Halbleiterphysik und Anwendungen Vorlesungsplanung Teil 5: Optische Übergänge in Halbleitern Prof. Dr.

Größe: px
Ab Seite anzeigen:

Download "Halbleiterphysik und Anwendungen Vorlesungsplanung Teil 5: Optische Übergänge in Halbleitern Prof. Dr."

Transkript

1 Halbleiterphysik und Anwendungen Teil 5: Optische Übergänge in Halbleitern Prof. Dr. Sven Ingebrandt Fachhochschule Kaiserslautern - Standort Zweibrücken Vorlesungsplanung Grün: Termine, die ausfallen Rot: Ersatztermine 2 1

2 Inhaltsverzeichnis: Kristallstruktur von Festkörpern Reziprokes Gitter und Röntgenbeugung Leitfähigkeit in Halbleitern Quantenmechanische Prinzipien Quantentheorie des Halbleiters Energiebänder und verbotene Zonen Kronig-Penney Modell Optische Übergänge in Halbleitern (Exzitonen, Absorption, Rekombination) Optische Bauelemente Heterostrukturen Jenseits von CMOS Speicherbauelemente Quantenbauelemente 3 Teil 5: Optische Übergänge in Halbleitern 4 2

3 Bandlücke Als Bandlücke (englisch band gap), auch Bandabstand bzw. verbotene Zone, wird der energetische Abstand zwischen Valenzband und Leitungsband eines Festkörpers bezeichnet. Dessen elektrische und optische Eigenschaften werden wesentlich durch die Größe der Bandlücke bestimmt. Direkte Bandlücke Indirekte Bandlücke 5 Bandstrukturen in Halbleitern In dreidimensionalen Kristallstrukturen hängt die Energie nicht nur vom Betrag des Wellenvektors k ab, sondern auch von dessen Richtung Bandstrukturen für Ge, Si und GaAs Indirekte Bandlücke: Ge, Si Direkte Bandlücke: GaAs Leitungsband: - elektronenartig (s) Valenzband: - schwere Löcher (p) - leichte Löcher (s) - Spin-Bahn abgespaltenes Band (s) 6 3

4 Absorption bei direkter Bandlücke Maximum des Valenzbands und Minimum des Leitungsbands bei gleichem k Mindestenergie für Absorption eines Photons: E liefert die Bandlücke E g g g (a) Photonenübergang bei direkter Bandlücke: der tiefste Punkt des LB liegt bei demselben k-wert wie der höchste Punkt des VB. Ein direkter, senkrechter optischer Übergang ist eingezeichnet. Dabei ändert sich k nur unbedeutend, da das absorbierte Photon einen sehr kleinen Wellenvektor besitzt. Die Grenzfrequenz g für Absorption durch einen direkten Übergang bestimmt die Energielücke E g. (b) Verlauf der Absorption vs. Photonenenergie [Kittel] 7 Absorption bei indirekter Bandlücke (a) Photonenübergang bei indirekter Bandlücke: die Bandkanten des VB und LB sind im k-raum weit getrennt (Differenz: ~k c ). Am indirekten Übergang sind sowohl ein Photon als auch ein emittiertes Phonon mit Wellenvektor k c K und Energie beteiligt. Die Schwellenergie für den indirekten Prozess ist grösser als die tatsächliche Bandlücke und liegt bei: E g E g 8 4

5 Absorption bei indirekter Bandlücke Valenzband- und Leitungsbandkante bei verschiedenem k mit Differenz k L k V k c notwendiger Impulsübertrag k c durch Emission eines Phonons (aus Impulserhaltung (1.2) mit Photonimpuls / c 0 K k c Energie des Phonons ( ev) im allgemeinen vernachlässigbar klein gegen E g (~ 1eV ) ) "waagrechter" Übergang in E k E g E g 9 Absorption bei indirekter Bandlücke (b) Verlauf der Absorption vs. Photonenenergie: die optische Absorption nahe der Schwelle ist geringer und erfolgt unter Anregung eines Elektron-Loch-Paares und Emission eines Phonons (Energie ). Bei E vert steigt die Absorption stark an, da nun auch direkte Absorption ("senkrechter Übergang" ohne Emission eines Phonons) erfolgen kann. [Kittel]. 10 5

6 Absorption bei indirekter Bandlücke Bemerkungen: Absorption von Photon & Emission eines Phonons in einem Schritt viel kleinere Wahrscheinlichkeit als direkter Übergang relativ schwache Absorption auch Absorption eines Phonons, falls T > 0; - Einsatz bei Energie E g - stark T-abhängiger Prozess! 11 Phononen Ein Phonon ist ein Quasiteilchen, das in der theoretischen Festkörperphysik verwendet wird, um die Eigenschaften der quantenmechanisch beschriebenen Gitterschwingungen in einem Kristall mit Hilfe eines vereinfachten Modells beschreiben zu können. Phononen sind delokalisiert, das heißt ein Phonon existiert im ganzen Kristallgitter und lässt sich keinem bestimmten Ort zuordnen (analog zur Blochwelle bei der Beschreibung des Elektrons im Gitter). Man unterscheidet akustische optische Phononen. 12 6

7 Phononen Akustische Phononen: Sie werden auch als Schallquanten bezeichnet Sie entsprechen weitestgehend den Schallwellen, die sich durch das Kristallgitter fortpflanzen. Dabei bewegen sich alle Atome einer Basis in Phase Gitterschwingung (Akustische Phononen) Optischen Phononen: Die Atome einer Basis bewegen sich gegenphasig Die Bezeichnung optisch beruht darauf, dass die Schwingungsfrequenzen optischer Phononen oft im Bereich des infraroten oder sichtbaren Lichts liegen. Diese Benennung erfolgt dabei unabhängig davon, ob die Phononen tatsächlich optisch aktiv sind. 13 Phononen Normale Vibrationsmoden die sich in einem Kristall fortpflanzen. Die Amplitude der Bewegung ist in der Animation übertrieben stark dargestellt, um den Effekt zu verdeutlichen. In einem realen Kristall ist die Bewegung typischerweise viel kleiner als der Gitterabstand. 14 7

8 Phononen Optischen Phononen: Optische Aktivität bedeutet, dass ein Phonon mit einem Photon wechselwirken kann, dass also ein Phonon erzeugt werden kann, indem ein Photon absorbiert wird, oder dass umgekehrt ein Photon emittiert werden kann, indem ein Phonon vernichtet wird. Optische Aktivität kann nur dann vorliegen, wenn innerhalb der Basis elektrische Polarisation vorliegt, was im Allgemeinen genau dann der Fall ist, wenn die Basis aus verschiedenen Atomen aufgebaut ist. Kristalle, die mit infraroten Photonen wechselwirken, nennt man infrarot-aktiv. Beispiele für solche Gitter sind Ionengitter, zum Beispiel in Natriumchloridkristallen. Das Modell der Gitterschwingungen setzt eine kristalline Ordnung des Festkörpers voraus. Auch amorphe, also nicht kristallin geordnete Festkörper wie Gläser zeigen Schwingungen der Elementarteilchen untereinander, man bezeichnet diese aber nicht als phononische Schwingungen. 15 Phononen In einem dreidimensionalen Kristall mit N Atomen in der primitiven Basis existieren zu jedem mit der Kristallsymmetrie verträglichen Wellenvektor 3N mögliche Schwingungsmoden: 3 akustische (davon eine longitudinal und zwei transversal) (3N-3) optische Der Zusammenhang zwischen Frequenz und Wellenvektor ist durch die Phononendispersion (analog zur Energiedispersion) gegeben. Bei Wellenlängen, die gegenüber der Gitterkonstante groß sind, gilt für akustische Phononen eine lineare Beziehung c s K, mit der jeweiligen Schallgeschwindigkeit c s ). Die Energiezustände E n der Phononen berechnen sich äquivalent zu den Niveaus eines harmonischen Oszillators nach 1 E( k) ( k) n

9 Phononen: Dispersion Die Dispersionsrelation gibt die Abhängigkeit der Kreisfrequenz von der Wellenzahl k an. Bei Phononen ergibt sich diese Beziehung aus der Newtonschen Bewegungsgleichung. Dazu nimmt man an, dass sich die Atome in einem periodischen Potential V befinden, in dem sie Schwingungen ausführen. Zwei benachbarte Atome haben einen Phasenunterschied von k a, wobei a der Abstand zweier benachbarter Atome in der Ruhelage ist. Ein Phasenunterschied von 2p entspricht einem von Null; höhere Phasenunterschiede sind dementsprechend äquivalent mit einem Wert zwischen 0 und 2p. Aus Symmetriegründen betrachtet man das Intervall zwischen -p und p. Das entspricht k- Werten aus der ersten Brillouin-Zone. Dadurch hat man alle physikalisch relevanten Wellenzahlen abgedeckt. 17 Phononen: Akustische Phononen Für das einfache Modell einer linearen Kette von Atomen, die durch Federn miteinander verbunden sind, lautet die Dispersionsrelation f ( k) 2 k cs k m wobei f die Federkonstante zwischen den zwei benachbarten Ebenen und m die Masse des Atoms ist. Für niedrige Werte von k ( ak 1 ) lautet der Ausdruck näherungsweise f c s ist die Schallgeschwindigkeit. ( k) a k cs k m An den Zonengrenzen gilt Die Gruppengeschwindigkeit, also die Geschwinf digkeit des Energietransports im Medium, ergibt 2 const sich zu 2 m d fa ka v g cos Am Zonenrand ist die v g Null: Stehende Welle dk m

10 Phononen: Optische Phononen Die optischen Äste existieren bei einer aus unterschiedlichen Atomen bestehenden Basis oder bei einem System mit unterschiedlichen Kraftkonstanten C (ähnlich der Federkonstanten). Beides führt zu einem Atomgitter mit mehr als einem Atom in der Basis. Die Formel beschreibt die Dispersionsrelation für das Modell einer lineare Kette mit zwei unterschiedlichen Atomen, welche die Massen m 1 und m 2 haben. Die Kraftkonstante C bleibt konstant. 2 C m1 m2 4m1 m2 2 ( k) 1 1 sin ( kd) 2 m1 m2 m1 m2 Der optische Zweig ist höherfrequenter als der akustische und nahezu dispersionslos. 19 Optische Absorption Die Fähigkeit eines Festkörpers, Licht zu absorbieren ist an die Bedingung geknüpft, die Photonenenergie mittels Anregen von Elektronen aufzunehmen. Da keine Elektronen in den verbotenen Bereich zwischen Valenz- und Leitungsband angeregt werden können, muss die Energie eines Photons die der Bandlücke übertreffen ansonsten kann das Photon nicht absorbiert werden. Die Energie eines Photons ist über die Formel E = hn an die Frequenz n der elektromagnetischen Strahlung gekoppelt. Besitzt ein Festkörper eine Bandlücke, so ist er demnach für Strahlung bis zu einer gewissen Frequenz transparent! (Im Allgemeinen ist diese Aussage nicht ganz korrekt, da es auch andere Möglichkeiten gibt, die Photonenenergie zu absorbieren)

11 Optische Absorption Es lassen sich speziell für die Durchlässigkeit von sichtbarem Licht (Photonenenergien um 2 ev) folgende Regeln ableiten: Metalle können nicht transparent sein. Transparente Festkörper sind meistens Isolatoren. Es gibt aber auch elektrisch leitfähige Materialien mit vergleichsweise hohem Transmissionsgrad, z. B. transparente, elektrisch leitfähige Oxide. Da die Absorption eines Photons mit der Anregung eines Elektrons vom Valenz- ins Leitungsband verbunden ist, besteht ein Zusammenhang mit der elektrischen Leitfähigkeit. Insbesondere sinkt der elektrische Widerstand eines Halbleiters mit steigender Lichtintensität, was z. B. bei Helligkeitssensoren genutzt werden kann. 21 Absorptionskoeffizient (1) Photonen, die Quanten des elektromagnetischen Feldes, können mit dem Halbleiterkristall wechselwirken. Neben Wechselwirkung mit Phononen, flachen Störstellen oder anderen Defekten, ist die technisch wichtigste die Wechselwirkung mit den Valenzelektronen, die zur Generation von e-h-paaren führt. c hc µm n E E Optische Generation von Elektron-Loch- Paaren in einem Halbleiter

12 Absorptionskoeffizient (2) Das Verhältnis aus Photonenenergie E = hn und Bandlücke E g entscheidet darüber, ob das Photon absorbiert wird oder nicht. Wenn hn > E g, wird ein e-h-paar generiert, wobei die überschüssige kinetische Energie in Wärme umgewandelt wird (Dissipation). Die Intensität des Photonenflusses bezeichnet man mit I n (x) [ev/cm 2 s]. Treffen Photonen bei x auf, so ist die absorbierte Photonenenergie pro Zeit und Fläche zwischen x und x+dx n I ( x) dx 23 Absorptionskoeffizient (3) Der Absorptionskoeffizient ist die relative Zahl von Photonen, die pro Längeneinheit absorbiert werden [1/cm] In ( x) I n ( x dx) In ( x) dx In ( x) dx dx In ( x) I dx n ( x) Mit der Anfangsbedingung I die Lösung In ( x) In 0 e x n ( 0) In 0 lautet Räumlicher Verlauf der Lichtintensität für zwei Werte des Absorptionskoeffizienten

13 Absorptionskoeffizient (4) Beispiel: Messung der optischen Absorption in InSb (Absorptionskoeffizient aus Intensität x I I 0 e x: Dicke des Kristalls) Optische Absorption in reinem Indiumantimonid, InSb. Da sowohl Leitungs- als auch Valenzbandkante in der Mitte der Brillouin-Zone bei k = 0 liegen, ist der Übergang direkt. Bemerkenswert ist die scharfe Schwelle [Kittel] Optische Übergänge in Halbleitern Absorptionskoeffizient (4) Si und Ge sind die einzigen indirekten Halbleiter in diesem Diagramm, man sieht den weichen Einsatz der Absorption sehr deutlich. Messungen des Absorptionskoeffizienten sehen so aus: 26 13

14 Spektrale Empfindlichkeit verschiedener Halbleiter 27 Bestimmung der Bandlücke Weitere Möglichkeiten der Bestimmung der Bandlücke: aus T-Abhängigkeit der Leitfähigkeit aus T-Abhängigkeit der Ladungsträgerdichte (Messung der Hall-Spannung) Vorteil der optischen Messungen: Unterscheidung zwischen direkter und indirekter Bandlücke. Ge, Si: indirekt InSb: direkt (s. Abb. Letzte Folie) Sn: direkt mit E g = 0 HgTe, HgSe: Halbmetall mit negativer Bandlücke ( Überlapp der Bänder) Photonen im optischen Bereich (mit Wellenlängen von nm) besitzen eine Energie von ca ev. Kristalle mit grossen Energielücken (insbesondere Isolatoren) sind durchsichtig

15 Anmerkung Bei Metallen (ohne Energielücke) sind zunächst alle optischen direkten und indirekten Übergänge möglich sehr starke Absorption, nicht nur im optischen Bereich (hohes Reflexionsvermögen, spiegelnde Oberflächen) Übergänge in höhere - unbesetzte - Bänder: sind (wie bei Nichtleitern) erst ab einer bestimmten Energie möglich (Einsetzen einer verstärkten Absorption). Falls diese Energie im optischen Bereich liegt ergibt dieser Effekt die charakteristische Färbung der Metalle (z. B. Gold, Kupfer) 29 Energielücke zwischen VB und LB (i= indirekte Lücke, d= direkte Lücke) [Kittel] 30 15

16 Generation von Elektron-Loch-Paaren Da die Intensität des Photonenflusses I n (x) [ev/cm 2 s] ist, ist die Absorptionsrate gleich I n (x) [ev/cm 3 s]. Dies ist die pro Volumen und Zeit absorbierte Energie (= Rate). Nimmt man an, dass ein absorbiertes Photon der Energie hν ein e-h-paar generiert, dann ist die entsprechende Generationsrate I n ( ) g' hnx mit der Masseinheit [Anzahl / cm 3 s]. Das Verhältnis I n (x)/hν ist der Photonenfluss (Teilchenfluss). Im allgemeinen ist die sogenannte Quantenausbeute kleiner als 1, d.h. nicht jedes Photon generiert ein e-h- Paar. Dann muss g mit einem Effizienzfaktor multipliziert werden. 31 Generation von Elektron-Loch-Paaren Zahlenbeispiel: GaAs bei 300K. Die Intensität des Photonenflusses am Ort x sei I n (x) = 0.05 W/cm 2 bei einer Wellenlänge von 0.75 µm, was typisch für Sonnenlicht ist. Der Absorptionskoeffizient von GaAs bei dieser Wellenlänge ist = /cm. Die Photonenenergie ist E = hn = 1.24/0.75 ev = 1.65 ev. Daraus erhält man g = /( ) = /(cm 3 s). Mit einer Minoritätsladungsträger-Lebensdauer von = 10-7 s folgt daraus eine Ladungsträger-Überschussdichte von δn = g = cm

17 33 17

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L

Vorbereitung. (1) bzw. diskreten Wellenzahlen. λ n = 2L n. k n = nπ L Physikalisches Fortgeschrittenenpraktikum Gitterschwingungen Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen Im Versuch Gitterschwingungen werden die Schwingungen von Atomen in einem

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter WS 2013/14

Mehr

1.17eV exp eV exp Halbleiter

1.17eV exp eV exp Halbleiter 7.6 Halbleiter Nichtleiter Die Bandstruktur eines Halbleiters ist gleich der Bandstruktur eines Nichtleiters. Der Hauptunterschied besteht in der Breite der Energielücke: Für einen Halbleiter ist die Energielücke

Mehr

Gitterschwingungen in Festkörpern

Gitterschwingungen in Festkörpern in Festkörpern Gitterschwingungen Wie bei den Molekülen wollen wir im folgenden die Dynamik der Festkörper, also Schwingungen des Kristallgitters behandeln Erklärung, Beschreibung Elastische Eigenschaften

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter 1 11.4 Metalle,

Mehr

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen 1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

4.6 Stöße mit Phononen

4.6 Stöße mit Phononen Physik der kondensierten Materie WS 00/0 05..00 ii) Wie viele mögliche k-vektoren gibt es in der ersten Brillouinzone? Wir betrachten eine Kette mit N Atomen unter periodischen Randbedingungen, d.h. für

Mehr

In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter.

In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter. II.2: Erinnerung an die Halbleiterphysik II.2.1: Kristalline Festkörper In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches

Mehr

Photonische Kristalle

Photonische Kristalle Kapitel 2 Photonische Kristalle 2.1 Einführung In den letzten 20 Jahren entwickelten sich die Photonischen Kristalle zu einem bevorzugten Gegenstand der Grundlagenforschung aber auch der angewandten Forschung

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2014 Prof. Dr. F. Kremer

Vorlesung Molekülphysik/Festkörperphysik Sommersemester 2014 Prof. Dr. F. Kremer Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 04 Prof. Dr. F. Kremer Übersicht der Vorlesung am.6.04 Wiederholung (Drude-Modell ( freies Elektronengas ), Plasmaschwingung, Grenzen des Drude-

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,

Mehr

Welche Zustände sind denn eigentlich besetzt?

Welche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? ( 0 ) 12 9 -im Prinzip sollte das Ganze ähnlich wie beim Atom erfolgen 6 - Besetzung von unten nach oben 3 -...wie

Mehr

1 3.Übungsblatt-Phononen

1 3.Übungsblatt-Phononen 1 3.Übungsblatt-Phononen 1.1 Phonon dispersion relation for atoms on a 2-d square lattice Das Gesetz von Newton beschreibt die Kraft zwischen Atomen auf einem Gitter, wobei nur die Wechselwirkung zwischen

Mehr

Halbleiterphysik und Anwendungen Vorlesungsplanung Teil 2: Einführung in die Quantenmechanik Prof. Dr.

Halbleiterphysik und Anwendungen Vorlesungsplanung Teil 2: Einführung in die Quantenmechanik Prof. Dr. Halbleiterphysik und Anwendungen Teil : Einführung in die Quantenmechanik Prof. Dr. Sven Ingebrandt Fachhochschule Kaiserslautern - Standort Zweibrücken www.hs-kl.de Vorlesungsplanung Grün: Termine, die

Mehr

1. Neutronen zur Untersuchung von Festkoerpern

1. Neutronen zur Untersuchung von Festkoerpern 1. Neutronen zur Untersuchung von Festkoerpern Fragen: -warum eigenen sich Neutronen besonders gut fuer Strukturuntersuchungen, welche Elemente sind besonders gut sichtbar? -welche Vorteile haben Neutronen

Mehr

Innerer lichtelektrischer Effekt

Innerer lichtelektrischer Effekt IHO: Versuch 18 Innerer lichtelektrischer Effekt Zielsetzung Für einen Halbleiter soll bei unterschiedlichen Temperaturen die beiden materialspezifischen werte bestimmt werden, die zur Auslösung des inneren

Mehr

Festkörperelektronik 2008 Übungsblatt 5

Festkörperelektronik 2008 Übungsblatt 5 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 5. Übungsblatt 26. Juni 2008 Die

Mehr

Versuch 1.3 Hall-Effekt

Versuch 1.3 Hall-Effekt F-Praktikum: Versuch Hall-Effekt Seite 1/9 F-Praktikum Versuch 1.3 Hall-Effekt Diego Semmler, Nils Höres Inhaltsverzeichnis F-Praktikum...1 Motivation...2 Aufgabenstellung...2 Theorie...2 Das Bändermodell...2

Mehr

Festkörperelektronik 2008 Übungsblatt 4

Festkörperelektronik 2008 Übungsblatt 4 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 4. Übungsblatt 12. Juni 2008 Die

Mehr

F-Praktikumsversuch: Kristallschwingungen und Raman - Spektroskopie

F-Praktikumsversuch: Kristallschwingungen und Raman - Spektroskopie F-Praktikumsversuch: Kristallschwingungen und Raman - Spektroskopie Was ist Raman-Spektroskopie? Abteilung Physik der Mikro- und Nanostrukturen (Prof. Dr. P.J. Klar) I. Physikalisches Institut, Justus-Liebig-Universität

Mehr

Fragen zur Vorlesung Licht und Materie

Fragen zur Vorlesung Licht und Materie Fragen zur Vorlesung Licht und Materie SoSe 2017 Mögliche Prüfungsfragen, mit denen man das Verständnis des Vorlesungsstoffes abfragen könnte Vorlesung 1: Lorentz-Modell Themenkomplex Wechselwirkung Licht-Materie

Mehr

PS3 - PL11. Grundlagen-Vertiefung zu Szintillationszähler und Energiespektren Version vom 29. Februar 2012

PS3 - PL11. Grundlagen-Vertiefung zu Szintillationszähler und Energiespektren Version vom 29. Februar 2012 PS3 - PL11 Grundlagen-Vertiefung zu Szintillationszähler und Energiespektren Version vom 29. Februar 2012 Inhaltsverzeichnis 1 Szintillationskristall NaJ(Tl) 1 1 1 Szintillationskristall NaJ(Tl) 1 Szintillationskristall

Mehr

Fragen zur Vorlesung Licht und Materie

Fragen zur Vorlesung Licht und Materie Fragen zur Vorlesung Licht und Materie SoSe 2014 Mögliche Prüfungsfragen, mit denen man das Verständnis des Vorlesungsstoffes abfragen könnte Themenkomplex Lorentz-Modell : Vorlesung 1: Lorentz-Modell

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphysik I Prof. Peter Böni, E1 Lösung zum 9. Übungsblatt (Besprechung: 18. - 0. Dezember 006) P. Niklowitz, E1 Aufgabe 9.1: Neutronenstreuung an Phononen (a) Geben Sie die Dispersionsrelation

Mehr

V. Optik in Halbleiterbauelementen

V. Optik in Halbleiterbauelementen V.1: Einführung V. Optik in Halbleiterbauelementen 1. Kontakt 1. 3.. 1. Kontakt Abb. VI.1: Spontane Emission an einem pn-übergang Rekombination in der LED: - statistisch auftretender Prozess - Energie

Mehr

E 2 Temperaturabhängigkeit elektrischer Widerstände

E 2 Temperaturabhängigkeit elektrischer Widerstände E 2 Temperaturabhängigkeit elektrischer Widerstände 1. Aufgaben 1. Für die Stoffe - Metall (Kupfer) - Legierung (Konstantan) - Halbleiter (Silizium, Galliumarsenid) ist die Temperaturabhängigkeit des elektr.

Mehr

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 5. Vorlesung Dr.-Ing. Wolfgang Heenes 18. Mai 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Aufbau der Materie 2. Energiebändermodell

Mehr

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Wechselwirkung geladener Teilchen in Materie Physik VI Sommersemester 2008 Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Szintillationsdetektoren

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,

Mehr

II. Physikalische Grundlagen der Optoelektronik II.1: Erinnerung an die Quantenmechanik

II. Physikalische Grundlagen der Optoelektronik II.1: Erinnerung an die Quantenmechanik II. Physikalische Grundlagen der Optoelektronik II.1: Erinnerung an die Quantenmechanik Das Verhalten von Teilchen (insbesondere Elektronen (e s)) wird beschrieben durch eine Wellenfunktion Ψ(x,t): Massepunkt

Mehr

Festkörperelektronik 2008 Übungsblatt 6

Festkörperelektronik 2008 Übungsblatt 6 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 10. Juli 2008 Die

Mehr

Halbleiterarten. Technische Universität Ilmenau Institut für Werkstofftechnik. Halbleiter. elektronische Halbleiter

Halbleiterarten. Technische Universität Ilmenau Institut für Werkstofftechnik. Halbleiter. elektronische Halbleiter Halbleiterarten Halbleiter kristalline Halbleiter amorphe Halbleiter elektronische Halbleiter Ionenhalbleiter elektronische Halbleiter Ionenhalbleiter Element Halbleiter Verbindungshalbleiter Eigen Halbleiter

Mehr

Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz. Sommersemester Physik der kondensierten Materie

Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz. Sommersemester Physik der kondensierten Materie Physik der kondensierten Materie Kapitel 8 Elektronen im periodischen Potential Ulrich Schwarz Experimentelle Sensorik Institut für Physik, TU Chemnitz In Vertretung von Carsten Deibel Optik & Photonik

Mehr

Physik 4: Skalen und Strukturen

Physik 4: Skalen und Strukturen Physik 4: Skalen und Strukturen Kapitel : Festkörperphysik.1 Aggregatszustände. Kristallstrukturen.3 Chemische Bindung.4 Gitterschwingungen.5 Elektronen im Festkörper Phasendiagramm von CO Klassisches

Mehr

Halbleiterphysik und Anwendungen Vorlesungsplanung Teil 10: Speicherbauelemente Prof. Dr. Sven Ingebrandt

Halbleiterphysik und Anwendungen Vorlesungsplanung Teil 10: Speicherbauelemente Prof. Dr. Sven Ingebrandt Halbleiterphysik und Anwendungen Teil 10: Speicherbauelemente Prof. Dr. Sven Ingebrandt Fachhochschule Kaiserslautern - Standort Zweibrücken www.hs-kl.de Vorlesungsplanung Grün: Termine, die ausfallen

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

( ) ( ) ( ) Beginnend mit der größten Wellenlänge λ1= L sind auf Abb hierzu Beispiele gegeben.

( ) ( ) ( ) Beginnend mit der größten Wellenlänge λ1= L sind auf Abb hierzu Beispiele gegeben. 16 5.3.3. Das reale Elektronengas (in der Vorlesung nicht behandelt, nicht prüfungsrelevant; weiter bei 5.3.4.) 5.3.3.1. Periodische Randbedingungen Im folgenden soll die Wechselwirkung der Elektronen

Mehr

Gliederung der Vorlesung Festkörperelektronik

Gliederung der Vorlesung Festkörperelektronik Gliederung der Vorlesung Festkörperelektronik 1. Grundlagen der Quantenphysik 2. Elektronische Zustände 3. Aufbau der Materie 4. Elektronen in Kristallen 5. Halbleiter 6. Quantenstatistik 7. Dotierte Halbleiter

Mehr

1 Beschreibung von Photonen und Elektronen

1 Beschreibung von Photonen und Elektronen Einführung in die optische Nachrichtentechnik L/ Grundlagen von Laser und LED (L) In diesem Kapitel werden die physikalischen Grundlagen von Emissions- und Absorptionsprozessen in Halbleitern behandelt.

Mehr

Halbleiterphysik und Anwendungen Vorlesungsplanung Teil 8: Heterostrukturen Prof. Dr. Sven Ingebrandt

Halbleiterphysik und Anwendungen Vorlesungsplanung Teil 8: Heterostrukturen Prof. Dr. Sven Ingebrandt Halbleiterphysik und Anwendungen Teil 8: Heterostrukturen Prof. Dr. Sven Ingebrandt Fachhochschule Kaiserslautern - Standort Zweibrücken www.hs-kl.de Vorlesungsplanung Grün: Termine, die ausfallen Rot:

Mehr

32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen.

32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen. Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 13. Juli 2006 Möglicher Abgabetermin:

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

"Einführung in die Festkörperphysik" Inhalt der Vorlesung. 5.7 Messung von Bandstrukturen, Zustandsdichte. 5.2 Das Modell des fast freien Elektrons

Einführung in die Festkörperphysik Inhalt der Vorlesung. 5.7 Messung von Bandstrukturen, Zustandsdichte. 5.2 Das Modell des fast freien Elektrons Inhalt der Vorlesung "Einführung in die Festkörperphysik" für Dezember 2009 ist geplant: 5. Energiebänder 5.1 Motivation 5.2 Das Modell des fast freien Elektrons 5.3 Das stark gebundene Elektron 5.4 Das

Mehr

Fachbereich Elektrotechnik und Informationstechnik Laborpraktikum Elektronische Bauelemente Prof. M. Hoffmann

Fachbereich Elektrotechnik und Informationstechnik Laborpraktikum Elektronische Bauelemente Prof. M. Hoffmann Fachbereich Elektrotechnik und Informationstechnik Laborpraktikum Elektronische Bauelemente Prof. M. Hoffmann Photoleitung in Halbleitern Studiengang: Set: Teilnehmer: Platz: Datum: Zielstellung Ermittlung

Mehr

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2) Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im

Mehr

PROBLEME AUS DER PHYSIK

PROBLEME AUS DER PHYSIK Helmut Vogel PROBLEME AUS DER PHYSIK Aufgaben und Lösungen zur 16. Auflage von Gerthsen Kneser Vogel Physik Mit über 1100 Aufgaben, 158 Abbildungen und 16 Tabellen Springer-Verlag Berlin Heidelberg New

Mehr

Halbleiterphysik. Von Reinhold Paul VEB VERLAG TECHNIK BERLIN

Halbleiterphysik. Von Reinhold Paul VEB VERLAG TECHNIK BERLIN Halbleiterphysik Von Reinhold Paul VEB VERLAG TECHNIK BERLIN INHALTSVERZEICHNIS Schreibweise und Formelzeichen der wichtigsten Größen 13 1. Halbleiter 19 1.1. Festkörper 19 1.2. Eigenschaften elektronischer

Mehr

Optische Eigenschaften von Metallen und Legierungen

Optische Eigenschaften von Metallen und Legierungen Reine und angewandte Metallkunde in Einzeldarstellungen Herausgegeben von W. Köster Band 22 Optische Eigenschaften von Metallen und Legierungen Mit einer Einführung in die Elektronentheorie der Metalle

Mehr

Photonik Technische Nutzung von Licht

Photonik Technische Nutzung von Licht Photonik Technische Nutzung von Licht Lichterzeugung und Spektrum Was ist Licht? Was ist Licht? Elektromagnetische Welle Transversalwelle Polarisation E(x,t)=E 0 e ikx e i!t Was ist Licht? E(x,t)=E 0 e

Mehr

1 Leitfähigkeit in Festkörpern

1 Leitfähigkeit in Festkörpern 1 Leitfähigkeit in Festkörpern Elektrische Leitfähigkeit ist eine physikalische Größe, die die Fähigkeit eines Stoffes angibt, elektrischen Strom zu leiten. Bändermodell Die Leitfähigkeit verschiedener

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um

Mehr

Optische Übergänge in Festkörpern. Ausarbeitung zum Seminarvortrag vom von Yvonne Rehder

Optische Übergänge in Festkörpern. Ausarbeitung zum Seminarvortrag vom von Yvonne Rehder Optische Übergänge in Festkörpern Ausarbeitung zum Seminarvortrag vom 29.4.2008 von Yvonne Rehder Inhaltsverzeichnis 1 Einleitung 3 2 Optische Übergänge 3 3 Die Struktur des Festkörpers 3 3.1 Die Kristallstruktur.................................

Mehr

Warum Halbleiter verstehen?

Warum Halbleiter verstehen? 7.1 Warum Halbleiter verstehen? In der Vorlesung Elektronische Schaltungen haben Sie die Kennlinien verschiedener Halbleiterbauelemente kennen gelernt: Dioden, Bipolare Transistoren, Feldeffekttransistoren

Mehr

2. Durch welche physikalischen Größen wird der Zustand eines Systems in der klassischen Mechanik definiert?

2. Durch welche physikalischen Größen wird der Zustand eines Systems in der klassischen Mechanik definiert? Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 28. Juli 2006 100 Fragen zur Festkörperelektronik

Mehr

Kohlenstoff-Nanoröhren

Kohlenstoff-Nanoröhren Kohlenstoff-Nanoröhren Metall oder Halbleiter: atomare und elektronische Struktur 10. Mai 2004 Malte Avenhaus Institut für Technische Physik II Kohlenstoff-Nanoröhren p.1/35 Übersicht 1. Motivation 2.

Mehr

1.4 Streuung an Kristallen

1.4 Streuung an Kristallen 34 Theoretische Festkörperphysik Prof. Heermann.4 Streuung an Kristallen.4. Elastische Streuung Wir betrachten etwa die folgende Situation. Zunächst spezifizieren wir den Anfangszustand des Kristalls durch

Mehr

Norbert Koch. Polymer gegen Silizium: Wer wird in der Elektronik gewinnen?

Norbert Koch. Polymer gegen Silizium: Wer wird in der Elektronik gewinnen? Polymer gegen Silizium: Wer wird in der Elektronik gewinnen? Norbert Koch Humboldt Universität zu Berlin, Institut für Physik & IRIS Adlershof Helmholtz Zentrum Berlin für Materialien und Energie GmbH

Mehr

A. Mechanik (17 Punkte)

A. Mechanik (17 Punkte) Prof. Dr. F. Melchert Prof. Dr. G. von Oppen Prof. Dr. S. Kröger Dipl.-Phys. Th. Ludwig Dipl.-Phys. M. Dickow Technische Universität Berlin Name: Vorname: Matr. Nr.: Studiengang: Platz Nr.: Tutor: Diplomvorprüfung

Mehr

Inhaltsverzeichnis. 0 Einleitung... 1

Inhaltsverzeichnis. 0 Einleitung... 1 0 Einleitung... 1 1 Periodische Strukturen... 5 1.1 Kristallstruktur, Bravais-Gitter, Wigner-Seitz-Zelle...... 5 1.1.1 Kristallisation von Festkörpern....... 5 1.1.2 Kristall-System und Kristall-Gitter...

Mehr

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1 1 3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode 3.1 Allgemeines F 3.1 N isolierte Atome werden zum Festkörper (FK) zusammengeführt Wechselwirkung der beteiligten Elektronen Aufspaltung der Energieniveaus

Mehr

Verbesserte Resonatoren: DFB-Struktur

Verbesserte Resonatoren: DFB-Struktur Verbesserte Resonatoren: DFB-Struktur FB-Resonatoren (=Kantenemitter) sind einfach herzustellen Nachteil: - Es werden sehr viele longitudinale Moden unterstützt - es gibt keine eingebaute Modenselektivität

Mehr

Wechselwirkung zwischen Licht und chemischen Verbindungen

Wechselwirkung zwischen Licht und chemischen Verbindungen Photometer Zielbegriffe Photometrie. Gesetz v. Lambert-Beer, Metallkomplexe, Elektronenanregung, Flammenfärbung, Farbe Erläuterungen Die beiden Versuche des 4. Praktikumstages sollen Sie mit der Photometrie

Mehr

Festkörperphys i. Einführung in die Grundlagen

Festkörperphys i. Einführung in die Grundlagen Harald Ibach Hans Lüth Festkörperphys i Einführung in die Grundlagen 1. Die chemische Bindung in Festkörpern 1 1.1 Das Periodensystem 1 1.2 Kovalente Bindung 4 1.3 DieIonenbindung 9 1.4 Metallische Bindung

Mehr

13.5 Photonen und Phononen

13.5 Photonen und Phononen Woche 11 13.5 Photonen und Phononen Teilchen mit linearem Dispersionsgesetz: E = c p, c - Ausbreitungsgeschwindigkeit (Licht- oder Schallgeschwindigkeit). 13.5.1 Photonen Quantisierung der Eigenschwingungen

Mehr

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften

HANDOUT. Vorlesung: Glasanwendungen. Überblick optische Eigenschaften Materialwissenschaft und Werkstofftechnik an der Universität des Saarlandes HANDOUT Vorlesung: Glasanwendungen Überblick optische Eigenschaften Leitsatz: 21.04.2016 Die Ausbreitung von Licht durch ein

Mehr

5. Photoelektrochemische Solarzellen Beispiel: n-halbleiter als Elektrode. Verbiegung des elektrischen Potentials im Halbleiter hin zur Oberfläche

5. Photoelektrochemische Solarzellen Beispiel: n-halbleiter als Elektrode. Verbiegung des elektrischen Potentials im Halbleiter hin zur Oberfläche 5. Photoelektrochemische Solarzellen Beispiel: n-halbleiter als Elektrode Ausbildung einer Raumladungszone und einer Bandverbiegung: Verbiegung des elektrischen Potentials im Halbleiter hin zur Oberfläche

Mehr

Aufgabe Σ Punkte Max

Aufgabe Σ Punkte Max Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik Klausur 20. September 2005 Name:........................................

Mehr

Elektrische Eigenschaften von Festkörpern

Elektrische Eigenschaften von Festkörpern Elektrische Eigenschaften von n Quellennachweis zu den Abbildungen R. Müller, Grundlagen der Halbleiter-Elektronik. C.R. Bolognesi, Vorlesungsunterlagen. W.C. Dash, R. Newman, Phys. Rev., 99, 1955, 1151.

Mehr

Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen

Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen III.1 Halbleiter: Einzelne Atome eines chemischen Elements besitzen nach dem Bohrschen Atommodell einen positiv geladenen

Mehr

Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband

Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband 8.1 Berechnung der eitfähigkeit Quantitativ wird die eitfähigkeit σ berechnet durch: adung des Elektrons Beweglichkeit der adungsträger im eitungsband ( ) σ = e µ n + µ p n Anzahl der adungsträger im eitungsband

Mehr

Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften

Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften Markus Gräfe Physikalisch-Astronomische Fakultät Jena 18. Juni 2009 Inhaltsverzeichnis 1 Motivation 2 Grundlagen Leitungsmechanismen

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik / Klausur Anfang WS /3 Heift / Kurtz Name: Vorname: Matrikel-Nr: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Elektronische Eigenschaften von Halbleitern

Elektronische Eigenschaften von Halbleitern Elektronische Eigenschaften von Halbleitern In der Vorlesung Elektronische Schaltungen lernen Sie das Verhalten verschiedener Halbleiterbauelemente kennen: Dioden, Bipolare Transistoren, Feldeffekttransistoren

Mehr

5 Anwendung der Dichtefunktionaltheorie

5 Anwendung der Dichtefunktionaltheorie 5 Anwendung der Dichtefunktionaltheorie Im Rahmen der Born-Oppenheimer-Näherung lässt sich der elektronische Grundzustand E g mithilfe der Dichtefunktionaltheorie berechnen, wobei das Einelektronenpotenzial

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Veranstalter Andreas Branding - 1 - Theorie Während

Mehr

Halbleiterheterostrukturen. Vortrag von Alexej Klushyn

Halbleiterheterostrukturen. Vortrag von Alexej Klushyn Halbleiterheterostrukturen Vortrag von Alexej Klushyn Übersicht Einführung in die Halbleiterphysik Physikalische Grundlagen der Halbleiterheterostrukturen Anwendungsmöglichkeiten der Halbleiterheterostrukturen

Mehr

VERSUCH 1 TEIL A: SPANNUNGSTEILUNG, SPANNUNGSEINSTELLUNG, GESETZE VON OHM UND KIRCHHOFF

VERSUCH 1 TEIL A: SPANNUNGSTEILUNG, SPANNUNGSEINSTELLUNG, GESETZE VON OHM UND KIRCHHOFF 6 VERSUCH TEIL A: SPANNUNGSTEILUNG, SPANNUNGSEINSTELLUNG, GESETZE VON OHM UND KIRCHHOFF Oft ist es notwendig, Strom-, Spannungs- und Leistungsaufnahme eines Gerätes regelbar einzustellen.ein solches "Stellen"

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch 25. März 2010 Inhaltsverzeichnis 1 Photoeffekt 1 2 Comptoneffekt 3 3 Bragg Streuung 4 4 Strahlungsgesetze 5 1 Photoeffekt Der Photoeffekt wurde erstmals 1839

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

Festkorperspektroskopie

Festkorperspektroskopie Hans Kuzmany Festkorperspektroskopie Eine Einführung Mit 222 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong 1. Einleitung 1 2. Grundlagen der Festkörperphysik 4 2.1

Mehr

Praktikum Lasertechnik, Protokoll Versuch Halbleiter

Praktikum Lasertechnik, Protokoll Versuch Halbleiter Praktikum Lasertechnik, Protokoll Versuch Halbleiter 16.06.2014 Ort: Laserlabor der Fachhochschule Aachen Campus Jülich Inhaltsverzeichnis 1 Einleitung 1 2 Fragen zur Vorbereitung 2 3 Geräteliste 2 4 Messung

Mehr

Typische Eigenschaften von Metallen

Typische Eigenschaften von Metallen Typische Eigenschaften von Metallen hohe elektrische Leitfähigkeit (nimmt mit steigender Temperatur ab) hohe Wärmeleitfähigkeit leichte Verformbarkeit metallischer Glanz Elektronengas-Modell eines Metalls

Mehr

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...

Mehr

5 Elektronengas-Modell und Polyene

5 Elektronengas-Modell und Polyene 5.1 Übersicht und Lernziele Übersicht Im vorherigen Kapitel haben Sie gelernt, das Elektronengas-Modell am Beispiel der Cyanin-Farbstoffe anzuwenden. Sie konnten überprüfen, dass die Berechnungen für die

Mehr

Elektrische Leitung. Strom

Elektrische Leitung. Strom lektrische Leitung 1. Leitungsmechanismen Bändermodell 2. Ladungstransport in Festkörpern i) Temperaturabhängigkeit Leiter ii) igen- und Fremdleitung in Halbleitern iii) Stromtransport in Isolatoren iv)

Mehr

Auswertung. C16: elektrische Leitung in Halbleitern

Auswertung. C16: elektrische Leitung in Halbleitern Auswertung zum Versuch C16: elektrische Leitung in Halbleitern Alexander FufaeV Partner: Jule Heier Gruppe 434 Einleitung In diesem Versuch sollen wir die elektrische Leitung in Halbleitern untersuchen.

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2000 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2000 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 000 Aufgabe III Atomphysik 1. Laserbremsung eines Atomstrahls In einem Atomofen befindet sich Cäsium-Gas der Temperatur T. Die mittlere m Geschwindigkeit der

Mehr

Ferienkurs Experimentalphysik Übung 2 - Musterlösung

Ferienkurs Experimentalphysik Übung 2 - Musterlösung Ferienkurs Experimentalphysik 4 00 Übung - Musterlösung Kopplung von Drehimpulsen und spektroskopische Notation (*) Vervollständigen Sie untenstehende Tabelle mit den fehlenden Werten der Quantenzahlen.

Mehr

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur?

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Wie berechnet man die innere Energie, wie die spezifische Wärme?

Mehr

Stark-Effekt für entartete Zustände

Stark-Effekt für entartete Zustände Stark-Effekt für entartete Zustände Die Schrödingergleichung für das Elektron im Wasserstoff lautet H nlm = n nlm mit H = p2 e2 2 m e 4 r Die Eigenfunktion und Eigenwerte dieses ungestörten Systems sind

Mehr

Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019

Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019 Lösungen der Abituraufgaben Physik Harald Hoiß 26. Januar 2019 Inhaltsverzeichnis 1. Wasserstoffatom 1 1.1. Spektren.............................................. 1 2. Anwendungen zum quantenmechanischen

Mehr

6/2 Halbleiter Ganz wichtige Bauteile

6/2 Halbleiter Ganz wichtige Bauteile Elektronik 6/2 Seite 1 6/2 Halbleiter Ganz wichtige Bauteile Erforderlicher Wissensstand der Schüler Begriffe: Widerstand, Temperatur, elektrisches Feld, Ionen, Isolator Lernziele der Unterrichtssequenz

Mehr

Festkörperphysik. Einführung in die Grundlagen. 4y Springer. Siebte Auflage mit 277 Abbildungen, 18 Tafeln und 104 Übungen

Festkörperphysik. Einführung in die Grundlagen. 4y Springer. Siebte Auflage mit 277 Abbildungen, 18 Tafeln und 104 Übungen Harald Ibach Hans Lüth Festkörperphysik Einführung in die Grundlagen Siebte Auflage mit 277 Abbildungen, 18 Tafeln und 104 Übungen r ^ 4y Springer Inhaltsverzeichnis 1. Die chemische Bindung in Festkörpern

Mehr