Topological insulators from a chemical point of view

Größe: px
Ab Seite anzeigen:

Download "Topological insulators from a chemical point of view"

Transkript

1 Topologische Isolatoren aus chemischer Sicht Topological insulators from a chemical point of view Felser, Claudia; Chadov, Stanislav; Müchler, Lukas; Yan, Binghai; Kübler, Jürgen; Zhang, Shou-Cheng1 Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden Korrespondierender Autor Claudia.Felser@cpfs.mpg.de Zusammenfassung Topologische Isolatoren (TIs), Materialien mit einem neuen Quantenzustand, sind ein hochaktuelles Thema in der Festkörperforschung. TIs sind Halbleiter mit kleinen Bandlücken, aber mit stabilen metallischen Oberflächenzuständen. Bemerkenswert ist, dass sich topologische Isolatoren durch ab initio Berechnungen hervorsagbar und über chemische Konzepte identifizierbar sind. Eine systematische Suche nach neuen topologischen Isolatoren ist durch unser einfaches Rezept, basierend auf Bindungen, Bandstrukturen, Symmetrien, Orbitalen und Kernladungen, möglich. Summary Topological insulators (TIs) are a new quantum state of matter, which have attracted interest of condensed matter science. The materials are small band gap insulators with robust gapless surface states. Remarkable is that topological insulators can be predicted by ab initio theory and even understood from a chemist s perspective. Herein, a simple recipe based on bonds, bands, symmetry, and nuclear charge will be given to motivate a systematic search for new topologically nontrivial materials. Topologie im Festkörper und die daraus resultierenden neuen Quantenzustände sind ein hot topic in den Festkörperwissenschaften [1,2]. Das bekannteste Beispiel für unterschiedliche Topologien sind Torus und Kugel, zwei Objekte, die nicht durch eine stetige Operation ineinander überführt werden können. In der Chemie begegnet uns die Topologie im Zusammenhang mit der Händigkeit chiraler Moleküle. Ein Paar spiegelbildlicher Enantiomere ein rechtshändiges und ein linkshändiges Molekül kann nicht zur Deckung gebracht werden. Das faszinierende Phänomen der Chiralität wurde kürzlich auch in kondensierter Materie gefunden, und zwar in magnetischen Materialien mit nicht-zentrosymmetrischen Strukturen (Skyrmionen) [3] und auf der Oberfläche topologischer Isolatoren [2]. Topologische Isolatoren sind Materialien, die im Volumen isolierend oder halbleitend sind, auf der Oberfläche oder an Kanten aber metallisches Verhalten zeigen [2]. Topologisch geschützte Kantenzustände wurden in HgTe-Quantentopf-Strukturen zum ersten Mal experimentell durch Laurens Molenkamp und sein Team bewiesen, nachdem sie theoretisch von Shou-Cheng Zhang und seinen Mitarbeitern vorhergesagt wurden. Fast alle bis heute identifizierten Verbindungen können in zwei Materialklassen klassifiziert werden, die HgTeund die Bi 2 Se 3 -Familie. Die neuen Quantenzustände sind dissipationslose Spin-Ströme der beiden Spin Max-Planck-Gesellschaft 1/5

2 Richtungen, die in entgegengesetzten Richtungen propagieren. Die geschützten Oberflächenströme sind ein Resultat der besonderen elektronischen Struktur. Die Oberflächenzustände sehen wie der Dirac-Kegel (X- Form) in Graphen aus, zusätzlich zu starker Spin-Bahn-Kopplung (SOC). Ein TI besitzt eine ungerade Zahl von Dirac-Kegel-artigen Oberflächenzuständen, vier Dirac-Kegel wie in Graphen sind topologisch trivial. Ergebnisse A bb. 1: Schem atische Bandstruktur eines klassischen Halbleiters, wie z. B. Sb 2 Se 3, der aus topologischer Sicht trivial ist (a). Schem atische Bandstruktur eines Halbleiters, in dem sich Leitungs- und Valenzband kreuzen und invertieren (b). Aufgrund starker Spin-Bahn-Kopplung ist der Spin keine gute Quantenzahl und an den Bandkreuzungspunkten öffnet sich eine Bandlücke wie z. B. in Bi 2 Se 3 (c). In CdTe oder der Halb- Heusler Verbindung YNiSb hat das Leitungsband s- und das Valenzband p-charakter (d), die Bandinversion in z. B. HgTe oder LaPtBi führt zu einem Halbm etall (e). Eine strukturelle Verzerrung hebt die Entartung der p-zustände auf. 2Se 3 ist aus topologischer Sicht trivial (f). MPI für Chem ische Physik fester Stoffe / Felser Aus chemischer Sicht lassen sich halbleitende Verbindungen in der Diamant-Struktur und verwandten Strukturen in einer ersten Näherung über die Zahl der Valenzelektronen abschätzen. Magische Zahlen sind 8 (2s- und 6p-Elektronen) und 18 (2s-, 6p- und 10d-Elektronen) Valenzelektronen. Die Bandlücke zwischen den bindenden und den antibindenden Zuständen der Band-Halbleiter lässt sich aus den Elektronegativitäten der Elemente abschätzen [2]. Anders als in Element-Halbleitern lassen sich die Bandlücken binärer und ternärer Halbleiter besser einstellen. Abbildung 1(a) zeigt die schematische Bandstruktur eines klassischen topologisch trivialen Halbleiters wie Sb 2 Se 3. Im Bi 2 Se 3 ist zusätzlich zur größeren Spin-Bahn-Kopplung die Bindung zwischen den Elementen schwächer, daher ist die Bandlücke klein oder sogar negativ (Valenzband und Leitungsband kreuzen sich wie in Abbildung 1(b) dargestellt). Aufgrund starker Spin-Bahn-Kopplung ist der Spin keine gute Quantenzahl und an den Bandkreuzungspunkten öffnet sich eine Bandlücke wie in Bi 2 Se 3 (Abb. 1(c)) und ein invertierter Halbleiter ist das Ergebnis. Im Falle von CdTe und der topologischtrivialen Halb-Heusler Verbindungen (Abb. 1(d)) ist das Leitungsband ein s-band, während das Valenzband ein dreifach entartetes p-band ist. In HgTe und den topologisch interessanten Halb-Heusler-Verbindungen befindet sich das s-band wegen der Bandinversion unterhalb der Fermi-Energie (E F ), die Verbindungen sind 2013 Max-Planck-Gesellschaft 2/5

3 daher halbmetallisch (Abb. 1(e)) und weisen keine Bandlücke auf [2,4]. Allerdings kann die Entartung der Bänder durch strukturelle Verzerrung aufgehoben werden und die Verbindung wird halbleitend ( Abb. 1(f)). Halb-Heusler Verbindungen sind, wegen der Seltenerd-Elemente als Bausteine, multifunktionelle topologische Isolatoren. YbPtBi ist ein topologischer Isolator, aber wegen des Yb auch eine Kondo-Verbindung. LaPtBi zeigt die s-p-bandinversion und zusätzlich Supraleitung. Anders als in den binären topologischen Isolatoren können in den Heusler Verbindungen zwei Eigenschaften verknüpft werden, die dann zu ganz neuen Quantenzuständen wie Majorana Fermionen führen können [4]. A bb. 2: Kristallstruktur topologischer Verbindungen m it ZnSund NaCl- verwandten Strukturen. PuTe kristallisiert in der NaCl Struktur (a), der TI-Prototyp HgTe kristallisiert in der nicht zentro-sym m etrischen Zinkblende-Struktur (b); zusätzliche Besetzung der Oktaederlücken in der ZnS-Struktur führt zur MgAgAs Struktur, der Fam ilie der Halb-Heusler Verbindungen (LaPtBi) (c); Verdoppelung der Zinkblendestruktur m it ternärer Besetzung der Atom positionen führt zur Chalkopyrit-Struktur (AuTlTe 2 ) (d). Die AlB 2 Struktur ist eine verwandte Struktur des Graphits m it einer (e) oder zwei Honigwaben-Schichten in einer Elem entarzelle. MPI für Chem ische Physik fester Stoffe / Felser Es gibt zwei verschiedene Arten von topologischen Isolatoren, die sogenannten zweidimensionalen (2D) und dreidimensionalen (3D) TIs. Zu dem 3D TIs gehört halbleitendes Bi 2 Se 3, verwandte Strukturen [1] und PuTe (NaCl-Struktur Abb. 2(a)) [5]. Halbmetallisches HgTe (ZnS-Struktur Abb. 2(b)) und die Halb-Heusler Verbindungen (MgAgAs-Struktur Abb. 2(c)) [4] zählen wegen der Entartung der Bänder an E F zu den 2D TIs [1,2,4]. Nur in Quantentopf-Strukturen zwischen den korrespondierenden trivialen und topologischen Isolatoren lassen sich in den 2D TIs die robusten Zustände als Kantenzustände beobachten. Alternativ lässt sich auch ein 3D topologischer Isolator durch eine strukturelle Verzerrung, welche die Entartung an E F aufhebt, realisieren. In der Chalkopyrit-Struktur (Abb. 2(d)) wird wegen Verdoppelung der Elementarzelle relativ zur Zinkblende-Struktur, die Entartung der px-, py- und pz- Bänder aufgehoben. Hypothetisches AuTlS 2 ist daher ein halbleitender 3D TI [2]. AuTlS 2 zeigt wie erwartet einen robusten Dirac-Kegel-artigen Oberflächenzustand [2]. Es gibt verschiedene theoretische Wege zu überprüfen, ob ein Halbleiter oder Halbmetall mit hoher SOC auch wirklich topologisch interessant ist. (1) Eine etwas aufwendige Möglichkeit ist die Berechnung der Oberflächenzustände von potenziellen Kandidaten. (2) Für zentro-symmetrische Strukturen haben Kane und Mele gezeigt, wie man über die Paritäten der Wellenfunktion die Topologie bestimmen kann [6]. (3) Aber auch 2013 Max-Planck-Gesellschaft 3/5

4 Mele gezeigt, wie man über die Paritäten der Wellenfunktion die Topologie bestimmen kann [6]. (3) Aber auch über die Berechnung der Berry-Phasen kann die Chiralität und Windungszahl in topologischen Isolatoren sowie auch in Skyrmionen bestimmt werden. Um diese robusten Oberflächenzustände technologisch zu nutzen, müssen diese Zustände auch bei Raumtemperatur (RT) stabil sein. Dementsprechend sollte die aufgrund der Bandkreuzung entstandene Bandlücke größer als 30 mev sein. Die Bandlücke von Bi 2 Se 3 beträgt 300 mev, theoretisch ausreichend für RT- Anwendungen. Allerdings konnten bisher wegen der intrinsischen Defekte keine Proben ausreichender Qualität hergestellt werden, die die Quantisierung der Oberflächenzustände in Transportmessungen gezeigt haben. Die Elemente mit der größten Spin-Bahn-Kopplung sind Actinide wie Plutonium und Americium. Daher haben wir unter den Plutonium und Americium-Verbindungen nach topologischen Halbleitern gesucht. PuTe und AmN gehören zu den identifizierten neuen TI mit der ionischen NaCl-Struktur; allerdings ist eine adäquate Beschreibung der elektronischen Struktur nur unter Berücksichtigung von Korrelationen möglich [5]. Unter Druck zeigt topologisches PuTe sogar eine Bandlücke von fast 400 mev. Die bisher diskutierten TIs basieren alle auf Varianten der Diamant-Struktur. Es liegt daher nahe, sich 8 und 18 Valenzelektronenverbindungen mit schweren Elementen und Graphit-Strukturen zuzuwenden. KHgSb, das hexagonale Analogon zum HgTe, zeigte allerdings bei der Berechnung der Oberflächenbandstruktur keinen robusten Dirac-Kegel. Grund hierfür ist die Tatsache, dass KHgSb eine Schichtstruktur aufweist, und wegen der geringen Wechselwirkungen zwischen den Schichten immer eine gerade Zahl von Bandinversionen bzw. Dirac- Kegel (am Γ und am A Punkt) im reziproken Raum aufweist [7]. Allerdings erlaubt die große Zahl von Verbindungen mit dieser und mit verwandten Kristallstrukturen auch ein Design neuer topologischer Materialien wie die erst kürzlich vorhergesagten schwachen topologischen Isolatoren [8]. Topologische Isolatoren sind auch gute thermoelektrische Materialien, da die Anforderungen an die Bandstruktur ähnlich sind [9]. Allerdings gibt es gute thermoelektrische Materialien, die topologisch trivial sind wie z. B. PbTe. Es ist daher nur konsequent, auch unter den thermoelektrischen Materialien, nach neuen topologischen Isolatoren zu suchen. In den gefüllten Skutteruditen koexistiert neben der Bandinversion - ähnlich wie in den Halb-Heusler Verbindungen - Supraleitung und Magnetismus [10]. Topologische Isolatoren bleiben auch für die nächsten Jahre ein spannendes Thema. Ein korreliertes Oxid mit topologischer Bandinversion oder Verbindungen mit Majorana-Fermionen sind Herausforderungen für die Festkörperforschung. Literaturhinweise [1] Qi, X. L.; Zhang, S. C. The quantum spin Hall effect and topological insulators Physics Today 63, (2010) [2] Müchler, L.; Zhang, H. J.; Chadov, S.; Yan, B.; Casper, F.; Kübler, J.; Zhang, S. C.; Felser, C. Topological insulators from a chemist s perspective Angewandte Chemie International Edition 51, (2012) [3] Felser, C. Skyrmionen Angewandte Chemie International Edition 52, (2013) 2013 Max-Planck-Gesellschaft 4/5

5 [4] Chadov, S.; Qi, X.; Kübler, J.; Fecher, G. H.; Felser, C.; Zhang, S.-C. Tunable multifunctional topological insulators in ternary Heusler compounds Nature Materials 9, (2010) [5] Zhang, X.; Zhang, H. J.; Wang, J.; Felser, C.; Zhang, S.-C. Actinide topological insulator materials with strong interaction Science 335, (2012) [6] Fu, F.; Kane, C. L. Topological insulators with inversion symmetry Physical Review B 76, (2007) [7] Zhang, H.-J.; Chadov, S.; Müchler, L.; Yan, B.; Qi, X. L.; Kübler, J.; Zhang, S. C.; Felser, C. Topological insulators in ternary compounds with a honeycomb lattice Physical Review Letters 106, (2011) [8] Yan, B.; Müchler, L.; Felser, C. Prediction of weak topological insulators in layered semiconductors Physical Review Letters 109, (2012) [9] Müchler, L.; Casper, F.; Yan, B.; Chadov, S.; Felser, C. Topological insulators and thermoelectric materials physica status solidi (RRL) 7, (2013) [10] Yan, B.; Müchler, L.; Qi, X.-L.; Zhang, S.-C.; Felser, C. Topological insulators in filled skutterudites Physical Review B 85, (2012) 2013 Max-Planck-Gesellschaft 5/5

Topologische Isolatoren

Topologische Isolatoren Topologische Isolatoren Ein Überblick Joscha Reichert 6. Juli 2011 1 / 14 Allgemeines Der Topologische Isolator Topologie - Ein Teilbereich der Mathematik 2 / 14 Allgemeines Der Topologische Isolator Topologie

Mehr

20. Kondensierte Materie was alles noch dazu gehört

20. Kondensierte Materie was alles noch dazu gehört 20. Kondensierte Materie was alles noch dazu gehört [wikipedia] 1 [http://universe-review.ca] 2 Soft Matter [http://universe-review.ca] 3 Unter dem Begriff der weichen kondensierten Materie fasst man Stoffe

Mehr

Den elektrischen Eigenschaften topologischer Isolatoren auf der. Hunting for the electrical properties of topological insulators

Den elektrischen Eigenschaften topologischer Isolatoren auf der. Hunting for the electrical properties of topological insulators Den elektrischen Eigenschaften topologischer Isolatoren auf der Spur Hunting for the electrical properties of topological insulators Höfer, Katharina; Becker, Christoph; Rata, Diana; Swanson, Jesse; Thalmeier,

Mehr

Dirac Fermionen in Graphen und Topologischen Isolatoren. Prof. Dr. Patrik Recher, 21. Mai 2012

Dirac Fermionen in Graphen und Topologischen Isolatoren. Prof. Dr. Patrik Recher, 21. Mai 2012 Dirac Fermionen in Graphen und Topologischen Isolatoren Prof. Dr. Patrik Recher, 21. Mai 2012 Inhalt Dirac Gleichung in der relativistischen Quantenmechanik Elektronen in Graphen und topologischen Isolatoren

Mehr

Die chemische Bindung

Die chemische Bindung Die chemische Bindung Die Valenz-Bond Theorie Molekülorbitale Die Bänder Theorie der Festkörper bei einer ionischen Bindung bildet bildet sich ein Dipol aus ('Übertragung von Elektronen') Eine kovalente

Mehr

6. Die Chemische Bindung

6. Die Chemische Bindung 6. Die Chemische Bindung Hauptbindungsarten Kovalente Bindung Ionenbindung Metallische Bindung Nebenbindungsarten Van der Waals Wechselwirkung Wasserstoffbrückenbindung Metalle www.webelements.com Eigenschaften

Mehr

Die kovalente Bindung

Die kovalente Bindung Die kovalente Bindung Atome, die keine abgeschlossene Elektronenschale besitzen, können über eine kovalente Bindung dieses Ziel erreichen. Beispiel: 4 H H + C H H C H H Die Wasserstoffatome erreichen damit

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2013/14 Christoph Wölper Universität Duisburg-Essen # Elektronengas # Bändermodell Bindungsmodelle Metallbindung > Bindungsmodelle Elektronengas

Mehr

Funktionswerkstoffe. supraleitend. Halbleiter. Elektronische Eigenschaften - Einleitung

Funktionswerkstoffe. supraleitend. Halbleiter. Elektronische Eigenschaften - Einleitung Funktionswerkstoffe Elektronische Eigenschaften - Einleitung Bandstruktur Elektronenverteilung (Fermi-Dirac) Elektronenbeweglichkeit und Leitfähigkeit Metalle Elektronenanregung Leitfähigkeitsänderungen

Mehr

Elektronische Korrelationen und dmagnetismus

Elektronische Korrelationen und dmagnetismus Elektronische Korrelationen und dmagnetismus Einblicke in die Grundlagenforschung in der Festkörperphysik Rüdiger Klingeler Kirchhoff-Institut für Physik, Universität Heidelberg Vortragsfolien: http://www.kip.uni-hd.de/cmm

Mehr

Wie Licht Materie verändert: über den Einfluss von Laserlicht und einzelnen Photonen How light changes matter: from a laser to a few photons

Wie Licht Materie verändert: über den Einfluss von Laserlicht und einzelnen Photonen How light changes matter: from a laser to a few photons Wie Licht Materie verändert: über den Einfluss von Laserlicht und einzelnen Photonen How light changes matter: from a laser to a few photons Ruggenthaler, Michael; Hübener, Hannes; Sentef, Michael A.;

Mehr

Ein neuer Weg zu ungewöhnlichen Quantenerscheinungen in. A new way to unusual quantum phenomena in lattice systems

Ein neuer Weg zu ungewöhnlichen Quantenerscheinungen in. A new way to unusual quantum phenomena in lattice systems Ein neuer Weg zu ungewöhnlichen Quantenerscheinungen in A new way to unusual quantum phenomena in lattice systems Nielsen, Anne Max-Planck-Institut für Quantenoptik, Garching Korrespondierender Autor E-Mail:

Mehr

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen.

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen. phys4.026 Page 1 13.8 Das Wasserstoff-Molekül Wie im Fall des H2 + Moleküls führen im H2 Molekül symmetrische Wellenfunktionen zu bindenden Zuständen, wohingegen anti-symmetrische Wellenfunktionen zu anti-bindenden

Mehr

Festkörperelektronik 2008 Übungsblatt 4

Festkörperelektronik 2008 Übungsblatt 4 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 4. Übungsblatt 12. Juni 2008 Die

Mehr

7. Elektronendynamik

7. Elektronendynamik 7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien Grundprinzipien I Zweiter

Mehr

Struktur von Festkörpern

Struktur von Festkörpern Struktur von Festkörpern Wir wollen uns zunächst mit der Struktur von Festkörpern, daß heißt mit der Geometrie in der sie vorliegen beschäftigen Kovalent gebundene Festkörper haben wir bereits in Form

Mehr

Marius Sparn. 28. Oktober 2016

Marius Sparn. 28. Oktober 2016 Marius Sparn Ruprecht-Karls-Universität Heidelberg Fakultät für Physik und Astronomie Seminar: Quantenmechanik Wintersemester 2016/17 Prof. Dr. Wolschin 28. Oktober 2016 Inhaltsverzeichnis Einleitung Niederdimensionale

Mehr

5 Elektronenübergänge im Festkörper

5 Elektronenübergänge im Festkörper 5 Elektronenübergänge im Festkörper 5.1 Übersicht und Lernziele Übersicht Die Bindung in einem Molekül erfolgt durch gemeinsame Elektronenpaare, die jeweils zwei Atomen angehören (Atombindung, Elektronenpaarbindung).

Mehr

Mehratomige Molek ule

Mehratomige Molek ule Wir wollen jetzt eine sehr einfache Theorie entwickeln, um die Bindung in Molekülen mit mehr als zwei Atomen zu verstehen Dazu müssen wir den Aufbau von komplexeren n wie π oder δ-n verstehen Wir wissen

Mehr

ElektronischeBandstruktur

ElektronischeBandstruktur ElektronischeBandstruktur Literatur: C. Kittel Einführungin die Festkörperphysik Kapitel 7,8 Ashcroft & Mermin, Kapitel 7,8 Ziman Principles of the Theory of solids, Kapitel 3 Dispersionsrelation für

Mehr

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5 Wintersemester 006 / 007 04.1.006 1. Aufgabe Die Wellenfunktionen unterscheiden sich gar nicht. Während der Lösung der elektronischen Schrödingergleichung werden die Kerne als ruhend betrachtet. Es kommt

Mehr

Versuch 40: UV-Photoelektronenspektroskopie

Versuch 40: UV-Photoelektronenspektroskopie Versuch 40: UV-Photoelektronenspektroskopie Ort: MZG (Technische Physik), Zi. 0.175 hω k k ϑ ϕ k Probe worum geht s? Messung der elektronischen Bandstruktur E(k) eines 2D-Festkörpers (Graphit) mittels

Mehr

Schrödinger- und Dirac- Elektronen in Graphen. Vortrag im Rahmen des Hauptseminars SS 08 von Alexander Zado

Schrödinger- und Dirac- Elektronen in Graphen. Vortrag im Rahmen des Hauptseminars SS 08 von Alexander Zado Schrödinger- und Dirac- Elektronen in Graphen Vortrag im Rahmen des Hauptseminars SS 08 von Alexander Zado 15.05.08 Inhalt Motivation Graphen Elektronische Struktur von Graphen Schrödinger- und Dirac-

Mehr

2.4 Metallische Bindung und Metallkristalle. Unterteilung in Metalle, Halbmetalle, Nicht metalle. Li Be B C N O F. Na Mg Al Si P S Cl

2.4 Metallische Bindung und Metallkristalle. Unterteilung in Metalle, Halbmetalle, Nicht metalle. Li Be B C N O F. Na Mg Al Si P S Cl 2.4 Metallische Bindung und Metallkristalle Li Be B C N O F Na Mg Al Si P S Cl K Ca Ga Ge As Se Br Rb Sr In Sn Sb Te I Cs Ba Tl Pb Bi Po At Unterteilung in Metalle, Halbmetalle, Nicht metalle Metalle etwa

Mehr

Jahrbuch 2016/2017 Grüneis, Andreas; Alavi, Ali Quantenchemische Verfahren zur Beschreibung der elektronischen Struktur von Materialien

Jahrbuch 2016/2017 Grüneis, Andreas; Alavi, Ali Quantenchemische Verfahren zur Beschreibung der elektronischen Struktur von Materialien Quantenchemische Verfahren zur Beschreibung der elektronischen Struktur von Materialien Quantum chemical approaches to electronic structure theory for materials Grüneis, Andreas; Alavi, Ali Max-Planck-Institut

Mehr

Clusterphysik. Moderne Molekülphysik SS 2013

Clusterphysik. Moderne Molekülphysik SS 2013 Clusterphysik Moderne Molekülphysik SS 2013 Michael Martins michael.martins@desy.de Folien werden im WWW bereitgestellt Vorlesung im Diplom und Masterstudiengang Insgesamt 5 LP 2 SWS Vorlesung, Mittwoch

Mehr

1.17eV exp eV exp Halbleiter

1.17eV exp eV exp Halbleiter 7.6 Halbleiter Nichtleiter Die Bandstruktur eines Halbleiters ist gleich der Bandstruktur eines Nichtleiters. Der Hauptunterschied besteht in der Breite der Energielücke: Für einen Halbleiter ist die Energielücke

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen Kapitel : Festkörperphysik.1 Aggregatszustände. Kristallstrukturen.3 Chemische Bindung.4 Gitterschwingungen.5 Elektronen im Festkörper Phasendiagramm von CO Klassisches

Mehr

Chiralität und langreichweitige chirale Erkennung

Chiralität und langreichweitige chirale Erkennung Hauptseminar Physik SS 08 Chiralität und langreichweitige chirale Erkennung von Simon Gordon 10.07.2008 [1] MPG [2] ÖZBP Inhalt Einleitung Grundlagen Cysteinmoleküle auf einer Goldoberfläche Zusammenfassung

Mehr

Kohlenstoff-Nanoröhren

Kohlenstoff-Nanoröhren Kohlenstoff-Nanoröhren Metall oder Halbleiter: atomare und elektronische Struktur 10. Mai 2004 Malte Avenhaus Institut für Technische Physik II Kohlenstoff-Nanoröhren p.1/35 Übersicht 1. Motivation 2.

Mehr

2. Struktur von Festkörpern

2. Struktur von Festkörpern . Struktur von Festkörpern Energie-Minimum wird erreicht, wenn jedes Atom möglichst dieselbe Umgebung hat Periodische Anordnung von Atomen. Periodische Anordnung erleichtert theoretische Beschreibung erheblich.

Mehr

Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz. Sommersemester Physik der kondensierten Materie

Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz. Sommersemester Physik der kondensierten Materie Physik der kondensierten Materie Kapitel 8 Elektronen im periodischen Potential Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz In Vertretung von Carsten Deibel Optik & Photonik

Mehr

Überraschende Effekte der Wechselwirkung zwischen Elektronen in Materie

Überraschende Effekte der Wechselwirkung zwischen Elektronen in Materie Zentrum für Elektronische Korrelationen und Magnetismus Universität Augsburg Überraschende Effekte der Wechselwirkung zwischen Elektronen in Materie Dieter Vollhardt Bayerische Akademie der Wissenschaften,

Mehr

5. Anwendung: Bandstruktur von Si in tight-binding Näherung

5. Anwendung: Bandstruktur von Si in tight-binding Näherung 5. Anwendung: Bandstruktur von Si in tight-binding Näherung I. ENTWICKLUNG DES HAMILTON IN BASISFUNKTIONEN Die hier skizzierte Methode wird in Allgemeinheit in J. Slater and G. F. Koster, Phys. Rev B 9,

Mehr

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik Werkstoffe der lektrotechnik im Studiengang lektrotechnik - Bändermodell der lektronen im Kristall - Prof. Dr. Ulrich Hahn WS 2008/2009 Orbitale für lektronen im Kristall Kristall: regelmäßige Anordnung

Mehr

Dr. Sheldon Cooper (Jim Parsons)...either isolating the terms of his formula and examing them individually or looking for the alligator that

Dr. Sheldon Cooper (Jim Parsons)...either isolating the terms of his formula and examing them individually or looking for the alligator that Dr. Sheldon Cooper (Jim Parsons)...either isolating the terms of his formula and examing them individually or looking for the alligator that swallowed his hand after Peter Pan cut it off. Theorie der kondensierten

Mehr

Themenvorschläge für die Bachelor/Master-Arbeiten Physik

Themenvorschläge für die Bachelor/Master-Arbeiten Physik Themenvorschläge für die Bachelor/Master-Arbeiten Physik Thema Kurzbeschreibung Verantwortlicher Transportgrößen wie der elektrische Widerstand und der Hall-Effekt Dr. Christian Heß/Prof. Bernd aber auch

Mehr

Cluster aus Halbleitern

Cluster aus Halbleitern Halbleitercluster Halbleitercluster Cluster aus Halbleitern Insbesondere von Clustern aus im Festkörper halbleitenden Materialien wie Si oder Ge hatte man sich sehr viel für mögliche Anwendungen versprochen

Mehr

Ab-initio Berechnung der ultraschnellen Dynamik angeregter Elektronen in Volumen- und Oberflächenzuständen von Metallen

Ab-initio Berechnung der ultraschnellen Dynamik angeregter Elektronen in Volumen- und Oberflächenzuständen von Metallen Ab-initio Berechnung der ultraschnellen Dynamik angeregter Elektronen in Volumen- und Oberflächenzuständen von Metallen Im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation von

Mehr

Welche Zustände sind denn eigentlich besetzt?

Welche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? ( 0 ) 12 9 -im Prinzip sollte das Ganze ähnlich wie beim Atom erfolgen 6 - Besetzung von unten nach oben 3 -...wie

Mehr

Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften

Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften Markus Gräfe Physikalisch-Astronomische Fakultät Jena 18. Juni 2009 Inhaltsverzeichnis 1 Motivation 2 Grundlagen Leitungsmechanismen

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen.5: Kleine Skalen Chemische Bindung Aggregatszustände Kristallstrukturen und Streuung Bildung des Lebens Kovalente Molekülbindungen Ladungsdichteverteilungen: CH 4 NH 3 H

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2014 Prof. Dr. F. Kremer

Vorlesung Molekülphysik/Festkörperphysik Sommersemester 2014 Prof. Dr. F. Kremer Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 04 Prof. Dr. F. Kremer Übersicht der Vorlesung am.6.04 Wiederholung (Drude-Modell ( freies Elektronengas ), Plasmaschwingung, Grenzen des Drude-

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 4 Molekülstruktur Ausnahmen von der Oktettregel Hypervalente Verbindungen VSEPR Hybridisierung Molekülorbitale

Mehr

Jahrbuch 2015/2016 Pollmann, Frank Topologische Ordnung und effiziente Simulationen von fraktionierten Quanten-Hall-Systemen

Jahrbuch 2015/2016 Pollmann, Frank Topologische Ordnung und effiziente Simulationen von fraktionierten Quanten-Hall-Systemen Topologische Ordnung und effiziente Simulationen von fraktionierten Topological order and efficient simulations of fractional quantum Hall systems Pollmann, Frank Max-Planck-Institut für Physik komplexer

Mehr

Übungsaufgaben zur Kristallographie Serie 9 LÖSUNG

Übungsaufgaben zur Kristallographie Serie 9 LÖSUNG Chemische Bindung - Struktur - Physikalische Eigenschaften Für diese Aufgabe benötigen Sie das Programm VESTA. Sie finden es im Internet unter http://jp-minerals.org/vesta. Laden Sie die Kristallstrukturen

Mehr

Advanced Physics of Nanosystems

Advanced Physics of Nanosystems Graphen ist ein Material mit einer Reihe außergewöhnlicher Eigenschaften. Einige davon werden in K. S. Novoselov et al., Nature 438, 197 (2005) vorgestellt, darunter auch der Quanten-Hall-Effekt. a) Was

Mehr

Elektronen im Festkörper

Elektronen im Festkörper Elektronen im Festkörper Inhalt 1. Modell des freien Elektronengases 1.1 Zustandsdichten 1.2 Fermi-Energie 1.3 Fermi-Gas bei endlicher Temperatur - Fermi-Dirac-Verteilung 1.4 Spezifische Wärme der Elektronen

Mehr

VL 19 VL Laser VL Mehrelektronensysteme VL Periodensystem

VL 19 VL Laser VL Mehrelektronensysteme VL Periodensystem VL 19 VL 18 18.1. Laser (Light Amplification by Stimulated Emission of Radiation) Maser = Laser im Mikrowellenbereich, d.h. Microwave Amplification by Stimulated Emission of Radiation) VL 19 19.1. Mehrelektronensysteme

Mehr

2. VD, BSc. Anorganische Chemie II Herbst 2005 R. Nesper, G. Patzke. Punktgruppenbestimmung (6 Punkte)

2. VD, BSc. Anorganische Chemie II Herbst 2005 R. Nesper, G. Patzke. Punktgruppenbestimmung (6 Punkte) 2. VD, BSc. Anorganische Chemie II Herbst 2005 R. Nesper, G. Patzke Aufgabe 1 Punktgruppenbestimmung (6 Punkte) Bestimmen Sie die Punktgruppensymmetrie für die folgenden Moleküle. (a): C 3 (b): C 2v (c):

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das Bohr sche Atommodell: Strahlenabsorption, -emission, Elektromagentische Strahlung, Wellen, Wellenlänge, Frequenz, Wellenzahl. Postulate: * Elektronen bewegen

Mehr

Anorganische Chemie III - Festkörperchemie

Anorganische Chemie III - Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Festkörperchemie

Mehr

Halbleitercluster. Halbleitercluster. Molekül- und Clusterphysik 411

Halbleitercluster. Halbleitercluster. Molekül- und Clusterphysik 411 Halbleitercluster Halbleitercluster Molekül- und Clusterphysik 411 Halbleitercluster Cluster aus Halbleitern Insbesondere von Clustern aus im Festkörper halbleitenden Materialien wie Si oder Ge hatte man

Mehr

Darstellungstheorie Näherungsverfahren Messprozess Streutheorie Dirac-Glg.

Darstellungstheorie Näherungsverfahren Messprozess Streutheorie Dirac-Glg. 5 Relativistische Quantentheorie Kap. 5 Zusammenfassung Gesucht: Relativistische Variante der Schrödinger-Glg. mit E 2 = p 2 c 2 + m 2 c 4 und Lorentz-Invarianz Versuch 2 (Lösung 1, für Spin-0: Klein-Gordon-Glg.

Mehr

Moderne Experimentalphysik III: Hadronen und Teilchen (Physik VI)

Moderne Experimentalphysik III: Hadronen und Teilchen (Physik VI) Moderne Experimentalphysik III: Hadronen und Teilchen (Physik VI) Thomas Müller, Roger Wolf 05. Juli 2018 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IETP) PHYSICS FACULTY KIT University of the State of

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das (wellen-) quantenchemische Atommodell Orbitalmodell Beschreibung atomarer Teilchen (Elektronen) durch Wellenfunktionen, Wellen, Wellenlänge, Frequenz, Amplitude,

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

CHEMIE KAPITEL 1 AUFBAU DER MATERIE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2014 / 2015

CHEMIE KAPITEL 1 AUFBAU DER MATERIE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2014 / 2015 CHEMIE KAPITEL 1 AUFBAU DER MATERIE Timm Wilke Georg-August-Universität Göttingen Wintersemester 2014 / 2015 Folie 2 Valenzelektronen und Atomeigenschaften Valenzelektronen (Außenelektronen) bestimmen

Mehr

Bachelorarbeit Bose-Hubbard-Modell

Bachelorarbeit Bose-Hubbard-Modell Bachelorarbeit Bose-Hubbard-Modell Simon Fernbach 1 Gliederung Einleitung Grundlagen Bose-Hubbard-Modell Numerische Behandlung Ergebnisse Zusammenfassung Quelltext Literaturverzeichnis 2 Einleitung Das

Mehr

Achim Kittel. Energie- und Halbleiterforschung Fakultät 5, Institut für Physik Büro: W1A Tel.:

Achim Kittel. Energie- und Halbleiterforschung Fakultät 5, Institut für Physik Büro: W1A Tel.: Festkörperphysik Achim Kittel Energie- und Halbleiterforschung Fakultät 5, Institut für Physik Büro: W1A 1-102 Tel.: 0441-798 3539 email: kittel@uni-oldenburg.de Sommersemester 2005 Inhaltsverzeichnis

Mehr

2.!-rhomboedrisches Bor

2.!-rhomboedrisches Bor Bor 2.!-rhomboedrisches Bor 5 Bor 6 Bor 2. weiter!-rhomboedrisches Bor: 2.1. Beschreibung 1: B12-Ikosaeder radial ikosaedrisch von 12 Halbikosaedern umgeben: B84-Einheit nach außen 12 x 5 = 60 Bor-Atome

Mehr

Festkörperelektronik 4. Übung

Festkörperelektronik 4. Übung Festkörperelektronik 4. Übung Felix Glöckler 23. Juni 2006 1 Übersicht Themen heute: Feedback Spin Drehimpuls Wasserstoffatom, Bohr vs. Schrödinger Wasserstoffmolekülion, kovalente Bindung Elektronen in

Mehr

Besetzung der Orbitale

Besetzung der Orbitale Frage Beim Wiederholen des Stoffes bin ich auf die Rechnung zur Energie gestoßen. Warum und zu welchem Zweck haben wir das gemacht? Was kann man daran jetzt erkennen? Was beschreibt die Formel zu E(n),

Mehr

Institut für Festkörperphysik

Institut für Festkörperphysik Institut für Festkörperphysik Atomare und Molekulare Strukturen Prof. Dr. Herbert Pfnür Prof. Dr. Christoph Tegenkamp Prof. Dr. Fei Ding Nanostrukturen Prof. Dr. Rolf Haug Prof. Michael Oestreich Photovoltaik

Mehr

FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK

FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Elektronik 1 - Bauelemente Vorlesung 5, 09.11.2017 Nils Pohl FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Lehrstuhl für Integrierte Systeme Organisatorisches Terminübersicht 02.11. 12:15 Vorlesung

Mehr

6/2 Halbleiter Ganz wichtige Bauteile

6/2 Halbleiter Ganz wichtige Bauteile Elektronik 6/2 Seite 1 6/2 Halbleiter Ganz wichtige Bauteile Erforderlicher Wissensstand der Schüler Begriffe: Widerstand, Temperatur, elektrisches Feld, Ionen, Isolator Lernziele der Unterrichtssequenz

Mehr

Elektronen im periodischen Potential

Elektronen im periodischen Potential Elektronen im periodischen Potential Blochfunktionen / Blochelektronen Elektronenwellen unterscheiden sich von ebenen Wellen durch eine gitterperiodische Modulation. Diese Bloch-Wellen werden in einem

Mehr

Zero resistance by magnetism

Zero resistance by magnetism Zero resistance by magnetism Stockert, Oliver; Arndt, Julia; Jeevan, Hirale S.; Geibel, Christoph; Steglich, Frank Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden Korrespondierender Autor

Mehr

Gliederung. Einleitung. Das Phänomen der Charge Density Wave-Instabilität ( CDW-Instabilität ) In/Si(111): Ein Beispiel für die CDW-Instabilität?

Gliederung. Einleitung. Das Phänomen der Charge Density Wave-Instabilität ( CDW-Instabilität ) In/Si(111): Ein Beispiel für die CDW-Instabilität? Gliederung Einleitung Das Phänomen der Charge Density Wave-Instabilität ( CDW-Instabilität ) In/Si(111): Ein Beispiel für die CDW-Instabilität? Zusammenfassung Einleitung Charakteristische Eigenschaften

Mehr

Allgemeine Chemie I Herbstsemester 2012

Allgemeine Chemie I Herbstsemester 2012 Lösung 4 Allgemeine Chemie I Herbstsemester 2012 1. Aufgabe Im Vorlesungsskript sind für Xenon die Werte σ(xe) = 406 pm und ε = 236 kjmol 1 tabelliert. ( ) 12 ( ) 6 σ σ E i j = 4ε (1) r i j r i j r i j

Mehr

Ultraschnelle Magnonen für Spintronik Ultrafast magnons for spintronics

Ultraschnelle Magnonen für Spintronik Ultrafast magnons for spintronics Ultraschnelle Ultrafast magnons for spintronics Zakeri Lori, Khalil; Zhang, Yu; Chuang, Tzu-Hung; Kirschner, Jürgen Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale Korrespondierender Autor E-Mail:

Mehr

Jahrbuch 2003/2004 Baues, Hans-Joachim; Jibladze, Mamuka Abbildungen zwischen Sphären

Jahrbuch 2003/2004 Baues, Hans-Joachim; Jibladze, Mamuka Abbildungen zwischen Sphären Abbildungen zwischen Sphären Maps between spheres Baues, Hans-Joachim; Jibladze, Mamuka Max-Planck-Institut für Mathematik, Bonn Korrespondierender Autor E-Mail: baues@mpim-bonn.mpg.de Zusammenfassung

Mehr

Die seltsame Welt der Quanten

Die seltsame Welt der Quanten Saturday Morning Physics Die seltsame Welt der Quanten Wie spielt Gott sein Würfelspiel? 12. 11. 2005 Gernot Alber und Gerhard Birkl Institut für Angewandte Physik Technische Universität Darmstadt gernot.alber@physik.tu-darmstadt.de

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2014 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 3. Vorlesung, 20. 3. 2014 Mehrelektronensysteme, Fermionen & Bosonen, Hartree-Fock,

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende

Fortgeschrittene Experimentalphysik für Lehramtsstudierende Fortgeschrittene Experimentalphysik für Lehramtsstudierende Teil I Festkörperphysik Elizabeth von Hauff Organic Photovoltaics & Electronics Hochhaus 401 elizabeth.von.hauff@physik.uni-freiburg.de Teil

Mehr

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten

2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten Inhalt: 1. Regeln und Normen Modul: Allgemeine Chemie 2. Elementare Stöchiometrie I Definition und Gesetze, Molbegriff, Konzentrationseinheiten 3.Bausteine der Materie Atomkern: Elementarteilchen, Kernkräfte,

Mehr

Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17

Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Vorlesung: Hörsaal 10.01 Daran anschließend Physikalische Chemie 2 (Prof. Falcaro, TU): Materie im elektr./magn. Feld, Wechselwirkungen,

Mehr

4. Ionenkristalle. 4. Ionenkristalle. Erinnerungen an die Basics (AAC, PC-I) Vorlesung Anorganische Strukturchemie, WS 18/ , C.

4. Ionenkristalle. 4. Ionenkristalle. Erinnerungen an die Basics (AAC, PC-I) Vorlesung Anorganische Strukturchemie, WS 18/ , C. Erinnerungen an die Basics (AAC, PC-I) Vorlesung Anorganische Strukturchemie, WS 18/19 2.2019, C. Röhr Ionenbindung, elektronische Struktur von Salzen Ionencharakter Kriterium: grosse Elektronegativitäts-Differenz

Mehr

Kristallchemie. Atome Ionen Moleküle Chemische Bindungen

Kristallchemie. Atome Ionen Moleküle Chemische Bindungen Zirkon Kristallchemie Atome Ionen Moleküle Chemische Bindungen Bohr sches Atommodell Kernteilchen: p: Proton n: Neutron Elektronenhülle: e - Elektron Nukleus: Massenzahl A = p + n, Ordnungszahl Z = p =

Mehr

Darstellung und Charakterisierung zweier Modifikationen von (CuI) 2 (µ 2-2-Ethylpyrazin-N,N )

Darstellung und Charakterisierung zweier Modifikationen von (CuI) 2 (µ 2-2-Ethylpyrazin-N,N ) Versuch F3 Darstellung und Charakterisierung zweier Modifikationen von (CuI) 2 (µ 2-2-Ethylpyrazin-N,N ) Einführung Der Begriff Polymorphie bezeichnet die Eigenschaft chemischer Verbindung in mehreren

Mehr

Intrinsische Halbleiter

Intrinsische Halbleiter Intrinsische Halbleiter Ein völlig reines Halbleitermaterial (ohne Fremdatome, ohne Fehlstellen, ohne "Antisites") nennt man intrinsisch. Bei einem intrinsischen Halbleiter hängen die Ladungsträgerkonzentrationen

Mehr

Chemische Bindungen Atombindung

Chemische Bindungen Atombindung Atombindung Das Lewis Modell der kovalenten Bindung Bildung von Molekülen (Einfachbindungen) Aus jeweils einem ungepaarten Elektron eines Atoms bildet sich ein gemeinsames Elektronenpaar als Molekülorbital

Mehr

Elektrische Eigenschaften von Graphen

Elektrische Eigenschaften von Graphen Elektrische Eigenschaften von Graphen Seminarvortrag, 14.07.2014 Florian Bansemer Nanostrukturphysik II SS2014 Universität des Saarlandes http://bilder.t-online.de/b/70/17/29/84/id_70172984/610/tid_da/der-ball-im-tor.jpg

Mehr

Elektrisches Feld als Schalter für Nanomagnete Electric field as a switch for nanomagnets

Elektrisches Feld als Schalter für Nanomagnete Electric field as a switch for nanomagnets Elektrisches Electric field as a switch for nanomagnets Brovko, Oleg O.; Ruiz-Diaz, Pedro; Dasa, Tamene R.; Stepanyuk, Valeri S. Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale Korrespondierender

Mehr

Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie

Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie Von

Mehr

Chemical Bonding. type Energies Forces. ionic E ~ 1/r F ~ 1/r 2. covalent E ~ 1/r 3 F ~ 1/r 4. van der Waals E ~ 1/r 5 F ~ 1/r 6.

Chemical Bonding. type Energies Forces. ionic E ~ 1/r F ~ 1/r 2. covalent E ~ 1/r 3 F ~ 1/r 4. van der Waals E ~ 1/r 5 F ~ 1/r 6. Chemical Bonding type Energies Forces ionic E ~ 1/r F ~ 1/r 2 covalent E ~ 1/r 3 F ~ 1/r 4 van der Waals E ~ 1/r 5 F ~ 1/r 6 Chemical Bonding Chemical Bonding Inmixing of sodium states Antiparallel Couplings

Mehr

Physikalische Chemie 1 Struktur und Materie Wintersemester 2015/16

Physikalische Chemie 1 Struktur und Materie Wintersemester 2015/16 Vorlesung: Kontakt: Physikalische Chemie 1 Struktur und Materie Wintersemester 2015/16 5., 7., 12., 19., 21., 28. Oktober und 4., 11., 13., 18. November Hörsaal 10.01 Daran anschließend Physikalische Chemie

Mehr

Redoxreaktionen: Elektronentransfer, Oxidation, Reduktion, elektrochemische Redoxpotentiale, Normalwasserstoffelektrode, die Nernst sche Gleichung

Redoxreaktionen: Elektronentransfer, Oxidation, Reduktion, elektrochemische Redoxpotentiale, Normalwasserstoffelektrode, die Nernst sche Gleichung Wiederholung der letzten Vorlesungsstunde: Redoxreaktionen: Elektronentransfer, Oxidation, Reduktion, elektrochemische Redoxpotentiale, Normalwasserstoffelektrode, die Nernst sche Gleichung Thema heute:

Mehr

Organische Chemie. Kapitel 1. Organic Chemistry 4 th Edition Paula Yurkanis Bruice. Organische Verbindungen enthalten Kohlenstoff

Organische Chemie. Kapitel 1. Organic Chemistry 4 th Edition Paula Yurkanis Bruice. Organische Verbindungen enthalten Kohlenstoff rganic Chemistry 4 th Edition Paula Yurkanis Bruice Kapitel 1 Elektronische Struktur und Bindung Säuren und Basen rganische Chemie rganische Verbindungen enthalten Kohlenstoff Kohlenstoff ist weder ein

Mehr

Mechanisch-thermische. Materialeigenschaften VL # 2

Mechanisch-thermische. Materialeigenschaften VL # 2 Mechanisch-thermische Materialeigenschaften VL # 2 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

Institut für Theoretische Physik

Institut für Theoretische Physik Institut für Theoretische Physik Kondensierte Materie Holger Frahm Eric Jeckelmann Stringtheorie und Gravitation Domenico Giulini Olaf Lechtenfeld Quanteninformation Reinhard F. Werner Tobias Osborne Quantenoptik

Mehr

Festkörperphys i. Einführung in die Grundlagen

Festkörperphys i. Einführung in die Grundlagen Harald Ibach Hans Lüth Festkörperphys i Einführung in die Grundlagen 1. Die chemische Bindung in Festkörpern 1 1.1 Das Periodensystem 1 1.2 Kovalente Bindung 4 1.3 DieIonenbindung 9 1.4 Metallische Bindung

Mehr

Typische Eigenschaften von Metallen

Typische Eigenschaften von Metallen Typische Eigenschaften von Metallen hohe elektrische Leitfähigkeit (nimmt mit steigender Temperatur ab) hohe Wärmeleitfähigkeit leichte Verformbarkeit metallischer Glanz Elektronengas-Modell eines Metalls

Mehr

Halbleiterphysik. Von Reinhold Paul VEB VERLAG TECHNIK BERLIN

Halbleiterphysik. Von Reinhold Paul VEB VERLAG TECHNIK BERLIN Halbleiterphysik Von Reinhold Paul VEB VERLAG TECHNIK BERLIN INHALTSVERZEICHNIS Schreibweise und Formelzeichen der wichtigsten Größen 13 1. Halbleiter 19 1.1. Festkörper 19 1.2. Eigenschaften elektronischer

Mehr

Curriculum Vitae Prof. Dr. Claudia Felser

Curriculum Vitae Prof. Dr. Claudia Felser Curriculum Vitae Prof. Dr. Claudia Felser Name: Claudia Felser Geboren: 28. Juli 1962 Forschungsschwerpunkte: Design und Synthese neuer Materialien, Materialien für Energietechnologien (Solartechnik, Thermoelektronik,

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter WS 2013/14

Mehr

Berechnung der elektronischen Struktur von Festkörpern mittels des selbstentwickelten Programmpaketes WIEN2k

Berechnung der elektronischen Struktur von Festkörpern mittels des selbstentwickelten Programmpaketes WIEN2k Berechnung der elektronischen Struktur von Festkörpern mittels des selbstentwickelten Programmpaketes WIEN2k P. Blaha, K. Schwarz, C. Först, J. Schweifer, R. Laskowski und B. Olejnik Institut für Materialchemie,

Mehr

Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt

Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt Atom- und Molekülbau Ein Lehrbuch für Studierende der Chemie im 2. Studienabschnitt Von Peter C. Schmidt und Konrad G. Weil 147 Abbildungen, 19 Tabellen Georg Thieme Verlag Stuttgart New York 1982 Vorwort

Mehr

Übungen zu Physik 2 für Maschinenwesen

Übungen zu Physik 2 für Maschinenwesen Physikdepartment E13 SS 011 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 1.07.011,

Mehr