DATENSTRUKTUREN UND ALGORITHMEN

Größe: px
Ab Seite anzeigen:

Download "DATENSTRUKTUREN UND ALGORITHMEN"

Transkript

1 DATENSTRUKTUREN UND ALGORITHMEN 2 Ist die Datenstruktur so wichtig??? Wahl der Datenstruktur wichtiger Schritt beim Entwurf und der Implementierung von Algorithmen Dünn besetzte Graphen und Matrizen bilden keine Ausnahme Bei dünn besetzten Matrizen gegenseitiger Einfluss: Algorithmen bestimmen Wahl der Datenstruktur Wahl der Datenstruktur bestimmt Algorithmen Analyse der Algorithmen im RAM-Modell und im I/O-Modell 3

2 2.: EM- bzw. I/O-Modell Motivation Ein Rechner, insbesondere der Speicher, ist hierarchisch aufgebaut Register... Grund:??? Wichtig: Blockbasierter Zugriff günstiger als zufälliger Konzept lässt sich auf andere Bereiche übertragen: Parallele Kommunikation Stapelweise Abarbeitung 4 Speicherhierarchie Blockweise Abarbeitung unter Ausnutzung von Lokalität Chip On-/off-Chip, geteilt/privat Register CPU L Cache ~ 64 KB L2 Cache ~ 4 MB Main Memory (RAM) ~ 8 GB L cache hit: -3 Zyklen L2 cache hit: 0-5 Zyklen RAM (cache) hit: Zyklen 5

3 I/O-Modell = EM-Modell Speicher ist hierarchisch organisiert: Register Caches (L, L2, L3) RAM SSD, HDD Cache External Memory-Modell: 2 Ebenen: Schnell und langsam Schnell: Cache oder (Haupt)Speicher Langsam: (Haupt)Speicher oder Platte Benennung nur Termini, Prinzipien gelten für jeden Ebenenübergang RAM 6 Modell-Parameter Speicher partitioniert in Blöcke der Größe L (Größe einer Cachezeile) Größe des schnellen Speichers ist Z Langsamer Speicher ist nicht limitiert in der Größe Referenziertes Datum nicht im Cache: Cache-Fehlzugriff Blocktransfer vom RAM in den Cache Komplexitätsmaß: Zahl der Cache-Fehlzugriffe (I/Os) Frage: Welche Komplexität (Anzahl I/O-Operationen) hat das Scannen eines Arrays der Länge N? 7

4 Externes Sortieren Ausnahmsweise kein Graphen- oder Matrixalgorithmus! Eingabe: Zahlenfolge A der Länge N >> Z Ausgabe: A sortiert abgelegt im langsamen Speicher Externes Merge-Sort am Beispiel (s. Wikipedia): Sortiere 400 MB Daten mit 00 MB schnellem Speicher. Lese 00 MB Daten in schnellen Speicher und sortiere diese mit einem internen Algorithmus, bspw. Quicksort 2. Schreibe die sortierten Daten in den langsamen Speicher 3. Wiederhole ) und 2), bis alle 00 MB-Blöcke sortiert sind. 4. Lies die ersten 20 MB (= 00 MB / (4 Blöcke + )) jedes sortierten Blocks in den schnellen Speicher, Rest: Ausgabepuffer 5. Führe 4-fach-Merge(-Sort) durch und speichere Ergebnis im Ausgabepuffer. Wenn Ausgabepuffer voll, dann in langsamen Speicher schreiben. Wenn Eingabepuffer leer, dann nächsten Block lesen 8 Skizze und Zeitkomplexität Externe Sortierphase: O(N/L) I/Os Merge-Phase: k-faches Verschmelzen mit k = Z/2L Zeitkomplexität: O(N/L * log Z/L (N/L)) I/Os = O(sort(N)) 9

5 Externes Sortieren, alternatives Beispiel 52 GB Daten sortieren, interner Speicher der Größe 4 GB Annahme: 8-faches Verschmelzen besonders effizient Frage: Wie läuft der Algorithmus nun ab? 28 Iterationen der ersten Phase => 28 Blöcke, in sich sortiert (iss). Verschmelziter.: 8-faches Verschmelzen => 28/8 = 6 Blöcke, iss 2. Verschmelziter.: 8-faches Verschmelzen => 6/8 = 2 Blöcke, iss 3. Verschmelziter.: 2-faches Verschmelzen => 2/2 = Block, vollständig sortiert Zeitkomplexität: O(N/L * log Z/L (N/L)) I/Os = O(sort(N)) 20 Analyse im Detail Merge-Sort intern:. Phase: Erstellung sortierter Folgen 2. Phase: Verschmelzen von zwei sortierten Folgen Abbruch, wenn nur noch eine sortierte Folge übrig bleibt Analyse des internen Algorithmus im I/O-Modell:. Phase: keine I/Os 2. Phase: Verschmelzen von S und S 2 benötigt O( + ( S + S 2 ) / L) I/Os (scanning) Jedes Element ist in O(log N) Verschmelzungs-Ops. involviert Es gibt O(N) Verschmelzungs-Ops. (Baum!) => O(N + (N / L) log 2 N) I/Os 2

6 Illustration Siehe Tafel! 22 Das muss schneller gehen! Beschleunigung durch veränderte. Phase: Sicherstellen, dass 2. Phase mit N / Z sortierten Folgen startet (anstelle von N) Dazu: N / Z Stücke der Größe Z bilden, in den internen Speicher holen, dort sortieren und wieder zurückschreiben Aufwand: O((N / Z) * (Z / L)) = O(N / L) I/Os Kosten für neue 2. Phase wg. weniger Sequenzen: O(N / Z + (N / L) log 2 (N / Z)) I/Os Gesamt: O((N / L) log 2 (N / L)) I/Os Grund: N / Z < N / L, Z <= poly(l) Zum Vergleich, vorher: O(N + (N / L) log 2 N) I/Os 23

7 Basis des log drücken Beschleunigung durch veränderte 2. Phase: Sicherstellen, dass Zahl der Sequenzen sich um einen Faktor Ω(Z / L) reduziert von einer Iteration zur nächsten Dann: O(log Z / L (N / L)) Iterationen reichen aus! Darum: k-faches Verschmelzen mit k = Z / 2L Sequenzen Beispiel: Siehe Tafel! Gesamtlaufzeit: O(N/L * log Z/L (N/L)) I/Os = O(sort(N)) 24 Zwischenfazit EM-Modell Speicherhierarchie wichtiger Aspekt eines Rechners Übergang der Ebenen universell Blockweise Abarbeitung wichtig Dazu Lokalität ausnutzen! Möglichst wenig im Speicher springen! Wesentliche Operationen mit Laufzeiten: Scannen: scan(n) = O(N / L) I/Os Sortieren: sort(n) = O(N/L * log Z/L (N/L)) I/Os 25

8 Minimum Spanning Forest Algorithmus für RAM-Modell von Jarnik und Prim Eingabe: Ungerichteter gewichteter Graph G = (V, E) Ausgabe: Wald von Spannbäumen minimalen Gewichts Algorithmus (Skizze): Starte mit beliebigem Knoten Iteriere: Verbinde unbesuchten Knoten mit Baum, der über die leichteste Kante verbunden ist Wiederhole für weitere ZHK Prioritätswarteschlange speichert Knoten Laufzeit: O(m log n) mit binären Heaps O(m + n log n) mit Fibonacci-Heaps 26 Beispiel

9 Minimum Spanning Forest Algorithmus für EM-Modell von [Arge et al., SWAT 00] Eingabe und Ausgabe wie eben Änderung des Algorithmus: Prioritätswarteschlange PQ für EM-Modell PQ speichert nun Kanten anstatt Knoten: Keine Aktualisierungen nötig PQ enthält (mindestens) alle Kanten, die Knoten des Baums mit Knoten außerhalb verbinden Es können darin auch Kanten sein, die zwei Baumknoten miteinander verbinden Iteration des Algorithmus (sei u der aktuelle Knoten): Extract-min aus PQ für Kante (u, v) Nur falls v noch nicht im Baum: Füge v zum Baum hinzu, füge seine inzidenten Kanten außer (u, v) in PQ ein 28 Analyse des Algorithmus Korrektheit Jeder Knoten im Baum fügt seine inzidenten Kanten hinzu PQ kann daher zwei Kopien derselben Kante beinhalten Annahme: Alle Kantengewichte sind verschieden Wenn Kante e aus PQ entfernt wird, ist ihre Kopie mglw. nächstes Min. => zweites extract-min zum Test, ob v im Baum Bei gleichem Startknoten (pro ZHK) und eindeutigen Kantengewichten: Reihenfolge der bearbeiteten Knoten wie bei RAM- Algorithmus => gleiches Endergebnis 29

10 Analyse des Algorithmus Laufzeit Die Adjazenzliste jedes Knotens wird einmal gelesen: O(n + m/l) I/Os O(m) Einfüge- und extract-min-operationen PQ: Einfügen und extract-min von m Elementen in O(/L log Z/ (m/l)) amortisierter Zeit L Laufzeit: O((n + m/l) + m * log Z/L (m/l) / L) = O(n + sort(m)) Schnellere EM-Verfahren existieren 30

Das EM-Modell. Vorlesung 3: Lubys Algorithmus. Graphenalgorithmen und lineare Algebra Hand in Hand

Das EM-Modell. Vorlesung 3: Lubys Algorithmus. Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung 3: Lubys Algorithmus Das EM-Modell 85 Nachsatz: Halbringnotation! Auch Bücher enthalten Fehler...! A op 1.op 2 v: Abkürzung für Matrix-Vektor-Multiplikation! Vereinbarung für Reihenfolge: A +.*

Mehr

Vorlesung 4: DATENSTRUKTUREN UND ALGORITHMEN

Vorlesung 4: DATENSTRUKTUREN UND ALGORITHMEN Vorlesung 4: DATENSTRUKTUREN UND ALGORITHMEN 107 Wiederholung zur Speicherhierarchie! EM- bzw. I/O-Modell: Übergang der Ebenen universell! Blockweise Abarbeitung unter Ausnutzung von Lokalität Chip On-/off-Chip,

Mehr

Vorlesung 5: DATENSTRUKTUREN UND ALGORITHMEN

Vorlesung 5: DATENSTRUKTUREN UND ALGORITHMEN Vorlesung 5: DATENSTRUKTUREN UND ALGORITHMEN 125 Motivation! Wahl der Datenstruktur wichtiger Schritt beim Entwurf und der Implementierung von Algorithmen! Dünn besetzte Graphen und Matrizen bilden keine

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

3.2 Generischer minimaler Spannbaum-Algorithmus

3.2 Generischer minimaler Spannbaum-Algorithmus 3.2 Generischer minimaler Spannbaum-Algorithmus Initialisiere Wald F von Bäumen, jeder Baum ist ein singulärer Knoten (jedes v V bildet einen Baum) while Wald F mehr als einen Baum enthält do wähle einen

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 31.01.2013 Algorithmen für externen Speicher INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012 Algorithmen und Datenstrukturen Tafelübung 14 Jens Wetzl 8. Februar 2012 Folien Keine Garantie für Vollständigkeit und/oder Richtigkeit Keine offizielle Informationsquelle LS2-Webseite Abrufbar unter:

Mehr

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich fr Algorithmen und Datenstrukturen Institut fr Computergraphik und Algorithmen Technische Universität Wien One of the few resources increasing faster

Mehr

Termin 7: DATENSTRUKTUREN UND ALGORITHMEN

Termin 7: DATENSTRUKTUREN UND ALGORITHMEN Termin 7: DATENSTRUKTUREN UND ALGORITHMEN 133 Modell-Annahmen Annahme: Für eine dünn besetzte Matrix der Dimensionen M x N gilt nnz = Ω(N, M). Annahme: Der schnelle Speicher ist nicht groß genug, um eine

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 208 (Algorithmen & Datenstrukturen) Vorlesung 4 (..208) Graphenalgorithmen III Algorithmen und Komplexität Bäume Gegeben: Zusammenhängender, ungerichteter Graph G = V, E Baum: Zusammenhängender,

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Algorithm Engineering. Alexander Kröller, Abteilung Algorithmik, IBR

Algorithm Engineering. Alexander Kröller, Abteilung Algorithmik, IBR #7 Terminchaos Nächste Vorlesungen: 27. 5. Vertretung durch Prof. Fekete 3. 6. Exkursionswoche 10. 6. Vertretung durch N.N. 17. 6. back to normal... Experiment Durchlaufe zwei gleichgrosse Arrays: Sortierte

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 17 (8.7.2014) Minimale Spannbäume II Union Find, Prioritätswarteschlangen Algorithmen und Komplexität Minimaler Spannbaum Gegeben: Zus. hängender,

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS0 Datum:.6.200 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Minimaler Spannbaum (MST) Challenge der Woche Fibonacci Heap Minimaler Spannbaum

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) Nennen Sie zwei Konzepte, die Algorithm Engineering im Gegensatz zu theoretischer

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Sortieralgorithmen Einleitung Heapsort Quicksort 2 Motivation Sortieren ist Voraussetzung für viele Anwendungen Nach

Mehr

Kap. 6.5: Minimale Spannbäume ff

Kap. 6.5: Minimale Spannbäume ff Kap. 6.: Minimale Spannbäume ff Professor Dr. Karsten Klein Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 20. VO 2. TEIL DAP2 SS 2009 2. Juli 2009 SS08 1 Überblick 6.:

Mehr

Sortieren II / HeapSort Heaps

Sortieren II / HeapSort Heaps Organisatorisches VL-07: Sortieren II: HeapSort (Datenstrukturen und Algorithmen, SS 2017) Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Email: dsal-i1@algo.rwth-aachen.de Webseite: http://algo.rwth-aachen.de/lehre/ss17/dsa.php

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Prof. Dr. Erika Ábrahám Datenstrukturen und Algorithmen 1/1 Datenstrukturen und Algorithmen Vorlesung 14: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Kürzeste Wege Maike Buchin 4. und 6.7.2017 Einführung Motivation: Bestimmung von kürzesten Wegen ist in vielen Anwendungen, z.b. Routenplanung, ein wichtiges Problem. Allgemeine

Mehr

Karlsruher Institut für Technologie. Klausur Algorithmen I

Karlsruher Institut für Technologie. Klausur Algorithmen I Klausur-ID: Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 11. April 2018 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 13. Übung minimale Spannbäume, topologische Sortierung, AVL-Bäume Clemens Lang Übungen zu AuD 4. Februar 2010 Clemens Lang (Übungen zu AuD) Algorithmen und Datenstrukturen

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 21 1 Approximationsalgorithmen auf

Mehr

Algorithmen und Datenstrukturen Kapitel 9. und

Algorithmen und Datenstrukturen Kapitel 9. und Algorithmen und Datenstrukturen Kapitel 9 Minimale Spannbäume und Kürzeste Pfade Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Dezember 01 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/13

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 018/19 1. Vorlesung Minimale Spannbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Motivation ) Kantengewichte w : E R >0 ) w(e ) := e E w(e)

Mehr

1 Kürzeste Pfade in Graphen

1 Kürzeste Pfade in Graphen Praktikum Algorithmen-Entwurf (Teil 3) 03.11.2011 1 1 Kürzeste Pfade in Graphen Es sei ein gerichteter Graph G = (V, E) mit V = n Knoten, E = m Kanten und Kantengewichten c : E R gegeben. Ein Pfad in G

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphdarstellungen Maike Buchin 0.6.017 Graphen Motivation: Graphen treten häufig als Abstraktion von Objekten (Knoten) und ihren Beziehungen (Kanten) auf. Beispiele: soziale

Mehr

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden! Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................

Mehr

12. AuD Tafelübung T-C3

12. AuD Tafelübung T-C3 12. AuD Tafelübung T-C3 Simon Ruderich 2. Februar 2011 Kollisionen (Primär)Kollision Stelle mit normal eingefügtem Element schon belegt (gleicher Hashwert) tritt bei verketteten Listen und Sondierung auf

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Martin Dietzfelbinger Kurt Mehlhorn Peter Sanders Algorithmen und Datenstrukturen Die Grundwerkzeuge Springer Vieweg 1 Vorspeise: Arithmetik für ganze Zahlen 1 1.1 Addition 2 1.2 Multiplikation: Die Schulmethode

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kapitel 4: Datenstrukturen Kapitel 4.2: Union-Find-Strukturen Union-Find-Strukturen Gegeben: Datensätze

Mehr

Kap. 6.6: Kürzeste Wege

Kap. 6.6: Kürzeste Wege Kap. 6.6: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1./. VO DAP SS 009./9. Juli 009 1 Nachtest für Ausnahmefälle Di 1. Juli 009, 16:00 Uhr,

Mehr

Vorlesung 2 KÜRZESTE WEGE

Vorlesung 2 KÜRZESTE WEGE Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!

Mehr

Kap. 6.6: Kürzeste Wege

Kap. 6.6: Kürzeste Wege 0.0.00 Nachtest für Ausnahmefälle Kap..: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund./. VO DAP SS 00./. Juli 00 Di. Juli 00, :00 Uhr, OH, R.

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

5. Vorrangwarteschlangen - Priority Queues

5. Vorrangwarteschlangen - Priority Queues 5. Vorrangwarteschlangen - Priority Queues Priority Queues unterstützen die Operationen Insert(), Delete(), ExtractMin(), FindMin(), DecreaseKey(), Merge(). Priority Queues per se sind nicht für IsElement()-Anfragen,

Mehr

ÜBUNGSKLAUSUR Studienhalbjahr: 2. Semester. Datum: 20. Juli 2016 Bearbeitungszeit: 90 Minuten. Modul: T2INF Dozent: Stephan Schulz

ÜBUNGSKLAUSUR Studienhalbjahr: 2. Semester. Datum: 20. Juli 2016 Bearbeitungszeit: 90 Minuten. Modul: T2INF Dozent: Stephan Schulz Matrikelnummer: Fakultät Studiengang: Jahrgang / Kurs : Technik Angewandte Informatik 01 B/C/K ÜBUNGSKLAUSUR Studienhalbjahr:. Semester Datum: 0. Juli 01 Bearbeitungszeit: 90 Minuten Modul: TINF100.1 Dozent:

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 07..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22

Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22 Graphalgorithmen II Werner Sembach 14.04.2014 Werner Sembach Graphalgorithmen II 14.04.2014 1 / 22 Übersicht Datenstrukturen Union-Find Fibonacci-Heap Werner Sembach Graphalgorithmen II 14.04.2014 2 /

Mehr

Kapitel 3. Speicherhierachie. Beispiel für Cache Effekte. Motivation Externspeicheralgorithmen. Motivation Für Beachtung von Cache Effekten

Kapitel 3. Speicherhierachie. Beispiel für Cache Effekte. Motivation Externspeicheralgorithmen. Motivation Für Beachtung von Cache Effekten Kapitel 3 Algorithmen für große Datenmengen Motivation Externspeicheralgorithmen Es werden immer größere Datenmengen gesammelt (WWW, Medizin, Gentechnik ) Daten müssen auf großen externen Massenspeichern

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 16 (2.7.2014) Graphtraversierung II, Minimale Spannbäume I Algorithmen und Komplexität Tiefensuche: Pseusocode DFS Traversal: for all u in

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 15b (13.06.2018) Graphenalgorithmen IV Algorithmen und Komplexität Prims MST-Algorithmus A = while A ist kein Spannbaum do e = u, v ist

Mehr

Algorithmen & Datenstrukturen 2 Praktikum 3

Algorithmen & Datenstrukturen 2 Praktikum 3 Algorithmen & Datenstrukturen 2 Praktikum 3 Thema: Graphalgorithmen Sommersemester 2016 Prof. Dr. Christoph Karg Hochschule Aalen Dieses Praktikum widmet sich dem Thema Graphalgorithmen. Ziel ist die Implementierung

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

Dynamische Datenstrukturen

Dynamische Datenstrukturen Dynamische Datenstrukturen B-Bäume größere Datenmengen verwalten Extern speichern Art der Speicherung berücksichtigen sonst kein optimaler Datenzugriff möglich Art der Speicherung großer Datenmengen Magnetplatten

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Breitensuche, Tiefensuche Wir besprechen nun zwei grundlegende Verfahren, alle Knoten eines Graphen zu

Mehr

Informatik II - Übung 12

Informatik II - Übung 12 Informatik II - Übung 12 Katja Wolff katja.wolff@inf.ethz.ch Übungsblatt 11 1) Sortieren mit Suchbäumen 2) Zeitkomplexität 3) Ein neuer Rechner! 4) Ein Springer auf dem Schachbrett Informatik II Übung

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Grundlagen Algorithmen und Datenstrukturen TUM Sommersemester 2011 (2) Dozent: Hanjo Täubig

Grundlagen Algorithmen und Datenstrukturen TUM Sommersemester 2011 (2) Dozent: Hanjo Täubig Grundlagen Algorithmen und Datenstrukturen TUM Sommersemester 2011 (2) Dozent: Hanjo Täubig Janosch Maier 3. August 2011 Inhaltsverzeichnis 1 Sortieren 3 1.1 Externes Sortieren..........................

Mehr

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010

2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 2. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2009/2010 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber mit

Mehr

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Datenstrukturen und Algorithmen 2. Klausur SS 2001 UNIVERSITÄT PADERBORN FACHBEREICH 7 (MATHEMATIK INFORMATIK) Datenstrukturen und Algorithmen 2. Klausur SS 200 Lösungsansätze Dienstag, 8. September 200 Name, Vorname:...................................................

Mehr

Algorithmen und Datenstrukturen 13

Algorithmen und Datenstrukturen 13 19. Juli 2012 1 Besprechung Blatt 12 Fragen 2 Bäume AVL-Bäume 3 Graphen Allgemein Matrixdarstellung 4 Graphalgorithmen Dijkstra Prim Kruskal Fragen Fragen zu Blatt 12? AVL-Bäume AVL-Bäume ein AVL-Baum

Mehr

Vorlesung 5: MATRIX-DATENSTRUKTUREN UND SPARSE GEMM

Vorlesung 5: MATRIX-DATENSTRUKTUREN UND SPARSE GEMM Vorlesung 5: MATRIX-DATENSTRUKTUREN UND SPARSE GEMM 126 Hinweise! Mailinglisten: Vorlesung-GALA und NetworKit! Vorlesungs- und PÜ-Termine: Änderungen beachten!! Projektbeschreibungen abholen! 127 Wiederholung!

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Minimale Spannbäume. Übersicht. 1 Spannbäume. 2 Minimale Spannbäume. 3 Greedy Algorithmen. 4 Die Algorithmen von Kruskal und Prim

Minimale Spannbäume. Übersicht. 1 Spannbäume. 2 Minimale Spannbäume. 3 Greedy Algorithmen. 4 Die Algorithmen von Kruskal und Prim Datenstrukturen und Algorithmen Vorlesung 16: (K23) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-1/dsal/ 12. Juni 201

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 16 Programm: Einführung

Mehr

Algorithmen I - Tutorium 28 Nr. 11

Algorithmen I - Tutorium 28 Nr. 11 Algorithmen I - Tutorium 28 Nr. 11 13.07.2017: Spaß mit Schnitten, Kreisen und minimalen Spannbäumen Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR.

Mehr

Algorithm Engineering XXL

Algorithm Engineering XXL PG 503 XAVER Algorithm Engineering XXL Veranstalter: Markus Chimani Carsten Gutwenger Karsten Klein LS 11: Algorithm Engineering Prof. Dr. Petra Mutzel Algorithm Engineering Klassische Algorithmik einfaches

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006 1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2005/2006 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber mit

Mehr

Übersicht. Datenstrukturen und Algorithmen. Das Rechenproblem: kürzeste Pfade. Übersicht. Vorlesung 17: Kürzeste Pfade (K24) Bellman-Ford Dijkstra

Übersicht. Datenstrukturen und Algorithmen. Das Rechenproblem: kürzeste Pfade. Übersicht. Vorlesung 17: Kürzeste Pfade (K24) Bellman-Ford Dijkstra Datenstrukturen und Algorithmen Vorlesung 17: (K) Joost-Pieter Katoen Lehrstuhl für Informat Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 1. Juni 15 1 Joost-Pieter

Mehr

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37

2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge

Mehr

VL-16: Minimale Spannbäume. (Datenstrukturen und Algorithmen, SS 2017) Walter Unger

VL-16: Minimale Spannbäume. (Datenstrukturen und Algorithmen, SS 2017) Walter Unger VL-16: Minimale Spannbäume (Datenstrukturen und Algorithmen, SS 2017) Walter Unger SS 2017, RWTH DSAL/SS 2017 VL-16: Minimale Spannbäume 1/48 Organisatorisches Vorlesung: Gerhard Woeginger (Zimmer 4024

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2018 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Organisatorisches: Keine Vorlesung nächste Woche wegen

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Rückblick: Starke Zusammenhangskomponenten

Rückblick: Starke Zusammenhangskomponenten Rückblick: Starke Zusammenhangskomponenten Der Algorithmus von Kosaraju bestimmt die starken Zusammenhangskomponenten eines gerichteten Graphen wie folgt: Schritt 1: Bestimme den transponierten Graphen

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Prioritätswarteschlangen Mariano Zelke Datenstrukturen 2/28 Der abstrakte Datentyp Prioritätswarteschlange : Füge Elemente (mit Prioritäten) ein und entferne

Mehr

Graphalgorithmen II. Sebastian Ehrenfels Sebastian Ehrenfels Graphalgorithmen II / 44

Graphalgorithmen II. Sebastian Ehrenfels Sebastian Ehrenfels Graphalgorithmen II / 44 Graphalgorithmen II Sebastian Ehrenfels 4.6.2013 Sebastian Ehrenfels Graphalgorithmen II 4.6.2013 1 / 44 Inhalt 1 Datenstrukturen Union-Find Fibonacci-Heap 2 Kürzeste wege Dijkstra Erweiterungen Bellman-Ford

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Tiefensuche: Die globale Struktur Der gerichtete oder ungerichtete Graph G werde durch seine Adjazenzliste A repräsentiert. Im Array besucht wird vermerkt,

Mehr

Heapsort, Quicksort, Mergesort. 8. Sortieren II

Heapsort, Quicksort, Mergesort. 8. Sortieren II 209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] Heapsort 211 Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:

Mehr

2. Das single-source-shortest-path-problem

2. Das single-source-shortest-path-problem . Das single-source-shortest-path-problem Zunächst nehmen wir an, dass d 0 ist. Alle kürzesten Pfade von a nach b sind o.b.d.a. einfache Pfade.. Dijkstra s Algorithmus Gegeben: G = (V, A), (A = V V ),

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 13.02.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal 100 Punkte erreicht

Mehr

Effizienter Planaritätstest Vorlesung am

Effizienter Planaritätstest Vorlesung am Effizienter Planaritätstest Vorlesung am 23.04.2014 INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER Satz Gegebenen einen Graphen G = (V, E) mit n Kanten und m Knoten, kann in O(n + m) Zeit

Mehr

18. Natürliche Suchbäume

18. Natürliche Suchbäume Wörterbuchimplementationen 1. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Hashing: Implementierung von Wörterbüchern mit erwartet sehr schnellen Zugriffszeiten. Nachteile

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Copyright, Page 1 of 7 Heapsort

Copyright, Page 1 of 7 Heapsort www.mathematik-netz.de Copyright, Page 1 of 7 Heapsort Alle grundlegenden, allgemeinen Sortierverfahren benötigen O(n 2 ) Zeit für das Sortieren von n Schlüsseln. Die kritischen Operationen, d.h. die Auswahl

Mehr

9. Natürliche Suchbäume

9. Natürliche Suchbäume Bäume Bäume sind. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Verallgemeinerte Listen: Knoten können mehrere Nachfolger haben Spezielle Graphen: Graphen bestehen aus Knoten

Mehr

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit

Mehr

Heapsort, Quicksort, Mergesort. 8. Sortieren II

Heapsort, Quicksort, Mergesort. 8. Sortieren II 209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 211 Heapsort Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:

Mehr

Datenstrukturen und Algorithmen. Vorlesung 8

Datenstrukturen und Algorithmen. Vorlesung 8 Datenstrukturen und Algorithmen Vorlesung 8 Inhaltsverzeichnis Vorige Woche: ADT Stack ADT Queue Heute betrachten wir: ADT Deque ADT Prioritätsschlange Binomial-Heap Schriftliche Prüfung Informationen

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen

Mehr

24. Minimale Spannbäume

24. Minimale Spannbäume Problem Gegeben: Ungerichteter, zusammenhängender, gewichteter Graph G = (V, E, c). 4. Minimale Spannbäume Gesucht: Minimaler Spannbaum T = (V, E ), E E, so dass e E c(e) minimal. Motivation, Greedy, Algorithmus

Mehr