2.10. GPS und GLONASS
|
|
|
- Laura Koenig
- vor 9 Jahren
- Abrufe
Transkript
1 2.10. GPS und GLONASS (Global Positioning System, Global Navigation Satellite System) Das amerikanische GPS- und das technisch fast identische russische GLONASS-Verfahren sollen hier nur soweit beschrieben werden, daß die Kenntnis der System- und Signaleigenschaften eine Einordnung bzw. einen Vergleich mit anderen Systemen zuläßt. Ausführliche Beschreibungen des GPS- Systems werden z.b. von der NATO-Arbeitsgruppe AGARD in [58], Mattos et al. in [51], Schänzer et al. in [82] und für das Differential-GPS von Vieweg in [88] gegeben. Zum vollständigen GPS-Raumsegment (seit Juni 1994) gehören 24 Satelliten, die sich auf annähernd kreisförmigen 12-Stundenbahnen (h=20400 km) bewegen. Das Prinzip der GPS-Positionsbestimmung beruht vier Zeitdifferenzmessungen zwischen den Signalen von vier Satelliten. Um eine 3-dimensionale Positionsbestimmung durchzuführen, müssen also mindestens vier sichtbare Satelliten empfangen werden (Bild 35). Die Bahnparameter sind deshalb so gewählt, daß zu jeder Zeit an jedem Punkt der Erdoberfläche mindestens vier Satelliten sichtbar sein sollen. Es werden sechs Bahnebenen à vier Satelliten mit einer Inklination von 55 verwendet. r1 r2 r3 r4 Bild 35: Für die 3D-Positionsbestimmung werden mindestens vier GPS-Satelliten benötigt. Die Satelliten senden keine einzelnen Impulse aus, sondern erstmals in der Geschichte der Funknavigation korrelationstechnisch optimierte Signalfolgen (siehe S. 94). Alle GPS-Satelliten senden auf derselben Frequenz von MHz. Alle verwendeten Frequenzen und Datenraten von GPS werden aus der Träger-Frequenz abgeleitet. Sie sind phasenstarr miteinander verbunden. Als Signal wird ein pseudozufälliges Binärsignal mit einer Länge von 1023 Chips verwendet. Jedem Satelliten ist eine eigene Signalfolge zugeordnet, über die er identifiziert und verfolgt werden kann. Bei diesen C/A-Code 30 genannten Binärfolgen handelt es sich um Gold -Codes mit folgenden besonderen Eigenschaften : 30 Coarse and Aquisition Seite 38
2 Sie haben ein optimiertes Korrelationsverhalten bezüglich ihrer PAKF (S. 93). Sie sind optimiert bezüglich ihres KKF-Verhaltens untereinander. Sie sind gleichverteilt im Zeitbereich. Sie besitzen ein si-förmiges Spektrum um die Trägerfrequenz. Der zweite Punkt ist besonders wichtig, da GPS auf nur einer Frequenz 31 arbeitet und zu einem Zeitpunkt mehr als acht Satelliten gleichzeitig empfangbar sein können. Diese Codemultiplex (CDMA 32 ) genannte Arbeitsweise stellt besondere Anforderungen an die Qualität der Folgen. Die KKF von zwei verschiedenen PRN 33 -Folgen soll eine Nullfolge ergeben, um gegenseitige Störungen auszuschließen Signalauswertung im GPS-Empfänger Das Empfangssignal wird nach der ZF mit einem I/Q-Demodulator abgetastet und durch einen einfachen A/D-Umsetzer 2-Bit-quantisiert. Die Signalauswertung der empfangenen Signale wird mit Hilfe der diskreten Kreuzkorrelationsfunktion (KKF) vorgenommen. N 1 1 i= 0 ( ) ( ) ( ) 10 y n = x i x i + n N = 2 1 (2.17) 2 Soll in einem abgetasteten Eingangssignal x 2 (n) die PRN-Folge gefunden werden, so muß dieses Eingangssignal mit einem im Empfänger erzeugten Gold- Code-Prototypen x 1 (n) korreliert werden. Die gesuchten Ergebnisse der KKF sind die Positionen der Maxima innerhalb der Folge und die Vorzeichen dieser Maxima. Die Berechnung der vollständigen KKF-Summe ist nur nach dem Einschalten des Empfängers vorzunehmen, um den Satelliten zu finden. Es ist dann einfacher, nach dem Einrasten des Korrelators das KKF-Maximum in einer Regelschleife zu verfolgen, als die vollständige KKF immer wieder durchzuführen. Die Verfolgung des KKF-Maximums muß in zwei ineinander verschachtelten Regelschleifen geschehen, da sich die gesuchte Größe (die Schrägentfernung zum Satelliten) ständig ändert und da die variable Doppler-Verschiebung die empfangene Folge zeitlich staucht oder dehnt. Für jeden zu empfangenen Satelliten (Mehrkanal- Empfänger) ist also eine KKF zu berechnen. Da für die Ortsbestimmung die genauen Bahndaten der Satelliten bekannt sein müssen, werden diese in binären Datentelegrammen mit einer Datenrate von 50 Bit/Sekunde durch die Satelliten selbst ausgesendet. Hierzu wird die gesamte, in π-psk 34 auf den HF-Träger modulierte PRN-Folge mit den zu übertragenen Daten ein weiteres Mal π-psk-moduliert. Dementsprechend ist das übertragene Datenbit am Vorzeichen des Maximums nach der KKF direkt abzulesen. Pro Datenbit werden 20 PRN-Folgen ausgesandt. Aus diesem Zusammenhang leitet 31 Der geheime, militärische P-Code auf MHz soll hier nicht untersucht werden. 32 Code Division Multiple Access 33 Pseudo Random Noise 34 Phase Shift Keying Seite 39
3 sich auch der Name Spreiz-Spektrum-Technik für die Form der Übertragung ab. Der Bittakt der PRN-Folgen beträgt MHz. Das Verhältnis Bandbreite zu Datenrate ist größer 20 * Bild 36 zeigt das Prinzip der Sendesignalerzeugung im Satelliten MHz Antenne HF-Träger ATOM-Uhr Datentelegramm [-1,1] PRN-Folge Teiler 50 Hz MHz Bild 36: Das Sendesignal eines GPS-Satelliten wird durch zweimalige π-psk- Modulation von Datentelegramm und PRN-Folge auf die Trägerfrequenz erzeugt. Die Trägerfrequenz, der PRN- und der Datentakt in GPS-Satelliten sind kohärent und werden von einer Cäsium-Referenz (ca. 1*10-12 ) abgeleitet. Erwähnenswert ist außerdem, daß die Satelliten-Signale rechtsdrehend zirkular polarisiert ausgesendet werden. Dadurch, daß auch eine rechtsdrehend zirkular polarisierte Antenne für den Empfang Verwendung finden, werden die linksdrehenden Reflexionen gegen unendlich gedämpft Feldstärke der GPS-Signale Das Signal an der Antenne eines Empfängers erreicht wegen der Dämpfung auf dem Übertragungsweg eine Leistung von ca dbm 35. Die thermische Rauschleistung am Empfänger erreicht bei einer Bandbreite B von ca. 1 MHz und 20 C einen Wert von P th = ktb 10log dbm (2.18) 1mW Der GPS-Empfänger arbeitet also mit einem SNR 36 von -16 dbm vor der KKF. Die Aufhebung der spektralen Spreizung durch den KKF-Empfänger verbessert das SNR um log. MHz + 30dB (2.19) 1 khz auf +14 dbm. Die Extraktion der Daten aus den Vorzeichen bedeutet eine weitere Bandbreitenreduktion, wodurch sich ein weiterer Gewinn von 35 -dbm : db unter 1mW; -130 dbm 70 nv an 50 Ω; k = J K 36 Signal to Noise Ratio Seite 40
4 1 10log khz 13 50Hz + db ergibt. Das Gesamtsystem arbeitet mit einem SNR von ca. +27 db. (2.20) GPS-Empfängeraufbau Bild 37 zeigt den grundsätzlichen Aufbau eines GPS-Empfängers. Gezeigt ist auch eine mögliche Erweiterung um eine zweite Antenne, zur Empfangsverbesserung bei Abschattungen durch Fahrzeugteile (z.b. Leitwerke). Bild 37: GPS-Empfänger Blockdiagramm [67] Unterschiede zu GLONASS Das russische GLONASS-System arbeitet auf 11h16 -Bahnen in km Höhe und einer Inklination von 65. Das System ist aber im Moment noch nicht vollständig ausgebaut. GLONASS teilt jedem Satelliten eine von 24 verschiedenen Frequenzen (FDMA 37 ) in einem Raster von khz zu ( bis MHz) 38. Alle GLONASS Satelliten verwenden den gleichen PRN-Code, der aber nur eine Länge von 511 Chips hat, da keine Anforderungen mehr an das PKKF-Verhalten 39 zwischen verschiedenen Codes gestellt werden. Für einen N-Kanal-Empfänger zur simultanen Verfolgung von N Satelliten sind auch N Frequenzaufbereitungen und Mischstufen notwendig. Bild 38 zeigt den grundsätzlichen Aufbau eines 6-Kanal GLONASS Empfängers. 37 Frequency Division Multiple Access 38 Infolge internationaler Beschwerden über die GLONASS-Band belegung werden seit 1995 nur noch zwölf Frequenzen verwendet. Je zwei Satelliten auf entgegengesetzten Seiten der Erde senden jetzt auf einer gemeinsamen Frequenz. 39 Periodische Kreuzkorrelations funktion, siehe auch S. 92 Seite 41
5 Bild 38: GLONASS-Empfänger Blockdiagramm [67] Vergleichend kann man für die Signalauswertung feststellen, daß GLONASS den Empfangsaufwand in die Hardware verlagert, während GPS den Empfangsaufwand von der Hardware in die Software verlagert hat. GPS-Empfänger sind hardwareseitig wesentlich einfacher zu realisieren, da sie nur einen Eingangsteil mit Mischer und ZF besitzen. Der Entwurf eines kombinierten GPS/GLONASS-Empfängers wäre sehr sinnvoll, da dadurch eine größere Anzahl von Satelliten und damit eine größere Auswahl von Standlinien zur Verfügung stünde. Ein weiterer Vorteil liegt darin, daß GLO- NASS keine Signaldegradierung in Form der S.A. 40 vornimmt. 40 Selected Availability, siehe S. 94 Seite 42
In 80 Millisekunden um die Welt
In 80 Millisekunden um die Welt Wie funktionieren eigentlich Satellitenortung und Navigation? Hans Parthey, Diplom-Ingenieur der Nachrichtentechnologie, bringt Licht ins Dunkel. Globale Navigations Satelliten
Global Positioning System (GPS)
Global Positioning System (GPS) - Beispiel für Anwendungen präziser Zeitmessung Genaue Orts- Geschwindigkeits- und Zeitinformation Unbegrenzte Zahl von Nutzern Weltweite Verfügbarkeit GPS - Segmente GPS
Leitungscodierung. Modulation , G. Hirsch. bit. Slide 1
Leitungscodierung bit Slide 1 Spektren leitungscodierter Signale bit Slide 2 Übertragungsfunktion des Cosinus- Rolloff Filters -f g f g Im Fall von NRZ ist: f g 1 2 T bit Slide 3 Augendiagramm Die nachstehenden
GLONASS: das russische Pendant von GPS
Hochschule für Technik Rapperswil 6. Januar 2010 Inhaltsverzeichnis Überblick Navigationsnachricht Vergleich der Satellitensignale Beispiele von GLONASS-Empfängern Zukunft von GLONASS 1 Vergleich zwischen
GPS Global Positioning System
GPS Global Positioning System Navigation ist ein altes Problem. Generationen haben daran gearbeitet und es stetig den technischen Gegebenheiten angepasst und weiterentwickelt: Entwicklungsstufen: Sterne,
GPS (Global Positioning System)
GPS (Global Positioning System) HF-Praktikum Referat von : Sabine Sories Thomas Schmitz Tobias Weling Inhalt: - Geschichte - Prinzip - Fehlerquellen - Zukünftige Systeme 1 GPS (Global Positioning System)
GPS: Wie funktioniert es? Ausarbeitung. KAMEL BEN YEDDER FH Wiesbaden, Fachseminar, Herr Prof. Dr. Linn
GPS: Wie funktioniert es? Ausarbeitung KAMEL BEN YEDDER FH Wiesbaden, Fachseminar, Herr Prof. Dr. Linn Inhalt 1. Einleitung 2. Geschichte 3.Aufbau 3.1Weltraumsegment (Satelliten) 3.1.1 Block I Satelliten
Globale Navigations Satelliten Systeme - GNSS
Globale Navigations Satelliten Systeme - GNSS Inhalt Sputnik 1 und die Folgen Die ersten GNSS - Navy Navigation Satellite System und Tsikada Entwicklung des Global Positioning System und des Glonass Die
Übertragungskanäle. FDMA - Funktionsweise TDMA. Frequency Division Duplex (FDD)
Übertragungskanäle FDMA - Funktionsweise Das gesamte spektrum wird in feste Bereiche (Kanäle) unterteilt, die zur Übertragung verwendet werden können. Um Interferenzen zu vermeiden, müssen Schutzabstände
Aufgabe 1 - Pegelrechnung und LTI-Systeme
KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können
Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 3 (6. Mai 10. Mai 2013)
Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Nadine Herold, M.Sc. Dipl.-Inf. Stephan Posselt Tutorübung zur Vorlesung Grundlagen
Übung zu Drahtlose Kommunikation. 6. Übung
Übung zu Drahtlose Kommunikation 6. Übung 26.11.2012 Aufgabe 1 (Multiplexverfahren) Erläutern Sie mit wenigen Worten die einzelnen Multiplexverfahren und nennen Sie jeweils ein Einsatzgebiet/-möglichkeit,
IHK. Satellitennavigation. GPS, GLONASS und GALILEO. von Dr.-Ing. Gerhard H. Schildt o.univ.-professor an der Technischen Universität Wien
Satellitennavigation GPS, GLONASS und GALILEO von Dr.-Ing. Gerhard H. Schildt o.univ.-professor an der Technischen Universität Wien IHK V M i INFORMATIONSTECHNIK INFO INHALTSVERZEICHNIS Vorwort 5 1 Physikalische
Kanalkapazität. Gestörter Kanal. Grundlagen der Rechnernetze Physikalische Schicht 25
Kanalkapazität Gestörter Kanal Grundlagen der Rechnernetze Physikalische Schicht 25 Signalstärken und Dämpfung Spannung U, Strom I, Leistung P und Energie E: Dämpfung Signalstärke Distanz Grundlagen der
Übertragung, Modulation. Vorlesung: Grundlagen der Videotechnik
Vorlesung: Grundlagen der Videotechnik Übertragung, Modulation 12/19/16 Seite 1 Übertragung, Modulation Wie wird das Bild oder Video vom Sender zum Empfänger übertragen? Sender: Videoinformation nötig
Übung 4: Physical layer and limits
Wintersemester 217/218 Rechnernetze Universität Paderborn Fachgebiet Rechnernetze Übung 4: Physical layer and limits 217-11-3 1. Basisband/Breitband Diese Aufgabe soll den Unterschied zwischen Basisband-
Grundlagen der Positionsbestimmung mit GPS
Grundlagen der Positionsbestimmung mit GPS 2D-Positionsbestimmung mit Radiowellen Messen der Zeitdifferenz, die ein Radiosignal benötigt, um von der Sendestation zur Empfangsstation zu gelangen. Die Zeitdifferenz
Fachprüfung. Signal- und Systemtheorie
Fachprüfung Signal- und Systemtheorie 15. September 2010 Prüfer: Prof. Dr. P. Pogatzki Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Formelblatt (2 DIN A4-Seiten) Name: Vorname: Matr.-Nr.: Unterschrift:
dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]:
dbw und dbm dbw und dbm zur logarithmischen Darstellung einer Leistungsgröße P [W]: Beispiel: Leistungsgröße P out [dbw] bei Leistungsgröße P in [dbw] und Dämpfung L [db] Leistungsgröße P out [W] Grundlagen
Aktuelle Trends in der satellitengestützten Positionierung
GEOMATIK News 2014 Aktuelle Trends in der satellitengestützten Positionierung B. Richter, Business Director GNSS Leica Geosystems AG, Schweiz 12. November 2014 Inhalt 1. GPS Modernisierung 2. GLONASS Modernisierung
Spektrum und Bandbreite
Spektrum und Bandbreite 0.0 0 1f 2f 3f 4f 5f 6f Spektrum: Bandbreite: Grundlagen der Rechnernetze Physikalische Schicht 12 Aperiodische Signale in der Frequenzdomäne Bildquelle: de.wikipedia.org/wiki/frequenzspektrum
Übung zu Drahtlose Kommunikation. 1. Übung
Übung zu Drahtlose Kommunikation 1. Übung 22.10.2012 Termine Übungen wöchentlich, Montags 15 Uhr (s.t.), Raum B 016 Jede Woche 1 Übungsblatt http://userpages.uni-koblenz.de/~vnuml/drako/uebung/ Bearbeitung
Abschlussprüfung Nachrichtentechnik 03. August 2015
Abschlussprüfung Nachrichtentechnik 03. August 2015 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander
ZHW, NTM, 2005/06, Rur 1. Übung 6: Funkkanal
ZHW, NTM, 2005/06, Rur 1 Aufgabe 1: Strahlungsdiagramme. Übung 6: Funkkanal Gegeben sind die Strahlungsdiagramme des (λ/2-) Dipols und des (λ/4-) Monopols (Stabantenne auf einer Grundfläche). Welche Antenne
Kanalkapazität. Grundlagen der Rechnernetze Physikalische Schicht 25
Kanalkapazität Gestörter t Kanal Grundlagen der Rechnernetze Physikalische Schicht 25 Signalstärken und Dämpfung Spannung U, Strom I, Leistung P und Energie E: Dämpfung Signalstärk ke Distanz Grundlagen
Einführung in NTM. Roland Küng, 2013
Einführung in NTM Roland Küng, 2013 1 Where to find the information? Skript Slides Exercises Lab https://home.zhaw.ch/~kunr/ntm.html 2 3 Aufgabe beim Entwurf eines nachrichtentechnischen Systems Erzeugung
Systeme II. Christian Schindelhauer Sommersemester Vorlesung
Systeme II Christian Schindelhauer Sommersemester 2006 6. Vorlesung 11.04.2006 [email protected] 1 Das elektromagnetische Spektrum leitungsgebundene Übertragungstechniken verdrillte DrähteKoaxialkabel
d 1 P N G A L S2 d 2
Abschlussprüfung Nachrichtentechnik 28. Juli 2014 Name:... Vorname:... Matrikelnr.:... Studiengang:... Aufgabe 1 2 3 4 Summe Note Punkte Hinweis: Die Teilaufgaben (a), (b) und (c) können unabhängig voneinander
Modulation. Demodulation. N-ary modulation scheme: number of different symbols! i.e., this can convey log(n) Bits per symbol
Terminology Modulation 1011 Demodulation Bit(s) Symbol Data rate: Number of Bits per seconds Symbol rate: Number of Symbols per second N-ary modulation scheme: number of different symbols! i.e., this can
Praktikum 7: Spread Spectrum - Technik
ZHAW, NTM1, HS2012, 1(8) Praktikum 7: Spread Spectrum - Technik 1. Ziele Aus ursprünglich militärischen Zielen zur Tarnung von Signalen hat sich unter dem Namen Spread Spectrum Technique (SST) eine erfolgreiche
Prinzipien der Signalaufbereitung im UMTS Mobilfunk
Prinzipien der Signalaufbereitung im UMTS Mobilfunk Darko Rozic Lehrstuhl für Messtechnik Universität Wuppertal Einführung Seit der Einführung des Global System for Mobile Communications (GSM) um 1990
CCD-Kameras und GPS für astronomische Anwendungen
CCD-Kameras und GPS für astronomische Anwendungen DGP-Fortbildungskurs für Physiklehrer 2004 / Bad Honnef Dr. Frank Fleischmann OES Optische und elektronische Systeme GmbH 91349 Egloffstein Sternwarte
WARUM FINDET MEIN SMARTPHONE OHNE EINSTEIN SEINEN WEG NICHT?
WARUM FINDET MEIN SMARTPHONE OHNE EINSTEIN SEINEN WEG NICHT? Jürgen R. Reuter, DESY Science Café, DESY 28.11.2012 ALLTAG: (GPS-)NAVIGATION MIT IPHONE Smartphone enthält GPS- Empfänger Positionsbestimmung
2.7 Elektromagnetische Signale der GNSS
2.7 Elektromagnetische Signale der GNSS 2.7 Elektromagnetische Signale der GNSS 2.7.1 Frequenzzuweisung Signalbänder der GNSS Die Übertragung von Informationen durch Radiowellen (elektromagnetische Wellen
Grundlagen der Rechnernetze. Physikalische Schicht
Grundlagen der Rechnernetze Physikalische Schicht Übersicht Frequenz, Spektrum und Bandbreite Kanalkapazität Encoding und Modulation Beispiele für Übertragungsmedien Grundlagen der Rechnernetze Physikalische
Positionsbestimmung mit GPS-Satelliten
Bild 5.7_1 Das satellitengestützte Radionavigationssystem NAVSTAR GPS (NAVigation System with Time And Ranging Global Positioning System) wird seit 1973 im Auftrag des US-Verteidigungministeriums (Department
Übertragungstechnik. Übertragungstechnik. Copyright Chr. Schaffer, Fachhochschule Hagenberg, MTD 1
Übertragungstechnik Copyright Chr. Schaffer, Fachhochschule Hagenberg, MTD 1 Allgemeines Schema einer Nachrichtenübertragung Modulator Sender Störungen Strecke Nachrichtenquelle Nachrichtensenke Demodulator
GPS Analogieexperiment
Didaktik der Physik, Ruhr-Universität Bochum, www.dp.rub.de GPS Analogieexperiment Einleitung Das Global Positioning System (GPS) erlangt zunehmende Bedeutung in vielen technischen Anwendungen. Im täglichen
Modulation und Kanalzugriffsverfahren in Mobilfunknetzen. Hauptseminar Maik Bloß
Modulation und Kanalzugriffsverfahren in Mobilfunknetzen Hauptseminar Maik Bloß 1 Modulation 1.1 Einführung 1.2 ASK 1.3 FSK 1.4 PSK 1.5 MSK 1.6 OFDM Gliederung Gliederung 2 Kanalzugriffsverfahren 2.1 Einführung
MHz sind verglichen mit der Wellenlänge von m die Welche der aufgelisteten Frequenzen liegt im 15m Amateurfunkband?
1. Was versteht man unter Spannungsabfall? Restspannung einer entladenen Batterie. Ein mehr oder weniger grosser Spannungsverlust, der nicht mit dem ohmschen Gesetz erklärt werden kann. c) Man bezeichnet
Galileo und Anwendungen. GPS/Galileo/GLONASS-Frontend
GPS/Galileo/GLONASS-Frontend ITG-Diskussionssitzung Galileo und Anwendungen GPS/Galileo/GLONASS-Frontend Sascha Jakoblew, Robert Bosch GmbH 05. Juni 2008, Oberpfaffenhofen 1 GPS/Galileo/GLONASS-Frontend
Positionsbestimmung im Weltraum mittels Distanzmessungen
Positionsbestimmung im Weltraum mittels Distanzmessungen Andrea Maier Institut für Weltraumforschung Abteilung für Satellitengeodäsie Graz in Space 6.-7. September, 2012 1 / 23 Allgemein Was ist eine Position?
WCOM2-Zwischenprüfung
ZHAW, Rumc, 1 WCOM2-Zwischenprüfung 24 Punkte Name: Vorname: 1: 2: 3: 4: 5: Punkte: Note: Achtung: Bitte begründen Sie jede Antwort kurz, es gibt sonst keine Punkte. Aufgabe 1: Zellularfunk. 5 Punkte Ein
Positionsbestimmung mit GPS-Satelliten
Bild 5.8_1 Das satellitengestützte Radionavigationssystem NAVSTAR GPS (NAVigation System with Time And Ranging Global Positioning System) wird seit 1973 im Auftrag des US-Verteidigungministeriums (Department
Grundlagen der satellitengestützten Navigation. Sommeruniversität Graz Klaus Legat
Grundlagen der satellitengestützten Navigation Sommeruniversität Graz 2004 Klaus Legat [email protected] Institut für Navigation und Satellitengeodäsie, Technische Universität Graz Inhalte Einführung Funktionsweise
Kleine Rückblende. Für unsere Zwecke gab bzw. gibt es dazu im Wesentlichen drei Möglichkeiten:
Kleine Rückblende Wir beschäftigen uns mit Geodaten. Diese haben die Eigenschaften verortet und räumlich verteilt und bestehen aus Geometrie- und Sachinformationen. Man könnte also fragen was? und wo?.
Physikalische Grundlagen der Kommunikation
Physikalische Grundlagen der Kommunikation Prof. Dr. Clemens H. Cap http://wwwiuk.informatik.uni-rostock.de http://www.internet-prof.de 2003 C. Cap Koordinaten tragung von Information durch nden eines
Funktionsweise und Status Globaler Navigationssatellitensysteme (GNSS)
Funktionsweise und Status Globaler Navigationssatellitensysteme (GNSS) Dr. E. Engler DLR, Institut für Kommunikation und Navigation Folie 1 Inhalt GNSS: Funktionsweise, Messprinzipien, Messfehler und Qualitätskenngrößen
Systeme II 8. Die physikalische Schicht (Teil 4)
Systeme II 8. Die physikalische Schicht (Teil 4) Thomas Janson, Kristof Van Laerhoven*, Christian Ortolf Folien: Christian Schindelhauer Technische Fakultät : Rechnernetze und Telematik, *: Eingebettete
Übung 8: Digitale Modulationen
ZHW, NTM, 25/6, Rur ufgabe : Modulationsarten. Übung 8: Digitale Modulationen Die Datensequenz wird bei einer festen Bitrate von Mb/s mittels 3 verschiedener Modulationsarten übertragen. Charakterisieren
Inhalt 1 Einführung 2 Ausbreitungsdämpfung
Inhalt 1 Einführung 1 1.1 Entstehungsgeschichte der Mobilkommunikation... 3 1.2 Grundprobleme des zellularen Mobilfunks... 8 1.2.1 Ausbreitungsdämpfung... 8 1.2.2 Mehrwegeausbreitung... 10 1.2.3 Begrenztes
GPS - Grundlagen. Bezirksregierung Düsseldorf - Dezernat 33
GPS - Grundlagen Einleitung/Überblick Aufbau des GPS GPS-Signale Codephasenmessung (Navigation) Trägerphasenmessung (Geodätische Messung) NAVSTAR - GPS... steht für... NAVigation Satellite Timing And Ranging
Global Positioning System (GPS)
Global Positioning System (GPS) Begriff GPS = Global Positioning System Ist prinzipiell jedes weltweite Positionierungssystem (auch Galileo, GLONASS,..) GPS ist synonym für NAVSTAR-GPS NAVSTAR-GPS = Navigational
Übung 4. Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer
Übung 4 Tutorübung zu Grundlagen: Rechnernetze und Verteilte Systeme (Gruppen Mo-T1 / Di-T11 SS 2016) Dennis Fischer Technische Universität München Fakultät für Informatik 09.05.2016 / 10.05.2016 1/12
Positionsbestimmung per GPS (Global Positioning System) Seminararbeit
Positionsbestimmung per GPS (Global Positioning System) Seminararbeit vorgelegt von Jan-Hendrik Borth Betreuer: Dr. Merten Joost Institut für Integrierte Naturwissenschaften, Abteilung Physik Koblenz,
Neue Möglichkeiten mit GPS, GLONASS, Galileo. Dipl.-Ing. Jürgen Alberding EuroNav Service GmbH Lilienthalstr. 3B Schönefeld (b.
Neue Möglichkeiten mit GPS, GLONASS, Galileo Dipl.-Ing. Jürgen Alberding EuroNav Service GmbH Lilienthalstr. 3B 12529 Schönefeld (b. Berlin) Überblick GPS und dessen Weiterentwicklung GLONASS Ausbaustand
Nonreturn to Zero (NRZ)
Nonreturn to Zero (NRZ) Hi 0 Hi 0 Grundlagen der Rechnernetze Physikalische Schicht 40 Multilevel Binary 0 1 0 0 1 1 0 0 0 1 1 0 0 Grundlagen der Rechnernetze Physikalische Schicht 41 Das Clocking Problem
3. Fourieranalyse und Amplitudenspektren
3.1 Fourieranalyse 3.1.1 Einleitung Laut dem französischen Mathematiker Fourier (1768-1830) kann jedes periodische Signal in eine Summe von sinusförmigen Signalen mit unterschiedlichen Amplituden, Frequenzen
Global Positioning System (GPS)
Global Positioning System (GPS) Grundlagen Anwendungen Fehlermöglichkeiten 1 Geschichte US Army GPS 1978 1. Block I Satellit 1988 10. Block I Satellit 1989 1. Block II Satellit 1994 24. Block II Satellit
Geräte: Marinegeräte, Handyformate, Einbaugeräte, GPS-Maus, PDAs. PDF created with pdffactory trial version
26. GPS - Global Positioning System 26.1. GPS Geräte Amerikanisches Satellitennavigationssystem. Zivile & militärische Navigation: Satellitenkonstellation, Karte mit Wegpunkten, Reisestatistik, Höhenprofil...
Grundlagen der Rechnernetze. Physikalische Schicht
Grundlagen der Rechnernetze Physikalische Schicht Übersicht Frequenz, Spektrum und Bandbreite Kanalkapazität Encoding und Modulation Beispiele für Übertragungsmedien Grundlagen der Rechnernetze Physikalische
GPS System. NAVSTAR-System besteht aus 3 Komponenten. Geschichte Grundfunktion Wie funktioniert GPS?
GPS System Gliederung Die Position der Satelliten Die Zeit ist das Wesentliche Die eigentliche Positionenbestimmung Was ist GPS? Geschichte Grundfunktion Wie funktioniert GPS? Eingeschränkte Signale Mögliche
Puls-Code-Modulation. Thema: PCM. Ziele
Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden
Geräte: Marinegeräte, Handyformate, Einbaugeräte, GPS-Maus, PDAs.
27. GPS - Global Positioning System 27.1. GPS Geräte Amerikanisches Satellitennavigationssystem. Zivile & militärische Navigation: Satellitenkonstellation, Karte mit Wegpunkten, Reisestatistik, Höhenprofil...
Überblick über Duplex - und Multiple-Access - Verfahren
Überblick über Duplex - und Multiple-Access - Verfahren Teilnehmer 1 Teilnehmer 2 Teilnehmer 3 Roland Pfeiffer 4. Vorlesung Auswahl eines Air Interfaces Ihre Firma hat einen Frequenzbereich zugeteilt bekommen.
Digitale Bandpass Übertragung. Roland Küng, 2009
Digitale Bandpass Übertragung Roland Küng, 2009 1 Intro: Bandpass System ADSL2 (2-256-QAM) ISDN Pulsformung 2B1Q ADSL Upstream OFDM Downstream OFDM 1 MB/s 8 MB/s 2 Basisband RF Was ändert sich? Sender
Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB
Die Schicht unterhalb von GSM/UMTS, DSL, WLAN & DVB Wie kommen die Bits überhaupt vom Sender zum Empfänger? (und welche Mathematik steckt dahinter) Vergleichende Einblicke in digitale Übertragungsverfahren
Übung zu Drahtlose Kommunikation. 4. Übung
Übung zu Drahtlose Kommunikation 4. Übung 12.11.2012 Aufgabe 1 Erläutern Sie die Begriffe Nah- und Fernfeld! Nahfeld und Fernfeld beschreiben die elektrischen und magnetischen Felder und deren Wechselwirkungen
Ein Überblick über MIMO- Systeme und deren Einsatzgebiete.
Fakultät Informatik - Institut für Technische Informatik - Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Vortrag zum Hauptseminar Ein Überblick über MIMO- Systeme und deren Einsatzgebiete.
GPS - System. Silva März 07.10.2004
GPS - System Silva März 07.10.2004 Gliederung Was ist GPS? Geschichte Grundfunktion Wie funktioniert GPS? Die Position der Satelliten Die Zeit ist das Wesentliche Die eigentliche Positionenbestimmung Eingeschränkte
Pegelverhältnisse im Nahbereich von 2m-Contest-Stationen
Pegelverhältnisse im Nahbereich von 2m-Contest-Stationen (Vortrag von DL1DQW anlässlich der Weihnachtsfeier 2010 des OV S04) Im Zusammenhang mit unseren 2m-Contest-Aktivitäten kam es in der Vergangenheit
Kapitel 4 Leitungscodierung
Kapitel 4 Leitungscodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv
(Indoor)-Lokalisation
(Indoor)-Lokalisation Mathias Pelka http://www.cosa.fh-luebeck.de 19.05.2014 2014 Forschung erforschen 1 Global Positioning System (NAVSTAR GPS) Ermöglicht die Positionsbestimmung Zwei Frequenzen (L1,
Systeme II. Christian Schindelhauer Sommersemester Vorlesung
Systeme II Christian Schindelhauer Sommersemester 2006 5. Vorlesung 10.04.2006 [email protected] 1 Basisband und Breitband Basisband (baseband) Das digitale Signal wird direkt in Strom-
Grundlagen GPS. Copyright by Compass Yachtzubehör
Grundlagen GPS Was bedeutet GPS? Wofür wurde GPS entwickelt? Geschichtlicher Rückblick Aufbau des Satelliten Systems Funktionsweise des GPS-Systems Genauigkeit des GPS Systems und deren Faktoren WAAS /
Demo Off-Site Survey Report. Demo Off-Site Survey Report
1 Report Erdgeschoss Positionen der Access Points im Erdgeschoss 2 Signalstärke für Erdgeschoss im 5 GHz Band Signalstärke gelegentlich auch als Abdeckung bezeichnet ist die grundlegendste Anforderung
Galileo Herausforderung und Gewinn für die geodätische Anwendung
Galileo Herausforderung und Gewinn für die geodätische Anwendung Urs Hugentobler Forschungseinrichtung Satellitengeodäsie und Geodätische Geodäsie Technische Universität München, 13. November 007 und Physikalische
c f 10. Grundlagen der Funktechnik 10.1 Elektromagnetische Wellen
10.1 Elektromagnetische Wellen Ein Strom mit einer Frequenz f größer als 30kHz neigt dazu eine elektromagnetische Welle zu produzieren. Eine elektromagnetische Welle ist eine Kombination aus sich verändernden
Verfahren zur Lokalisierung von Schallquellen im Raum
Hauptseminar Technische Informationssysteme Verfahren zur Lokalisierung von Schallquellen im Raum Ali Jaber Dresden, 05.11.2012 Überblick 1. Motivation 2. Ortungsverfahren Time Delay of Arrival (TDOA)
GPS Global Positioning System
GPS Global Positioning System Fast jeder kennt es, viele benutzen es bereits. 12.05.2011 Radtouren in Zeiten des Internets 1 Was ist GPS? GPS (Global Positioning System) 3D Positionsbestimmung durch Laufzeitmessung
NTM1-Modul Zwischenprüfung
ZHAW, ASV, HS2008, 1 NTM1-Modul Zwischenprüfung Name: 5 + 5 + 5 + 5 + 5 + 5 = 30 Punkte Vorname: 1: 2: 3: 4: 5: 6. Punkte: Note: Teilaufgaben sind möglichst unabhängig gehalten. Benutzen sie immer die
Ohne Einstein kein GPS
Ohne Einstein kein GPS Peter Hertel Fachbereich Physik 03.11.2005 Übersicht Was ist das GPS? Wie funktioniert GPS? Technische Probleme Grundlegende Probleme Ausblick 1 Was ist das GPS? Global positioning
Einführung in die Nachrichtenübertragung
Klausur Einführung in die Nachrichtenübertragung Vorlesung und Rechenübung - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:................................... Matr.Nr:..........................
System Simulation of a 79 GHz UWB-Pulse Radar
Lehrstuhl Technische Elektronik www.lfte.de Universität Erlangen-Nürnberg Lehrstuhl Technische Elektronik Prof. Dr.-Ing. Dr.-Ing. habil R. Weigel System Simulation of a 79 GHz UWB-Pulse Radar VDE / ITG
Was sind Dezibel (db)?
Was sind Dezibel (db)? Jürgen Stuber 2013-05-01 Jürgen Stuber () Was sind Dezibel (db)? 2013-05-01 1 / 13 Dezibel Logarithmische Skala zur Angabe von Leistung oder Intensität (Leistung pro Fläche) Jürgen
Aufgabe 1 (20 Punkte)
Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.
Übung 1: TDMA / FDMA / Zellulartechnik
ZHAW WCOM2, Rumc, 1/5 Übung 1: TDMA / FDMA / Zellulartechnik Aufgabe 1: Maximale GSM-Zellgrösse. Am Anfang einer GSM-Verbindung benutzt die Basisstation (BS) und die Mobilstation (MS) den folgenden kurzen
Physikalische Grundlagen - analog -
Freiwillige Feuerwehren Meschede & Eslohe Fachgebiet Seite 1 Physikalisch Grundlagen - Analog - Lernziel: Der Lehrgangsteilnehmer soll die physikalischen Grundlagen für den analogen Sprechfunk der BOS
Satellitennavigation-SS 2011
Satellitennavigation-SS 011 LVA.-Nr. 183.060 Gerhard H. Schildt Buch zur Vorlesung: ISBN 978-3-950518-0-7 erschienen 008 LYK Informationstechnik GmbH www.lyk.at [email protected] Satellitennavigation GPS,
Musterlösung zur Aufgabe A1.1
Abschnitt: 1.1 Prinzip der Nachrichtenübertragung Musterlösung zur Aufgabe A1.1 a) Im markierten Bereich (20 Millisekunden) sind ca 10 Schwingungen zu erkennen. Daraus folgt für die Signalfrequenz näherungsweise
Die versteckte Kommunikation
Die versteckte Kommunikation Techniken der Steganographie Marcus Nutzinger Institut für IT-Sicherheitsforschung Fachhochschule St. Pölten IT-Security Community Xchange 2009 6. November 2009 Einführung
Spread Spectrum. Frequency Hopping Spread Spectrum (FHSS) Grundlagen der Rechnernetze Medienzugriffskontrolle 82
Spread Spectrum Frequency Hopping Spread Spectrum (FHSS) Grundlagen der Rechnernetze Medienzugriffskontrolle 82 FHSS Beispiel Spreading Code = 58371462 Nach 8 Intervallen wird der Code wiederholt Bildquelle:
