerte) betrachtet wird zunächst eine große Anzahl von Zufallssignalen; dabei ist x k (t) die k-te von insgesamt Realisierungen

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungen stetiger Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt.

Normalverteilung. 1 2πσ. Gauß. 2 e 1 2 ((x µ)2 σ 2 ) Werkzeuge der empirischen Forschung. W. Kössler. Einleitung. Datenbehandlung. Wkt. Normalverteilung Diskrete Stetige f(x) = 1 2πσ 2 e 1 2 ((x µ)2 σ 2 ) Gauß 91 / 169 Normalverteilung Diskrete Stetige Satz: f aus (1) ist Dichte. Beweis: 1. f(x) 0 x R und σ > 0. 2. bleibt z.z. lim F(x)

Mehr

Stetige Verteilungen Rechteckverteilung

Stetige Verteilungen Rechteckverteilung Stetige Verteilungen Rechteckverteilung Die Längenabweichungen X produzierter Werkstücke von der Norm seien gleichmäßig verteilt zwischen a = mm und b = 4mm. Die Dichtefunktion lautet also f(x) = für a

Mehr

Hochschule Darmstadt FB Mathematik und Naturwissenschaften. Statistik. für Wirtschaftsingenieure (B.Sc.) Sommersemester 2017

Hochschule Darmstadt FB Mathematik und Naturwissenschaften. Statistik. für Wirtschaftsingenieure (B.Sc.) Sommersemester 2017 für Wirtschaftsingenieure (B.Sc.) Sommersemester 017 Dr. rer. nat. habil. E-mail: adam-georg.balogh@h-da.de 1 Hochschule Darmstadt, Fachbereich MN Sommersemester 017 Testklausur zur Vorlesung Wirtschaftsstatistik

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Mathematik II: Übungsblatt 01: Lösungen

Mathematik II: Übungsblatt 01: Lösungen N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t

Mehr

Spezielle Verteilungen

Spezielle Verteilungen Spezielle Verteilungen Prof. Sabine Attinger Jun. Prof. Anke Hildebrandt Beschreibende Statistik Lagemaße: 1. Mittelwert: µ = x = 1 n n i= 1 x i 3. Median=0.5 Perzentil Beschreibende Statistik Streumaße:

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Klassifikation und Regression: nächste Nachbarn Katharina Morik, Uwe Ligges 14.05.2013 1 von 24 Gliederung Funktionsapproximation 1 Funktionsapproximation Likelihood 2 Kreuzvalidierung

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Kapitel VII. Einige spezielle stetige Verteilungen

Kapitel VII. Einige spezielle stetige Verteilungen Kapitel VII Einige spezielle stetige Verteilungen D. 7.. (Normalverteilung) Eine stetige Zufallsgröße X sei als normalverteilt bezeichnet, wenn sie folgende Wahrscheinlichkeitsdichte besitzt: µ f ( ; µ,

Mehr

10 Transformation von Zufallsvariablen

10 Transformation von Zufallsvariablen 10 Transformation von Zufallsvariablen Sei X : Ω R eine Zufallsvariable mit Verteilungsfunktion F X (x) = P(X < x). Wir betrachten eine Funktion g: R R und sei Zufallsvariable Y : Ω R mit Y = g(x). Y :

Mehr

Verteilungen mehrerer Variablen

Verteilungen mehrerer Variablen Kapitel 3 Verteilungen mehrerer Variablen 3. Eigenschaften von Verteilungen mehrerer Variablen Im allgemeinen muss man Wahrscheinlichkeiten für mehrere Variable, die häufig auch voneinander abhängen, gleichzeitig

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Lineare Regression. Volker Tresp

Lineare Regression. Volker Tresp Lineare Regression Volker Tresp 1 Die Lernmaschine: Das lineare Modell / ADALINE Wie beim Perzeptron wird zunächst die Aktivierungsfunktion gewichtete Summe der Eingangsgrößen x i berechnet zu h i = M

Mehr

Standardnormalverteilung

Standardnormalverteilung Standardnormalverteilung 1720 erstmals von Abraham de Moivre beschrieben 1809 und 1816 grundlegende Arbeiten von Carl Friedrich Gauß 1870 von Adolphe Quetelet als "ideales" Histogramm verwendet alternative

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Einführung in die Fehlerrechnung und Messdatenauswertung

Einführung in die Fehlerrechnung und Messdatenauswertung Grundpraktikum der Physik Einführung in die Fehlerrechnung und Messdatenauswertung Wolfgang Limmer Institut für Halbleiterphysik 1 Fehlerrechnung 1.1 Motivation Bei einem Experiment soll der Wert einer

Mehr

Methoden zur Cluster - Analyse

Methoden zur Cluster - Analyse Kapitel 4 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

A3.9: Viterbi Algorithmus: Grundlegendes

A3.9: Viterbi Algorithmus: Grundlegendes A3.9: Viterbi Algorithmus: Grundlegendes Die Grafik zeigt ein Trellisdiagramm und definiert gleichzeitig die Fehlergrößen Γ i (S 0 ) und Γ i (S 1 ) zu den Zeitpunkten i = 0 bis i = 5. Aus diesem Trellis

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Mathematik. 20. September 2016 AHS. Teil-1-Aufgaben. Korrekturheft. Standardisierte kompetenzorientierte schriftliche Reifeprüfung

Mathematik. 20. September 2016 AHS. Teil-1-Aufgaben. Korrekturheft. Standardisierte kompetenzorientierte schriftliche Reifeprüfung Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 20. September 2016 Mathematik Teil-1-Aufgaben Korrekturheft Aufgabe 1 Eigenschaften von Zahlen Jede natürliche Zahl kann als Bruch in

Mehr

Unit 4. The Extension Principle. Fuzzy Logic I 123

Unit 4. The Extension Principle. Fuzzy Logic I 123 Unit 4 The Extension Principle Fuzzy Logic I 123 Images and Preimages of Functions Let f : X Y be a function and A be a subset of X. Then the image of A w.r.t. f is defined as follows: f(a) = {y Y there

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Stetige Standardverteilungen

Stetige Standardverteilungen Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr