Kohlenstoff-Nanoröhren

Größe: px
Ab Seite anzeigen:

Download "Kohlenstoff-Nanoröhren"

Transkript

1 Kohlenstoff-Nanoröhren Metall oder Halbleiter: atomare und elektronische Struktur 10. Mai 2004 Malte Avenhaus Institut für Technische Physik II Kohlenstoff-Nanoröhren p.1/35

2 Übersicht 1. Motivation 2. Struktur von Nano-Röhren Der Chirale Vektor Die Einheitszelle 3. Bandstruktur von Nano-Röhren Bandstruktur von Graphen Konzepte der Faltung Bedingung für Metall-Halbleiter 4. Nachweis der Bandstruktur Rastertunnelspektroskopie optische Absorption und Photolumineszenz Kohlenstoff-Nanoröhren p.2/35

3 Motivation Ähnlichkeit von Graphen und CNTs Kohlenstoff als Metall und Halbleiter Halbleiter sind wichtig für Transistoren Geometrie als Hilfsmittel zur Unterscheidung Halbleiter Halbmetall Kohlenstoff-Nanoröhren p.3/35

4 Graphen Ausgehend vom sp 2 hybridisierten Graphen können viele Eigenschaften von Kohlenstoff-Nanoröhren (CNTs) erklärt werden. Kohlenstoff-Nanoröhren p.4/35

5 Die Graphen-Einheitszelle Die Einheitszelle besteht aus aus zwei Kohlenstoff-Atom, die Basis aus zwei Vektoren a 1, a 2 mit Zwischenwinkel 60 und Länge 2, 461Ȧ Kohlenstoff-Nanoröhren p.5/35

6 Der Chiral-Vektor CNTs sind aufgerolltes Graphen Der Chiral-Vektor c := c 1 a 1 + c 2 a 2 beschreibt den Umfang und bestimmte CNT vollständig Der Durchmesser beträgt d = c π Die CNT verlaufe in Richtung b. Dann gilt b c Die Einheitszelle wird von b und c aufgespannt Kohlenstoff-Nanoröhren p.6/35

7 Der Chiral-Vektor Quelle: Carbon Nanotubes, Reich, Thomsen, Maultzsch Kohlenstoff-Nanoröhren p.7/35

8 Die Einheitszelle Verfahren zur Bestimmung der Einheitszelle: b c = 0 a 2 0 (b 1 c b 1c b 2c 1 + b 2 c 2 ) = 0 Wähle obda b 1 = 1 b 2 = 2c 1 + c 2 c 1 + 2c 2 = b 2 b 1 Kohlenstoff-Nanoröhren p.8/35

9 Bandstruktur Brillouinzone von Graphen Bandstruktur von Graphen Brillouinzone von CNTs Prinzip der Faltung Klassifizierung elektrischer Eigenschaften von CNTs Kohlenstoff-Nanoröhren p.9/35

10 Konstruktion der Brillouinzone von Graphen Einheitszelle Kohlenstoff-Nanoröhren p.10/35

11 Konstruktion der Brillouinzone von Graphen Einheitszelle Basisvektoren Kohlenstoff-Nanoröhren p.10/35

12 Konstruktion der Brillouinzone von Graphen Einheitszelle Basisvektoren Übergang in Fourier Raum Kohlenstoff-Nanoröhren p.10/35

13 Konstruktion der Brillouinzone von Graphen Einheitszelle Basisvektoren Übergang in Fourier Raum k i a j = 2πδ i,j Kohlenstoff-Nanoröhren p.10/35

14 Konstruktion der Brillouinzone von Graphen Einheitszelle Basisvektoren Übergang in Fourier Raum k i a j = 2πδ i,j reziprokes Gitter Kohlenstoff-Nanoröhren p.10/35

15 Konstruktion der Brillouinzone von Graphen Einheitszelle Basisvektoren Übergang in Fourier Raum k i a j = 2πδ i,j reziprokes Gitter Begrenzung durch Mittelsenktrechte bildet Brillouinzone Kohlenstoff-Nanoröhren p.10/35

16 Konstruktion der Brillouinzone von Graphen Einheitszelle Basisvektoren Übergang in Fourier Raum k i a j = 2πδ i,j reziprokes Gitter Begrenzung durch Mittelsenktrechte bildet Brillouinzone Nomenklatur Kohlenstoff-Nanoröhren p.10/35

17 Elektrische Eigenschaften von Graphen Graphen ist ein Halbmetall Graphen ist sp 2 hybridisiert Die sp 2 Orbitale bilden in der Ebene unter einem Winkel von je 120 drei σ-bindungen aus Die p z Orbitale ragen senkrecht aus der Ebene Quelle: Chemie, Mortimer (Carbonat) Quelle: Rainer Waser (Benzol) Kohlenstoff-Nanoröhren p.11/35

18 Bandstruktur von Graphen Dispersionsrelation E(k) von Graphen, berechnet mittels der Näherung starker Kopplung bzw. Tight-Binding Modell Kohlenstoff-Nanoröhren p.12/35

19 Bandstruktur von Graphen Quelle: Nanoelectronics and Information Technology, Waser Graphen ist Halbmetall Energieband kreuzt Fermi-Niveau am K-Punkt Sind alle CNTs Halbmetalle? Kohlenstoff-Nanoröhren p.13/35

20 Brillouinzone von CNTs CNTs sind quasi 1-dimensional: k = 2π b in Richtung von b CNT kann als unendlich lang angenommen werden Zustands-Vektoren in k Richtung sind quasi kontinuierlich Um den Umfang sind Wellen-Vektoren gewissen periodischen Randbedingungen unterworfen: k = 2π λ = 2π c m = 2m d in Richtung von c Zustands-Vektoren in k Richtung sind quantisiert Kohlenstoff-Nanoröhren p.14/35

21 Konstruktion der Brillouinzone von CNTs Brilluoin-Zone von Graphen zum Vergleich Kohlenstoff-Nanoröhren p.15/35

22 Konstruktion der Brillouinzone von CNTs Brilluoin-Zone von Graphen zum Vergleich Konstruktion von k in Richtung b mit Länge 2π, k-vektor in Richtung von b ist wegen b hoher Dichte im k-raum 2π quasi kontinuierlich L Kohlenstoff-Nanoröhren p.15/35

23 Konstruktion der Brillouinzone von CNTs Brilluoin-Zone von Graphen zum Vergleich Konstruktion von k in Richtung b mit Länge 2π, k-vektor in Richtung von b ist wegen b hoher Dichte im k-raum 2π quasi kontinuierlich L In Richtung von c ist k quantisiert Kohlenstoff-Nanoröhren p.15/35

24 Prinzip der Faltung Das Prinzip der Faltung ist eine Näherung zur Bestimmung von Eigenschaften von CNTs mittels derer von Graphen Die Faltung wird wie folgt angewandt: Näherung: CNTs haben dieselbe Dispersionsrelation wie Graphen Parallel zur Röhrenachse verlaufen die möglichern k-vektoren dicht (quasi kontinuierlich) mit Länge 2π. Dabei wird nicht nur die b Brillouin-Zone betrachtet, sondern diese Kontinuität von k mit nahtlos periodisch aneinander gefaltet. Länge 2π b Diese Linien haben einen Abstand von 2 d = Es wird ein Netz von parallelen erlaubten k-vektoren über die Dispersionsrelation von Graphen gespannt Kohlenstoff-Nanoröhren p.16/35

25 Faltung der Brillouinzone von CNTs Nahtlose Faltung, also periodische Fortsetzung von k Kohlenstoff-Nanoröhren p.17/35

26 Faltung der Brillouinzone von CNTs Nahtlose Faltung, also periodische Fortsetzung von k Ergibt die Bandstruktur E(k) durch Überlagerung der Dispersionsrelation von Graphen Kohlenstoff-Nanoröhren p.17/35

27 Beispiele (3,3) und (4,2) Quelle: Nanoelectronics and Information Technology, Waser Kohlenstoff-Nanoröhren p.18/35

28 Faltung und Unterscheidung Metall-Halbleiter Auf der letzten Folie war erkennbar, daß sich im K-Punkt das Valenzband und Leitungsband schneiden Liegt der K-Punkt in den erlaubten Zuständen ist die CNT halbmetallisch. Andernfalls halbleitend Regel: Kohlenstoff-Nanoröhren sind Halbmetalle, falls (c 1 c 2 )mod3 = 0 gilt. Andernfalls sind sie Halbleiter Kohlenstoff-Nanoröhren p.19/35

29 Halbmetall (c 1 c 2 )mod3 = 0 K-Punkt: 1 3 ( k 1 k 2 ) Zustände: k c = 2πm, m ganze Zahl K c = 2πm = 1 3 ( k 1 k 2 )(c 1 a 1 + c 2 a 2 ) = 2π 3 (c 1 c 2 ) Kohlenstoff-Nanoröhren p.20/35

30 Näherungen der Faltung Das Prinzip der Faltung von Graphen zu CNTs ist nur nährungsweise gültig: Schmale lang gestreckte Graphenstücke hätten dieselbe Bandstruktur wie eine entsprechende CNT Zwei gegenüberliegende Kohlenstoff-Atome sind sich näher als in der Ebene und wechselwirken daher stärker Die Hexagone bilden zueinander einen anderen Winkel In Graphen liegt das p z Orbital stets senkrecht zu den σ-bindungen. In CNTs überlappen diese teilweise und bilden ebenso sp 3 hybridisierte Orbitale Kohlenstoff-Nanoröhren p.21/35

31 Experimenteller Nachweis der Bandstruktur Rastertunnelspektroskopie lokale Nachweismethode Photolumineszenz globale Nachweismethode Kohlenstoff-Nanoröhren p.22/35

32 Rastertunnelspektroskopie Oberflächenmessung: Konstanter Tunnelstrom Spektroskopie: Messung von I tunnel (U) Kohlenstoff-Nanoröhren p.23/35

33 Rastertunnelspektroskopie von CNTs Voraussetzungen: reine Proben einzelner einwandiger CNTs Bestimmung des chiralen Winkels und des Durchmessers (c 1, c 2 ) Spektroskopie Dichteverteilung der Zustände (DOS) Durchmesser ist indirekt proportional zur Energiedifferenz der Bandlücke Graphen für lim d Lokale Methode zur Bestimmung einiger weniger Nanoröhren Der Chiral-Vektor (c 1, c 2 ) läßt sich nicht exakt ablesen Kohlenstoff-Nanoröhren p.24/35

34 Rastertunnelspektroskopie von CNTs Die Rastertunnelspitze wird in die Nähe der Nanoröhre gebracht Kohlenstoff-Nanoröhren p.25/35

35 Rastertunnelspektroskopie von CNTs Die Rastertunnelspitze wird in die Nähe der Nanoröhre gebracht Der Tunnelstrom I wird in Abhängigkeit von der an der Spitze angelegten Spannung U gemessen. Der Strom ist proportional dem Integral über die Zustandsdichte Kohlenstoff-Nanoröhren p.25/35

36 Rastertunnelspektroskopie von CNTs Bild (a) und (c) zeigen eine metallische (12,3) Nano-Röhre, Bild (b) und (d) eine halb leitende (14,-3) Nano-Röhre. Quelle: Carbon Nanotubes, Dresselhaus Kohlenstoff-Nanoröhren p.26/35

37 Verbindung Zustandsdichte und Dispersionsrelatio Abgebildet ist die Zustandsdichte von einer halbleitenden (10,0) und einer metallischen (9,0) Nanoröhre. Die Zustandsdichte ist proportional zu di/du In eindimensionalen Strukturen zeigen sich so genannte Van-Hove Singularitäten Die große Zustandsdichte bei den Singularitäten bestimmt viele physikalische Eigenschaften, so etwa die Absorption Die Zustandsdichte und die Dispersionsrelation sind verknüpft über D(E) = Z d 3 k D(k) 1 k E(k) Quelle: Rainer Waser Kohlenstoff-Nanoröhren p.27/35

38 Bandlücke-Radius-Relation Bei zunehmendem Röhrenradius nimmt die Energiedifferenz der Bandlücke ab. Quelle: Carbon Nanotubes, Dresselhaus Kohlenstoff-Nanoröhren p.28/35

39 Optische Absorption CNTs absorbieren Licht Halbleitende CNTs fluoreszieren dabei Quelle: Carbon Nanotubes, Reich, Thomsen, Maultzsch Kohlenstoff-Nanoröhren p.29/35

40 Photolumineszenz Bei der Photolumineszenz wird eine Probe mit eine bestimmten Wellenlänge und Intensität beleuchtet. Danach wird gemessen mit welcher Intensität und Wellenlänge die Probe strahlt. Dabei sind charakteristisch: Photonen können Elektron vom Valenzband in das Leitungsband anregen. Die Fluoreszenzenergie ist kleiner als die der Bandlücke Die Fluoreszenzenergie ist abhängig vom Chiral-Vektor c Kohlenstoff-Nanoröhren p.30/35

41 Photolumineszenz Wie im Diagramm gezeigt folgt der Absorption eines Photons der Energie E 22 eine Emission eines Photons der Energie E 11. Die Werte von E 11 und E 22 sind abhängig von dem Chiral-Vektor. Quelle: Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes, Science 2002 Kohlenstoff-Nanoröhren p.31/35

42 Photolumineszenz Intensität der Emissionswellenlänge in Abhängigkeit der Anregungswellenlänge Hervorragende Auflösung von Bandlücke und Chiral-Vektor Bestimmung der Zusammensetzung einer Probe Quelle: Kohlenstoff-Nanoröhren p.32/35

43 Zusammenfassung Vergleich Graphen CNTs Graphen CNT Hybridisierung sp 2 sp 2 Dimension 2 dim. 1 dim. Basis a 1, a 2 b, c = n1 a 1 + n 2 a 2 Symmetrien Rotation, Translation Translation el. Klassifizierung Halbmetall Halbleiter: (c 1 c 2 )mod3 0 Kohlenstoff-Nanoröhren p.33/35

44 Zusammenfassung Das räumliche Modell von CNTs leitet sich von Graphen ab Die Einheitszellen von CNT und Graphen unterscheiden sich sehr Die Bandstruktur läßt sich hingegen durch das Prinzip der Faltung schnell und näherungsweise beschreiben Dabei wird sie durch die in Achsenrichtungen kontinuierlichen und die senkrecht dazu quantisierten k Vektoren mittels der Dispersionsrelation von Graphen beschrieben CNTs sind Halbmetalle falls (c 1 c 2 )mod3 = 0, andernfalls Halbleiter Die Bandstruktur läßt sich experimentell mittels Rastertunnelspektroskopie und Photolumineszenz bestimmen Kohlenstoff-Nanoröhren p.34/35

45 Referenzen Carbon Nanotubes - S. Reich, C. Thomsen, J. Maultzsch - Wiley-VCH Nanoelectronics and Information Technology - Rainer Waser - Wiley-VCH Einführung in die Festkörperphysik - Ch. Kittel - Oldenbourg Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes - Science, Vol 298, pp 2361 Institut für Technische Physik - Prof. Dr. Lothar Ley Kohlenstoff-Nanoröhren p.35/35

ElektronischeBandstruktur

ElektronischeBandstruktur ElektronischeBandstruktur Literatur: C. Kittel Einführungin die Festkörperphysik Kapitel 7,8 Ashcroft & Mermin, Kapitel 7,8 Ziman Principles of the Theory of solids, Kapitel 3 Dispersionsrelation für

Mehr

Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz. Sommersemester Physik der kondensierten Materie

Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz. Sommersemester Physik der kondensierten Materie Physik der kondensierten Materie Kapitel 8 Elektronen im periodischen Potential Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz In Vertretung von Carsten Deibel Optik & Photonik

Mehr

Versuch 40: UV-Photoelektronenspektroskopie

Versuch 40: UV-Photoelektronenspektroskopie Versuch 40: UV-Photoelektronenspektroskopie Ort: MZG (Technische Physik), Zi. 0.175 hω k k ϑ ϕ k Probe worum geht s? Messung der elektronischen Bandstruktur E(k) eines 2D-Festkörpers (Graphit) mittels

Mehr

Spektroskopie an SWCNTs

Spektroskopie an SWCNTs Spektroskopie an SWCNTs Raman, EELS, X-ray Rudolf Pfeiffer rpfei@ap.univie.ac.at Institut für Materialphysik, Universität Wien 11. Dezember 2002 Spektroskopie an SWCNTs p.1/37 Inhalt Einleitung Raman-Spektroskopie

Mehr

In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter.

In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter. II.2: Erinnerung an die Halbleiterphysik II.2.1: Kristalline Festkörper In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches

Mehr

Ramanspektroskopie an Kohlenstoffnanoröhren. von Hagen Telg

Ramanspektroskopie an Kohlenstoffnanoröhren. von Hagen Telg Ramanspektroskopie an von (5,5) (6,4) Atomare Struktur chirale Indices Herstellung keine bevorzugte Chiralität (n1,n2) Eigenschaften ähnlicher Durchmesser + verschiedene Windung unterschiedliche elektronische

Mehr

"Einführung in die Festkörperphysik" Inhalt der Vorlesung. 5.7 Messung von Bandstrukturen, Zustandsdichte. 5.2 Das Modell des fast freien Elektrons

Einführung in die Festkörperphysik Inhalt der Vorlesung. 5.7 Messung von Bandstrukturen, Zustandsdichte. 5.2 Das Modell des fast freien Elektrons Inhalt der Vorlesung "Einführung in die Festkörperphysik" für Dezember 2009 ist geplant: 5. Energiebänder 5.1 Motivation 5.2 Das Modell des fast freien Elektrons 5.3 Das stark gebundene Elektron 5.4 Das

Mehr

Die chemische Bindung

Die chemische Bindung Die chemische Bindung Die Valenz-Bond Theorie Molekülorbitale Die Bänder Theorie der Festkörper bei einer ionischen Bindung bildet bildet sich ein Dipol aus ('Übertragung von Elektronen') Eine kovalente

Mehr

Dies ist die Sammlung des Materials von Dienstag, bis Freitag Zustandsdichte für Elektronen und Photonen, 1D,2D,3D

Dies ist die Sammlung des Materials von Dienstag, bis Freitag Zustandsdichte für Elektronen und Photonen, 1D,2D,3D Exp. Phys. 5, WS16/17 Denninger skript_3_1_016_b Dies ist die Sammlung des Materials von Dienstag, 16.1. bis Freitag 3.1.016. Inhalt: 1. fcc_struktur.pdf Seite Bilder von ausgewählten Oberflächen. bragg_beugung.pdf

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,

Mehr

Nanotubes. Bauelemente für eine neue Nanoelektronik. Moritz Bubek

Nanotubes. Bauelemente für eine neue Nanoelektronik. Moritz Bubek Nanotubes Bauelemente für eine neue Nanoelektronik Moritz Bubek Übersicht Struktur von Nanotubes Defekte an Nanotubes klassischer Schottky-Effekt Elektrische Eigenschaften von SWNTs SWNT-Schottky-Diode

Mehr

Vorlesung Festkörperphysik. WS 2014/2015 Vorlesungen Universität Rostock Heinrich Stolz

Vorlesung Festkörperphysik. WS 2014/2015 Vorlesungen Universität Rostock Heinrich Stolz Vorlesung Festkörperphysik WS 2014/2015 Vorlesungen 28.10.14 Universität Rostock Heinrich Stolz 1 2. Das Reziproke Gitter Wichtige mathematische Objekt in der Physik mit periodischer Struktur? ebene Welle

Mehr

Übungsaufgaben zur Kristallographie Serie 9 LÖSUNG

Übungsaufgaben zur Kristallographie Serie 9 LÖSUNG Chemische Bindung - Struktur - Physikalische Eigenschaften Für diese Aufgabe benötigen Sie das Programm VESTA. Sie finden es im Internet unter http://jp-minerals.org/vesta. Laden Sie die Kristallstrukturen

Mehr

Festkörperelektronik 2008 Übungsblatt 6

Festkörperelektronik 2008 Übungsblatt 6 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 10. Juli 2008 Die

Mehr

Aufgabe Σ Punkte Max

Aufgabe Σ Punkte Max Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik Klausur 20. September 2005 Name:........................................

Mehr

Gitterschwingungen in Festkörpern

Gitterschwingungen in Festkörpern in Festkörpern Gitterschwingungen Wie bei den Molekülen wollen wir im folgenden die Dynamik der Festkörper, also Schwingungen des Kristallgitters behandeln Erklärung, Beschreibung Elastische Eigenschaften

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphysik I Prof. Peter Böni, E1 Lösung zum 9. Übungsblatt (Besprechung: 18. - 0. Dezember 006) P. Niklowitz, E1 Aufgabe 9.1: Neutronenstreuung an Phononen (a) Geben Sie die Dispersionsrelation

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik411. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt.

Mehr

Anorganische Chemie III

Anorganische Chemie III Seminar zu Vorlesung Anorganische Chemie III Wintersemester 2013/14 Christoph Wölper Universität Duisburg-Essen # Elektronengas # Bändermodell Bindungsmodelle Metallbindung > Bindungsmodelle Elektronengas

Mehr

Inhaltsverzeichnis. 0 Einleitung... 1

Inhaltsverzeichnis. 0 Einleitung... 1 0 Einleitung... 1 1 Periodische Strukturen... 5 1.1 Kristallstruktur, Bravais-Gitter, Wigner-Seitz-Zelle...... 5 1.1.1 Kristallisation von Festkörpern....... 5 1.1.2 Kristall-System und Kristall-Gitter...

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter WS 2013/14

Mehr

Festkörperelektronik 2008 Übungsblatt 4

Festkörperelektronik 2008 Übungsblatt 4 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 4. Übungsblatt 12. Juni 2008 Die

Mehr

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min Thema: Experimente mit Interferometern Im Mittelpunkt der in den Aufgaben 1 und 2 angesprochenen Fragestellungen steht das Michelson-Interferometer. Es werden verschiedene Interferenzversuche mit Mikrowellen

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen Kapitel : Festkörperphysik.1 Aggregatszustände. Kristallstrukturen.3 Chemische Bindung.4 Gitterschwingungen.5 Elektronen im Festkörper Phasendiagramm von CO Klassisches

Mehr

3. Struktur idealer Kristalle

3. Struktur idealer Kristalle 3. Struktur idealer Kristalle 3.1 Raumgitter - 3-D-periodische Anordnungen - Raumgitter und Basis - primitive Translationen - Elementarzelle - Dreh- und Spiegelsymmetrien - Einheitszelle - 7 Kristallsysteme,

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um

Mehr

Theorie der Kondensierten Materie I WS 2017/2018

Theorie der Kondensierten Materie I WS 2017/2018 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 17/18 Prof. Dr. A. Mirlin, PD Dr. I. Gornyi Blatt 3 Dr. N. Kainaris, Dr. S. Rex,

Mehr

3. Struktur idealer Kristalle

3. Struktur idealer Kristalle 3. Struktur idealer Kristalle 3.1 Raumgitter - 3-D-periodische Anordnungen - Raumgitter und Basis - primitive Translationen - Elementarzelle - Dreh- und Spiegelsymmetrien - Einheitszelle - 7 Kristallsysteme,

Mehr

Elektronen im Festkörper

Elektronen im Festkörper Elektronen im Festkörper Inhalt 1. Modell des freien Elektronengases 1.1 Zustandsdichten 1.2 Fermi-Energie 1.3 Fermi-Gas bei endlicher Temperatur - Fermi-Dirac-Verteilung 1.4 Spezifische Wärme der Elektronen

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter 1 11.4 Metalle,

Mehr

Mott-Isolator-Übergang

Mott-Isolator-Übergang -Übergang Patrick Paul Denis Kast Universität Ulm 5. Februar 2009 Seminar zu Theorie der kondensierten Materie II WS 2008/09 Gliederung Festkörper-Modelle 1 Festkörper-Modelle Bändermodell Tight-Binding-Modell

Mehr

II.3. Primitive Elementarzellen und Basisvektoren

II.3. Primitive Elementarzellen und Basisvektoren II.3. Primitive Elementarzellen und Basisvektoren Elementarzelle (EZ): lückenlose Überdeckung des Raumes, Beispiel: Würfel für kubische Gitter, Primitive EZ: enthält 1 Gitterpunkt Beispiel: kubische bcc-struktur

Mehr

Optische Eigenschaften von Metallen und Legierungen

Optische Eigenschaften von Metallen und Legierungen Reine und angewandte Metallkunde in Einzeldarstellungen Herausgegeben von W. Köster Band 22 Optische Eigenschaften von Metallen und Legierungen Mit einer Einführung in die Elektronentheorie der Metalle

Mehr

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

Photonische Kristalle

Photonische Kristalle Kapitel 2 Photonische Kristalle 2.1 Einführung In den letzten 20 Jahren entwickelten sich die Photonischen Kristalle zu einem bevorzugten Gegenstand der Grundlagenforschung aber auch der angewandten Forschung

Mehr

1.17eV exp eV exp Halbleiter

1.17eV exp eV exp Halbleiter 7.6 Halbleiter Nichtleiter Die Bandstruktur eines Halbleiters ist gleich der Bandstruktur eines Nichtleiters. Der Hauptunterschied besteht in der Breite der Energielücke: Für einen Halbleiter ist die Energielücke

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um

Mehr

Schrödinger- und Dirac- Elektronen in Graphen. Vortrag im Rahmen des Hauptseminars SS 08 von Alexander Zado

Schrödinger- und Dirac- Elektronen in Graphen. Vortrag im Rahmen des Hauptseminars SS 08 von Alexander Zado Schrödinger- und Dirac- Elektronen in Graphen Vortrag im Rahmen des Hauptseminars SS 08 von Alexander Zado 15.05.08 Inhalt Motivation Graphen Elektronische Struktur von Graphen Schrödinger- und Dirac-

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2014 Prof. Dr. F. Kremer

Vorlesung Molekülphysik/Festkörperphysik Sommersemester 2014 Prof. Dr. F. Kremer Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 04 Prof. Dr. F. Kremer Übersicht der Vorlesung am.6.04 Wiederholung (Drude-Modell ( freies Elektronengas ), Plasmaschwingung, Grenzen des Drude-

Mehr

Festkörperelektronik 2008 Übungsblatt 5

Festkörperelektronik 2008 Übungsblatt 5 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 5. Übungsblatt 26. Juni 2008 Die

Mehr

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen.

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen. phys4.026 Page 1 13.8 Das Wasserstoff-Molekül Wie im Fall des H2 + Moleküls führen im H2 Molekül symmetrische Wellenfunktionen zu bindenden Zuständen, wohingegen anti-symmetrische Wellenfunktionen zu anti-bindenden

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung

Mehr

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum:

Elektronen in Metallen. Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Daniel Gillo Datum: Elektronen in Metallen Seminar: Nanostrukturphysik 1 Fakultät: 7 Dozent: Dr. M. Kobliscka Referent: Datum: 1.01.14 Gliederung 1. Einleitung 1.1 Elektronen 1. Metalle. Drude-Modell.1 Ohm'sches Gesetz. Grenzen

Mehr

Quantenzahlen. A B z. Einführung in die Struktur der Materie 67

Quantenzahlen. A B z. Einführung in die Struktur der Materie 67 Quantenzahlen Wir haben uns bis jetzt nur mit dem Grundzustand des H + 2 Moleküls beschäftigt Wie sieht es aus mit angeregten Zuständen wie z.b. 2p Zuständen im H Atom? Bezeichnung der Molekülorbitale

Mehr

Modulprüfung CH15 Physik

Modulprüfung CH15 Physik Modulprüfung CH15 Physik 28. Juni 216 Name: Als korrekt wird der Lösungsweg und das Resultat betrachtet. Dabei wird mehr Wert auf den Lösungsweg als auf das Resultat gelegt. Die Anzahl der Punkte pro Aufgabe

Mehr

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz phys4.024 Page 1 12.8 Eigenschaften von elektronischen Übergängen Übergangsfrequenz betrachte die allgemeine Lösung ψ n der zeitabhängigen Schrödinger-Gleichung zum Energieeigenwert E n Erwartungswert

Mehr

II. Physikalische Grundlagen der Optoelektronik II.1: Erinnerung an die Quantenmechanik

II. Physikalische Grundlagen der Optoelektronik II.1: Erinnerung an die Quantenmechanik II. Physikalische Grundlagen der Optoelektronik II.1: Erinnerung an die Quantenmechanik Das Verhalten von Teilchen (insbesondere Elektronen (e s)) wird beschrieben durch eine Wellenfunktion Ψ(x,t): Massepunkt

Mehr

UV-PHOTONENSPEKTROSKOPIE

UV-PHOTONENSPEKTROSKOPIE Draft September 28 Preprint typeset using L A TEX style emulateapj v. 12/14/5 UV-PHOTONENSPEKTROSKOPIE Tamás Gál 1, Daniel Paulus 1 - Gruppe 38 des FP-8 Draft September 28 Zusammenfassung Bei diesem Versuch

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 25. Vorlesung EP 27. Wärmestrahlung V. STRAHLUNG, ATOME, KERNE 27. Wä (Fortsetzung) Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung und Materie Versuche: Quadratisches Abstandsgesetz

Mehr

Optische Übergänge in Festkörpern. Ausarbeitung zum Seminarvortrag vom von Yvonne Rehder

Optische Übergänge in Festkörpern. Ausarbeitung zum Seminarvortrag vom von Yvonne Rehder Optische Übergänge in Festkörpern Ausarbeitung zum Seminarvortrag vom 29.4.2008 von Yvonne Rehder Inhaltsverzeichnis 1 Einleitung 3 2 Optische Übergänge 3 3 Die Struktur des Festkörpers 3 3.1 Die Kristallstruktur.................................

Mehr

6. Die Chemische Bindung

6. Die Chemische Bindung 6. Die Chemische Bindung Hauptbindungsarten Kovalente Bindung Ionenbindung Metallische Bindung Nebenbindungsarten Van der Waals Wechselwirkung Wasserstoffbrückenbindung Metalle www.webelements.com Eigenschaften

Mehr

Inhalt. Vorwort V. Zum Inhalt von Band VI. Danksagung IX. Symbolverzeichnis Band VI

Inhalt. Vorwort V. Zum Inhalt von Band VI. Danksagung IX. Symbolverzeichnis Band VI Inhalt Vorwort V Zum Inhalt von Band VI VII Danksagung IX Symbolverzeichnis Band VI XVII 1 Statistische Physik 1 1.1 Elementare Statistik und Wahrscheinlichkeit 3 1.1.1 Grundbegriffe 3 1.1.2 Die eindimensionale

Mehr

Photonische Kristalle Clemens Ringpfeil

Photonische Kristalle Clemens Ringpfeil Photonische Kristalle 22.11.2001 Clemens Ringpfeil Inhalt Einführung Grundlagen Historischer Überblick Herstellung Anwendungen Passive Wellenleiter Optische Bauelemente können nur sehr beschränkt auf einem

Mehr

Mehratomige Molek ule

Mehratomige Molek ule Wir wollen jetzt eine sehr einfache Theorie entwickeln, um die Bindung in Molekülen mit mehr als zwei Atomen zu verstehen Dazu müssen wir den Aufbau von komplexeren n wie π oder δ-n verstehen Wir wissen

Mehr

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe Hallwachs-Experiment Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe 20.09.2012 Skizziere das Experiment Notiere und Interpretiere die Beobachtungen Photoeffekt Bestrahlt

Mehr

Cluster aus Halbleitern

Cluster aus Halbleitern Halbleitercluster Halbleitercluster Cluster aus Halbleitern Insbesondere von Clustern aus im Festkörper halbleitenden Materialien wie Si oder Ge hatte man sich sehr viel für mögliche Anwendungen versprochen

Mehr

Valenz-Bindungstheorie H 2 : s Ueberlappung von Atomorbitalen s-bindung: 2 Elektronen in einem Orbital zylindrischer Symmetrie

Valenz-Bindungstheorie H 2 : s Ueberlappung von Atomorbitalen s-bindung: 2 Elektronen in einem Orbital zylindrischer Symmetrie Valenz-Bindungstheorie Beschreibung von Molekülen mit Hilfe von Orbitalen H H H 2 : H 2 s Ueberlappung von Atomorbitalen s-bindung: 2 Elektronen in einem Orbital zylindrischer Symmetrie um die interatomare

Mehr

Festkorperspektroskopie

Festkorperspektroskopie Hans Kuzmany Festkorperspektroskopie Eine Einführung Mit 222 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong 1. Einleitung 1 2. Grundlagen der Festkörperphysik 4 2.1

Mehr

Physik 4, Übung 6, Prof. Förster

Physik 4, Übung 6, Prof. Förster Physik 4, Übung 6, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Spektroskopie. Einleitung

Spektroskopie. Einleitung Spektroskopie Einleitung Schon der Name Quantenphysik drückt aus, dass auf der Ebene der kleinsten physikalischen Objekte (z.b. Atome, Protonen, Neutronen oder Elektronen), bestimmte physikalische Gröÿen

Mehr

1. Was versteht man unter einer Symmetrieoperation? 2. Benennen Sie fünf Symmetrieoperationen und geben Sie je ein Beispiel dazu.

1. Was versteht man unter einer Symmetrieoperation? 2. Benennen Sie fünf Symmetrieoperationen und geben Sie je ein Beispiel dazu. 1. Was versteht man unter einer Symmetrieoperation? 2. Benennen Sie fünf Symmetrieoperationen und geben Sie je ein Beispiel dazu. Zeichnen Sie auch die entsprechenden Symmetrieelemente ein. 3. Was sind

Mehr

Aufbau der Materie II Festkörperphysik für LA nicht vertieft. neue Folien WS 09/10

Aufbau der Materie II Festkörperphysik für LA nicht vertieft. neue Folien WS 09/10 Aufbau der Materie II Festkörperphysik für LA nicht vertieft neue Folien WS 09/10 Literaturempfehlungen 1. Charles Kittel: Einführung in die Festkörperphysik (Oldenbourg Verlag) 2. Konrad Kopitzki: Einführung

Mehr

Spektroskopie. Einleitung

Spektroskopie. Einleitung Spektroskopie Einleitung Schon der Name Quantenphysik drückt aus, dass auf der Ebene der kleinsten physikalischen Objekte (z.b. Atome, Protonen, Neutronen oder Elektronen), bestimmte physikalische Gröÿen

Mehr

5 Anwendung der Dichtefunktionaltheorie

5 Anwendung der Dichtefunktionaltheorie 5 Anwendung der Dichtefunktionaltheorie Im Rahmen der Born-Oppenheimer-Näherung lässt sich der elektronische Grundzustand E g mithilfe der Dichtefunktionaltheorie berechnen, wobei das Einelektronenpotenzial

Mehr

Innerer lichtelektrischer Effekt

Innerer lichtelektrischer Effekt IHO: Versuch 18 Innerer lichtelektrischer Effekt Zielsetzung Für einen Halbleiter soll bei unterschiedlichen Temperaturen die beiden materialspezifischen werte bestimmt werden, die zur Auslösung des inneren

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Physik Organischer Halbleiter:

Physik Organischer Halbleiter: Physik Organischer Halbleiter: Opto- und Mikroelektronik, Photovoltaik, ensorik Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und

Mehr

Kopplung von Exzitonen Untersuchungen mit optischer Spektroskopie

Kopplung von Exzitonen Untersuchungen mit optischer Spektroskopie EXPERIMENTELLE PHYSIK II Kopplung von Exzitonen Untersuchungen mit optischer Spektroskopie GRK-Vorbereitungs-Vortrag Meskers 15. Januar 2008 M arc Häming, S önke S achs Inhalt Motivation Optische Absorption

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

Abiturprüfung Physik, Leistungskurs

Abiturprüfung Physik, Leistungskurs Seite 1 von 8 Abiturprüfung 2013 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Aspekte zur experimentellen Überprüfung des Induktionsgesetzes In der folgenden Aufgabe soll eine Teilaussage des allgemeinen

Mehr

5 Elektronenübergänge im Festkörper

5 Elektronenübergänge im Festkörper 5 Elektronenübergänge im Festkörper 5.1 Übersicht und Lernziele Übersicht Die Bindung in einem Molekül erfolgt durch gemeinsame Elektronenpaare, die jeweils zwei Atomen angehören (Atombindung, Elektronenpaarbindung).

Mehr

Graphen. Kristin Kliemt, Carsten Neumann

Graphen. Kristin Kliemt, Carsten Neumann Graphen Kristin Kliemt, Carsten Neumann 18.01.2012 1 Gliederung Kohlenstoffmodifikationen (Diamant, Graphit, Graphen) Stabilität und Struktur Dispersionsrelation Eigenschaften und Herstellung von Graphen

Mehr

Fragen zur Vorlesung Licht und Materie

Fragen zur Vorlesung Licht und Materie Fragen zur Vorlesung Licht und Materie SoSe 2014 Mögliche Prüfungsfragen, mit denen man das Verständnis des Vorlesungsstoffes abfragen könnte Themenkomplex Lorentz-Modell : Vorlesung 1: Lorentz-Modell

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Grundlagen der Physik 3 Lösung zu Übungsblatt 2

Grundlagen der Physik 3 Lösung zu Übungsblatt 2 Grundlagen der Physik 3 Lösung zu Übungsblatt 2 Daniel Weiss 17. Oktober 2010 Inhaltsverzeichnis Aufgabe 1 - Zustandsfunktion eines Van-der-Waals-Gases 1 a) Zustandsfunktion.................................

Mehr

Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Wintersemester 2005/2006

Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Wintersemester 2005/2006 Name: Gruppennummer: Aufgabe 1 2 3 4 5 6 7 8 insgesamt erreichte Punkte erreichte Punkte Aufgabe 9 10 11 12 13 14 15 erreichte Punkte Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner

Mehr

Nanoplasma. Nano(cluster)plasmen

Nanoplasma. Nano(cluster)plasmen Nano(cluster)plasmen Nanoplasma Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren (Nano)Plasmaphysik

Mehr

6. Fast freie Elektronen: Bandstrukturen

6. Fast freie Elektronen: Bandstrukturen Prof. Dieter Suter Festkörperphysik WS 01 / 02 6. Fast freie Elektronen: Bandstrukturen 6.1. Periodisches Potenzial 6.1.1. Probleme des Modells freier Elektronen Im Modell der freien Elektronen werden

Mehr

Ferromagnetismus: Heisenberg-Modell

Ferromagnetismus: Heisenberg-Modell Ferromagnetismus: Heisenberg-Modell magnetische Elektronen nehmen nicht an der chemischen Bindung teil lokalisierte Beschreibung (4f und 5f Systeme seltene Erden) 4f-Ferromagnete nahe am atomaren Wert!

Mehr

32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen.

32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen. Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 13. Juli 2006 Möglicher Abgabetermin:

Mehr

3.3 Polarisation und Doppelbrechung. Ausarbeitung

3.3 Polarisation und Doppelbrechung. Ausarbeitung 3.3 Polarisation und Doppelbrechung Ausarbeitung Fortgeschrittenenpraktikum an der TU Darmstadt Versuch durchgeführt von: Mussie Beian, Florian Wetzel Versuchsdatum: 8.6.29 Betreuer: Dr. Mathias Sinther

Mehr

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann Abb. 1 Solarzellen PHOTOVOLTAIK Stefan Hartmann 1 Gliederung Einführung Grundlegendes zu Halbleitern Generation und Rekombination pn-übergang Zusammenfassung: Was läuft ab? Technisches 2 Einführung Abb.

Mehr

Nanostrukturphysik II: Inelastisches Tunneln

Nanostrukturphysik II: Inelastisches Tunneln Nanostrukturphysik II: Inelastisches Tunneln Alex Wiederhold 07.07.2014 1 Inhalt Motivation Theorie Inelastische Elektronen-Tunnel-Spektroskopie NdBa 2 Cu 3 O 7-δ Metall-Molekül-Metall Kontakte Vergleich

Mehr

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik Mechanische Eigenschaften Die Matrix der Verzerrungen ε ij und die Matrix der mechanischen Spannungen σ ij bilden einen Tensor 2. Stufe und werden durch den Tensor 4. Stufe der elastischen Koeffizienten

Mehr

Halbleiterphysik und Anwendungen Vorlesungsplanung Teil 5: Optische Übergänge in Halbleitern Prof. Dr.

Halbleiterphysik und Anwendungen Vorlesungsplanung Teil 5: Optische Übergänge in Halbleitern Prof. Dr. Halbleiterphysik und Anwendungen Teil 5: Optische Übergänge in Halbleitern Prof. Dr. Sven Ingebrandt Fachhochschule Kaiserslautern - Standort Zweibrücken www.hs-kl.de Vorlesungsplanung Grün: Termine, die

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XI

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XI Prof. Dr. F. Koch Dr. H. E. Porteanu fkoch@ph.tum.de porteanu@ph.tum.de WS 4-5 HÖHEE PHYSIK SKIPTUM VOLESUNGBLATT XI 4..5 Molekülphysik Atome binden zu Molekülen und Festkörpern durch interatomare Kräfte

Mehr

Alle Atome haben Massen ungefähr einem vielfachen der Masse des Wasserstoff Atoms.

Alle Atome haben Massen ungefähr einem vielfachen der Masse des Wasserstoff Atoms. 02. Atom Page 1 2. Das Atom Atom: kleinster unveränderbarer Bestandteil eines chemischen Elements Charakteristische Eigenschaften von Atomen: Masse, Volumen, Ladung 2.1 Bestimmung der Atommasse expt. Befund:

Mehr

Vorlesung Nanophysik Nanoelektronik

Vorlesung Nanophysik Nanoelektronik Vorlesung Nanophysik Nanoelektronik Inhalt: 1. Vorbemerkungen, Literatur 2. Nanostrukturen: Einteilung, Herstellung, Beispiele 3. Grundlagen des elektrischen Transports 4. Zweidimensionales Elektronensysteme

Mehr

V38: Elektrische und optische Eigenschaften mikrostrukturierter Halbleiter

V38: Elektrische und optische Eigenschaften mikrostrukturierter Halbleiter V38: Elektrische und optische Eigenschaften mikrostrukturierter Halbleiter Stefan Malzer, Sascha Preu malzer@physik.uni-erlangen.de spreu@optik.uni-erlangen.de LTP MZG 105 Raum Nr.: 0.156 www.tp1.physik.uni-erlangen.de

Mehr

4.6 Stöße mit Phononen

4.6 Stöße mit Phononen Physik der kondensierten Materie WS 00/0 05..00 ii) Wie viele mögliche k-vektoren gibt es in der ersten Brillouinzone? Wir betrachten eine Kette mit N Atomen unter periodischen Randbedingungen, d.h. für

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik4. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik

Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik Werkstoffe der lektrotechnik im Studiengang lektrotechnik - Bändermodell der lektronen im Kristall - Prof. Dr. Ulrich Hahn WS 2008/2009 Orbitale für lektronen im Kristall Kristall: regelmäßige Anordnung

Mehr

7. Elektronendynamik

7. Elektronendynamik 7. Elektronendynamik Grundproblem: Bewegung der Elektronen in periodischem Potential Grundlegende Fragestellung Unterschiede in der Leitfähigkeit zwischen verschiedenen Materialien Grundprinzipien I Zweiter

Mehr

Quantenphysik I SS Gerhard Franz hm.edu

Quantenphysik I SS Gerhard Franz hm.edu Quantenphysik I SS 2017 Gerhard Franz mailto:gerhard.franz @ hm.edu Kompetenzzentrum Nanostrukturtechnik Hochschule München http://www.gerhard-franz.org Gerhard Franz, Quantenphysik I, SS 2017 p. 1/7 Quantenmechanik

Mehr

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur?

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Wie berechnet man die innere Energie, wie die spezifische Wärme?

Mehr