5 Elektronengas-Modell und Polyene

Größe: px
Ab Seite anzeigen:

Download "5 Elektronengas-Modell und Polyene"

Transkript

1 5.1 Übersicht und Lernziele Übersicht Im vorherigen Kapitel haben Sie gelernt, das Elektronengas-Modell am Beispiel der Cyanin-Farbstoffe anzuwenden. Sie konnten überprüfen, dass die Berechnungen für die Anregungsenergie und die Wellenlänge der absorbierten elektromagnetischen Strahlung mit den Messungen gut übereinstimmen. Die beim Elektronengas-Modell gemachten Grundannahmen (Bindungsausgleich zwischen den Atomen eines Farbstoffteilchens und konstante potentielle Energie der π-elektronen) können also für die Farbstoffgruppe der 4,4'-Cyanine übernommen werden. Wir gehen nun einen Schritt vorwärts und wollen das Elektronengas- Modell auf eine weitere Farbstoffgruppe - die Polyene - übertragen. Lernziele 1. Sie können die Anregungsenergie ΔE für den Übergang vom höchsten besetzten (HOMO) zum niedrigsten unbesetzten (LU- MO) Niveau von Polyenen mit dem Elektronengas-Modell berechnen. 2. Sie sind in der Lage, die Wellenlängen des für die Anregung erforderlichen Lichts zu berechnen und die Resultate grafisch darzustellen. 3. Sie können Ihre Resultate interpretieren und damit das Modell des Elektronengases mit V korr erweitern. 5.2 Polyene und ihr Absorptionsverhalten Die in diesem und den folgenden Abschnitten untersuchten farbigen Stoffe sind charakterisiert durch ein lineares Grundgerüst der Moleküle mit jeweils verschiedenen Endgruppen. Polyene sind Verbindungen, deren Moleküle ein System konjugierter Doppelbindungen enthalten. Zu dieser Stoffgruppe gehören die in der Natur weit verbreiteten Carotinoide (Abschnitt 1.2). 85

2 A 5.1 Bei den einfachsten der oben definierten Polyene sind die unpolaren Endgruppen Wasserstoff-Atome. Welche allgemeine Lewis-Formel haben diese Polyene? Wie bei den Cyaninen geht man bei den Polyenen zunächst von einer vollständigen Delokalisierung der π-elektronen aus. Analog den Berechnungen der Anregungsenergie und der entsprechenden Wellenlänge der absorbierten elektromagnetischen Strahlung bei den 4,4'-Cyaninen in Kapitel 4, sollen Sie mithilfe der beiden bekannten Formeln und der Beziehung zwischen z und N die Anregungsenergie ΔE und die Wellenlänge λ berechnen. (N + 1) 3 ΔE ber = 1,88 10 [kj mol -1 ], 2 (z + 1) 2 (z + 1) λ ber = [nm] (N + 1) A 5.2 Berechnen Sie aus den beiden vorhergehenden Formeln und der Beziehung zwischen N und z die allgemeinen Formeln für ΔE ber und λ ber für die Polyene. Tragen Sie Ihre Lösungen als Formeln ein: ΔE ber = [kj mol -1 ] λ ber = [nm] Mithilfe der in A 5.2 hergeleiteten Beziehungen lassen sich Anregungsenergien (ΔE ber ) und entsprechende Wellenlängen (λ ber ) berechnen und mit den experimentellen Werten vergleichen. A 5.3 Berechnen Sie ΔE ber und λ ber für N = 4, 6, 8, 10, 12, 22, 24 und 30. Tragen Sie diese Werte in Tabelle 5.1 ein. 86

3 Tabelle 5.1 Berechnete und experimentell ermittelte Werte für die Anregungsenergie bzw. Wellenlänge der absorbierten elektromagnetischen Strahlung für Polyene (Lösemittel: Hexan) j N λ ber in nm λ ber in nm ΔE exp in kj mol -1 ΔE ber in kj mol , , , , , , , , Vergleich der berechneten mit den experimentellen Daten - grafische Darstellung; Einführung des Korrekturfaktors V korr A 5.4 Abb. 5.1 Anregungsenergie für Polyene. Vergleich zwischen berechneten und gemessenen Werten Tragen Sie die berechneten und experimentellen Werte für ΔE und λ in Abb. 5.1 und 5.2 ein. 87

4 Abb. 5.2 Wellenlänge der maximalen Absorption für Polyene. Vergleich zwischen berechneten und gemessenen Werten. Die Werte für ΔE ber bzw. λ ber liegen deutlich unter bzw. über den experimentellen Werten (vgl. Lösung zu A 5.4). Das Modell des Elektronengases, wie es im Abschnitt 4.3 entwickelt wurde, kann somit nicht auf die Polyene übertragen werden. Um das Elektronensystem der Polyene anzuregen, ist, verglichen mit der Modellvorstellung des Elektronengases, ein zusätzlicher Energieaufwand V korr nötig. ΔE = Δ E + V [kj mol -1 ]; V korr = ΔE exp - ΔE ber [kj mol -1 ] exp ber korr Berechnung von V korr 3 1 V korr = ΔEexp 1,88 10 [kj mol -1 ] N+ 1 Berechnung von V korr (zusätzlicher Energieaufwand zur Anregung von Polyenen, verglichen mit den Werten, die man, entsprechend dem Elektronengas-Modell, bei Annahme einer vollständigen Delokalisierung der π-elektronen erhält.) 88

5 Mithilfe von V korr lassen sich Aussagen über die Delokalisierung von π- Elektronen eines Moleküls machen. Je kleiner V korr, desto vollständiger ist die Delokalisierung. Das betrachtete System entspricht damit immer besser dem Elektronengas-Modell. Im Idealfall der Cyanine ist V korr gleich null. A 5.5 Vervollständigen Sie die untenstehende Tabelle mit den Werten für V korr. Tabelle 5.2 Zusammenhang zwischen ΔE exp, ΔE ber und V korr für Polyene N(j) ΔE exp in kj mol -1 ΔE ber in kj mol -1 V korr in kj mol -1 4(2) 551,2 376,0 6(3) 460,0 268,6 8(4) 396,0 208,9 10(5) 345, (6) 324,1 144,6 22(11) 265,2 81,7 24(12) 251,8 75,2 30(15) 237,3 60,6 Werte von V korr Die Werte für V korr sind bei den hier betrachteten Polyenen in ähnlicher Grössenordnung. Zusammenfassend lässt sich über das Absorptionsverhalten der Polyene Folgendes aussagen: - Die Absorptionsenergie nimmt mit steigender Anzahl konjugierter Doppelbindungen ab, nähert sich jedoch bei j > 20 einem Grenzwert. - Der Vergleich mit der Vorstellung des vollständig delokalisierten Elektronengases zeigt, dass sich bei den Polyenen Einfach- und Doppelbindungen abwechseln müssen. - Um π-elektronen in einen angeregten Zustand überzuführen, ist zusätzliche Energie erforderlich (V korr ). 89

6 Abb. 5.3 Grenzformeln eines 1,2-Butadien-Moleküls - Die Polyen-Moleküle lassen sich durch zwei energetisch stark unterschiedliche Grenzformeln beschreiben (Ladungstrennung!). Der zwitterionischen Form kommt deshalb für den wahren Zustand nur eine geringe Bedeutung zu. + - H 2 C CH CH CH 2 H 2 C CH CH CH Interpretation des Korrekturterms V korr Interpretation von V korr Potentielle Energie ist nicht konstant Wie lässt sich nun dieses V korr verstehen? Bei den Polyenen wechseln sich Einfach- und Doppelbindungen mehr oder weniger ab. Wegen der erhöhten Elektronendichte ist der mittlere Abstand zwischen den Atomrümpfen der C-Atome einer Doppelbindung kürzer als bei einer Einfachbindung. Der Abstand eines nur unvollständig delokalisierten π- Elektrons von den Atomrümpfen der C-Atome einer Doppelbindung ist deshalb geringer als im Bereich einer Einfachbindung. Aus diesem Grund kann der Verlauf der potentiellen Energie der π-elektronen nicht mehr als konstant angenommen werden. Man behandelt deshalb die π-elektronen in einem eindimensionalen Potentialfeld von sinusförmiger Gestalt. Im modellhaft angenommenen Verlauf der potentiellen Energie V befinden sich Minima (= geringe V) in der Mitte der Doppelbindungen und Maxima (= hohe V) in der Mitte der Einfachbindungen. An beiden Enden des Moleküls (= an den Kastenenden) steigt die potentielle Energie ins Unendliche an. Abb. 5.4 Idealisierter Verlauf der potentiellen Energie im Molekül 1,3,5,7,9-Decapentaen 90

7 Betrachtet man in der Abb. 5.5 die Wellenfunktion ψ, die Elektronendichte ψ 2 und die potentielle Energie V für das höchste besetzte und das niedrigste unbesetzte Niveau im Molekül 1,3,5,7,9-Octatetraen, so fällt Folgendes auf: - Im höchsten besetzten Niveau (n = 4; HOMO) fallen die Maxima der Elektronendichte mit den Minima der potentiellen Energie zusammen, d.h. die Bereiche grösster Elektronendichte befinden sich an den Stellen mit der geringsten potentiellen Energie, also dort, wo in der Lewis-Formel die Doppelbindungen geschrieben werden. - Im niedrigsten unbesetzten Niveau (n = 5; LUMO) sind die Maxima der Elektronendichte häufig in der Nähe der Maxima der potentiellen Energie. Dort, wo sich die π-elektronen mit grösster Wahrscheinlichkeit aufhalten, haben sie auch eine hohe potentielle Energie. Beim Übergang in den angeregten Zustand muss den π-elektronen folglich diese zusätzliche potentielle Energie (= V korr ) zugeführt werden. - Im Gegensatz dazu ist bei den 4,4'-Cyaninen die Anregungsenergie ausschliesslich die Differenz der kinetischen Energie des π-elektrons: ΔΕ = Τ (LUMO) Τ (ΗΟΜΟ) + V (LUMO) V (HOMO Abb. 5.5 Verlauf der potentiellen Energie ( ), der Wellenfunktion ( ) und der Elektronendichte (...) für n = 4 bzw. n = 5 eines Moleküls mit 8 π- Elektronen x 91

8 A 5.6 Zeichnen Sie in einem Diagramm die potentielle Energie V, die Wellenfunktion und das Quadrat der Wellenfunktion für den höchsten besetzten (HOMO) und den tiefsten unbesetzten (LUMO) Energiezustand für den in A 4.2 betrachteten Cyanin-Farbstoff (1,1 -diethyl-4,4 -carbocyaniniodid; j = 1). I - R N CH (CH CH) j N + R A 5.7 Erklären Sie anhand des Coulomb-Gesetzes, warum die potentielle Energie eines Elektrons in einer Doppelbindung kleiner ist als in einer Einfachbindung. 5.5 Lösungen zu den Aufgaben A 5.1 A 5.2 H-(HC=CH) j -H j = Anzahl der Doppelbindungen im Polyen-Molekül In Polyenen trägt jedes am System delokalisierter Elektronen beteiligte Atom ein π-elektron bei, es gilt also: z = N. ΔE ber λ ber 3 1 = 1,88 10 N + 1 = ( N 1)[ nm] 1 [ kj mol ] A 5.3 N(j) λ exp in nm λ ber in nm ΔE exp in kj mol -1 ΔE ber in kj mol -1 4(2) ,0 6(3) ,6 8(4) ,9 10(5) ,9 12(6) ,6 22(11) ,7 24(12) ,2 30(15) ,6 92

9 A 5.4 A 5.5 Zusammenhang zwischen λ exp, ΔE exp, ΔE ber und V korr für Polyene N(j) λ exp in nm ΔE exp in kj mol -1 ΔE ber in kj mol -1 V korr in kj mol -1 4(2) ,0 175,2 6(3) ,0 268,6 191,4 8(4) ,0 208,9 187,1 10(5) ,8 12(6) ,6 179,5 22(11) ,7 183,5 24(12) ,2 176,6 30(15) ,6 176,7 A 5.6 Die potentielle Energie V ist konstant, d. h. eine Gerade. N = 12, also n = 6 für den höchsten besetzten (HOMO) Zustand und n =7 für den tiefsten unbesetzten (LUMO) Zustand. 93

10 A 5.7 Bei einer Doppelbindung ist der Abstand zwischen negativ geladenen Elektronen und positiv geladenen Atomrümpfen kleiner als in einer (längeren) Einfachbindung. Die Kraft ist indirekt proportional zum Quadrat des Abstands. Q1 Q Coulomb-Gesetz: F = konst. 2 r 2 94

3 Elektronengas-Modell und Polyene

3 Elektronengas-Modell und Polyene 3.1 Lernziele 1. Sie können die Anregungsenergie ΔE für den Ügang vom höchsten besetzten (HOMO) zum niedrigsten unbesetzten (LUMO) Niveau von Polyenen mit dem Elektronengas-Modell echnen. 2. Sie sind in

Mehr

4. Die Bedeutung der Endgruppen am Beispiel der Phenylpolyenale und ihrer Farbsalze

4. Die Bedeutung der Endgruppen am Beispiel der Phenylpolyenale und ihrer Farbsalze 4. Die Bedeutung der Endgruppen am Beispiel der Phenylpolyenale und ihrer Farbsalze 4.1 Lernziele 1. Sie können Absorptionsmessungen von Phenylpolyenalen durchführen. 2. Sie stellen die Farbsalze der Phenylpolyenale

Mehr

4 Wir sperren π-elektronen in einen Kasten; das Elektronengas-Modell

4 Wir sperren π-elektronen in einen Kasten; das Elektronengas-Modell 4.1 Übersicht und Lernziele Übersicht Keine Angst vor der Mathematik Farbstoffmoleküle absorbieren sichtbares Licht, deshalb erscheinen sie farbig. Durch die Energie des absorbierten Lichts entstehen angeregte

Mehr

Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei, Bern. 1. Auflage 2010 Alle Rechte vorbehalten Copyright Pädagogische Hochschule PHBern

Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei, Bern. 1. Auflage 2010 Alle Rechte vorbehalten Copyright Pädagogische Hochschule PHBern Günter Baars (unter Mitarbeit von B. Debrunner, I. Kulakowska, T. Loosli, I. Pompizi, S. Stieger) E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Leitprogramm: Quantenchemie und organische

Mehr

2-01. Das Ethen-Molekül. Perspektivische Darstellung des Ethen-Moleküls.

2-01. Das Ethen-Molekül. Perspektivische Darstellung des Ethen-Moleküls. Das Ethen-Molekül 2-01 Perspektivische Darstellung des Ethen-Moleküls. Rot: Sigma-Bindungen σ mit je zwei Bindungselektronen Blau: pz-orbitale mit je einem Elektron Die C-Atome sind sp 2 -hybridisiert,

Mehr

Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Quantenchemie und organische farbige Stoffe Übungen mit Lösungen

Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Quantenchemie und organische farbige Stoffe Übungen mit Lösungen Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Quantenchemie und organische farbige Stoffe Übungen mit Lösungen Korrektorat: Dina Baars, Bern Illustrationen: Christoph

Mehr

4 Die Atombindung im Wasserstoff-Molekül

4 Die Atombindung im Wasserstoff-Molekül 4.1 Übersicht und Lernziele Thema Bis jetzt haben wir nur von Atomen gesprochen. In der Chemie beschäftigen wir uns aber normalerweise mit Molekülen oder Ionen. Wir wollen deshalb in diesem Kapitel auf

Mehr

2 Die Atombindung im Wasserstoff-Molekül

2 Die Atombindung im Wasserstoff-Molekül 2.1 Lernziele 1. Sie wissen, wie eine chemische Bindung zwischen zwei Wasserstoff-Atomen zustande kommt. 2. Sie können den bindenden vom antibindenden Zustand unterscheiden. 3. Sie wissen, weshalb das

Mehr

5 Elektronenübergänge im Festkörper

5 Elektronenübergänge im Festkörper 5 Elektronenübergänge im Festkörper 5.1 Übersicht und Lernziele Übersicht Die Bindung in einem Molekül erfolgt durch gemeinsame Elektronenpaare, die jeweils zwei Atomen angehören (Atombindung, Elektronenpaarbindung).

Mehr

Lösungsvorschlag Übung 9

Lösungsvorschlag Übung 9 Lösungsvorschlag Übung 9 Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit a Die Wahrscheinlichkeitsdichte ist eine Wahrscheinlichkeit pro Volumenelement. Die Wahrscheinlichkeit selbst ist eine

Mehr

Aufgabe 2: Quantenmechanisches Modell für pseudolineare Polyene

Aufgabe 2: Quantenmechanisches Modell für pseudolineare Polyene Lösungsvorschlag Übung 10 Aufgabe 1: Ein Teilchen im eindimensionalen Kasten a Die Energiedifferenz zwischen zwei aufeinanderfolgenden Energie-Eigenwerten ist E n,n+1 = E n+1 E n ml n + 1 n 1.1 n + 1.

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Veranstalter Andreas Branding - 1 - Theorie Während

Mehr

Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Quantenchemie und chemische Bindung Übungen mit Lösungen

Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Quantenchemie und chemische Bindung Übungen mit Lösungen Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Modul: Quantenchemie und chemische Bindung Übungen mit Lösungen Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei,

Mehr

Lernziele zu Farbigkeit von Stoffen

Lernziele zu Farbigkeit von Stoffen Farbstoffe Lernziele zu Farbigkeit von Stoffen du verstehst, wie Farbigkeit mit der Absorption von EM-Strahlung zusammenhängt. du verstehst die Unterschiede zwischen Feuerwerksfarben und Textilfarbstoffen.

Mehr

6 Die Bedeutung der Endgruppen am Beispiel der Phenylpolyenale und ihrer Farbsalze

6 Die Bedeutung der Endgruppen am Beispiel der Phenylpolyenale und ihrer Farbsalze und ihrer Farbsalze 6.1 Übersicht und Lernziele Übersicht Im vorherigen Kapitel haben Sie gelernt, das Elektronengas-Modell am Beispiel der Polyenfarbstoffe zu erweitern. In diesem Kapitel machen Sie sich

Mehr

Spektroskopie-Seminar SS UV-Vis-Spektroskopie. UV-Vis-Spektroskopie

Spektroskopie-Seminar SS UV-Vis-Spektroskopie. UV-Vis-Spektroskopie UV-Vis-Spektroskopie 7.1 Allgemeines UV-Vis-Spektroskopie verwendet elektromagnetische Strahlung im sichtbaren und UV-Bereich. 190 nm bis 700 nm. Dabei kommt es zur Anregung von Elektronen ( Elektronenspektroskopie

Mehr

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 12

Übungen zur Vorlesung Physikalische Chemie 2 (B. Sc.) Lösungsvorschlag zu Blatt 12 Übungen zur Vorlesung Physikalische Chemie B. Sc. ösungsvorschlag zu Blatt 1 Prof. Dr. Norbert Hampp Jens Träger Wintersemester 7/8. 1. 8 Aufgabe 1 Welche Schwingungsübergänge in einem elektronischen Spektrum

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 6 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer Bedeutung.

Mehr

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min

Zentralabitur 2008 Physik Schülermaterial Aufgabe II ea Bearbeitungszeit: 300 min Thema: Experimente mit Interferometern Im Mittelpunkt der in den Aufgaben 1 und 2 angesprochenen Fragestellungen steht das Michelson-Interferometer. Es werden verschiedene Interferenzversuche mit Mikrowellen

Mehr

Abiturprüfung Physik, Leistungskurs

Abiturprüfung Physik, Leistungskurs Seite 1 von 8 Abiturprüfung 2010 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer

Mehr

Grundpraktikum A A2 Franck-Hertz-Versuch

Grundpraktikum A A2 Franck-Hertz-Versuch Mathematisch-Naturwissenschaftliche Fakultät Institut für Physik Grundpraktikum A A2 Franck-Hertz-Versuch 30.06.2017 Studenten: Tim Will Betreuer: Raum: J. NEW14-2.01 Messplatz: 2 INHALTSVERZEICHNIS INHALTSVERZEICHNIS

Mehr

Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe

Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Einführung in das E-Lern- und Lehrmedium Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei, Bern 1. Auflage 2010

Mehr

Farbstoffe Einleitung

Farbstoffe Einleitung Einleitung Farben, die aus Mineralien gewonnen wurden, wie die Mineralfarben Mennige, Zinnober oder Malachit dienten bereits in der Altsteinzeit für Höhlenmalereien. Diese Farben bestehen aus anorganischen

Mehr

Abb.15: Experiment zum Rutherford-Modell

Abb.15: Experiment zum Rutherford-Modell 6.Kapitel Atommodelle 6.1 Lernziele Sie kennen die Entwicklung der Atommodelle bis zum linearen Potentialtopf. Sie kennen die Bohrschen Postulate und können sie auch anwenden. Sie wissen, wie man bestimmte

Mehr

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf: Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau

Mehr

Ferienkurs Experimentalphysik Übung 2 - Musterlösung

Ferienkurs Experimentalphysik Übung 2 - Musterlösung Ferienkurs Experimentalphysik 4 00 Übung - Musterlösung Kopplung von Drehimpulsen und spektroskopische Notation (*) Vervollständigen Sie untenstehende Tabelle mit den fehlenden Werten der Quantenzahlen.

Mehr

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf

0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf 1 15.11.006 0.1 119. Hausaufgabe 0.1.1 Exzerpt von B. S. 414: Unendlich hoher Potenzialtopf (Siehe 118. Hausaufgabe.) 0.1. Exzerpt von B. S. 414: Wellenlängen der Wellenfunktion im Fall stehender Wellen

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 4 Molekülstruktur Ausnahmen von der Oktettregel Hypervalente Verbindungen VSEPR Hybridisierung Molekülorbitale

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2) Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz

12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz phys4.024 Page 1 12.8 Eigenschaften von elektronischen Übergängen Übergangsfrequenz betrachte die allgemeine Lösung ψ n der zeitabhängigen Schrödinger-Gleichung zum Energieeigenwert E n Erwartungswert

Mehr

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe

Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe Hallwachs-Experiment Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe 20.09.2012 Skizziere das Experiment Notiere und Interpretiere die Beobachtungen Photoeffekt Bestrahlt

Mehr

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale

Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Periodensystem, elektromagnetische Spektren, Atombau, Orbitale Als Mendelejew sein Periodensystem aufstellte waren die Edelgase sowie einige andere Elemente noch nicht entdeck (gelb unterlegt). Trotzdem

Mehr

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit Lösungsvorschlag Übung 8 Aufgabe : Wellenfunktion und Aufenthaltswahrscheinlichkeit a) Die Wahrscheinlichkeitsdichte ist eine Wahrscheinlichkeit pro Volumenelement. Die Wahrscheinlichkeit selbst ist eine

Mehr

Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei, Bern. 1. Auflage 2010 Alle Rechte vorbehalten Copyright Pädagogische Hochschule PHBern

Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei, Bern. 1. Auflage 2010 Alle Rechte vorbehalten Copyright Pädagogische Hochschule PHBern Günter Baars E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Leitprogramm: Quantenchemie und organische farbige Stoffe Übungen mit Lösungen Korrektorat: Dina Baars, Bern Illustrationen:

Mehr

Aufgaben zum Wasserstoffatom

Aufgaben zum Wasserstoffatom Aufgaben zum Wasserstoffatom Hans M. Strauch Kurfürst-Ruprecht-Gymnasium Neustadt/W. Aufgabenarten Darstellung von Zusammenhängen, Abgrenzung von Unterschieden (können u.u. recht offen sein) Beantwortung

Mehr

LMPG 2, ÜB21, Molekülbau & UV/VIS-Absorption LÖSUNG 1 von 11

LMPG 2, ÜB21, Molekülbau & UV/VIS-Absorption LÖSUNG 1 von 11 LMPG 2, ÜB21, Molekülbau & UV/VISAbsorption LÖSUG 1 von 11 Übung 1: Charakterisierung von Absorptionsbanden Veränderungen der Molekülstruktur können zu Verschiebungen der einzelnen Absorptionsbanden im

Mehr

2 Einführung in Licht und Farbe

2 Einführung in Licht und Farbe 2.1 Lernziele 1. Sie wissen, dass Farbe im Gehirn erzeugt wird. 2. Sie sind mit den drei Prinzipien vertraut, die einen Gegenstand farbig machen können. 3. Sie kennen den Zusammenhang zwischen Farbe und

Mehr

Lösungsvorschlag Übung 2

Lösungsvorschlag Übung 2 Lösungsvorschlag Übung Aufgabe : Dichte von Gasen a) Die Dichte ρ eines Gases ist definiert als der Quotient aus Masse m und Volumen V ρ = m V..) Die Masse eines Gases erhält man aus dem Produkt seiner

Mehr

Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei, Bern. 1. Auflage 2010 Alle Rechte vorbehalten Copyright Pädagogische Hochschule PHBern

Korrektorat: Dina Baars, Bern Illustrationen: Christoph Frei, Bern. 1. Auflage 2010 Alle Rechte vorbehalten Copyright Pädagogische Hochschule PHBern Günter Baars (unter Mitarbeit von B. Debrunner, I. Kulakowska, T. Loosli, I. Pompizi, S. Stieger) E-Lern- und Lehrmedium: Quantenchemie und Chemie farbiger Stoffe Leitprogramm: Quantenchemie und organische

Mehr

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5

Übungen zur Vorlesung Physikalische Chemie II Lösungsvorschlag zu Blatt 5 Wintersemester 006 / 007 04.1.006 1. Aufgabe Die Wellenfunktionen unterscheiden sich gar nicht. Während der Lösung der elektronischen Schrödingergleichung werden die Kerne als ruhend betrachtet. Es kommt

Mehr

Lehrerinformation Brillantblau

Lehrerinformation Brillantblau Lehrerinformation: Allgemeines zu Triarylmethylfarbstoffen Viele Gegenstände, mit denen wir tagtäglich in Berührung kommen, sind farbig. Letztlich ist aber all diese Farbenpracht auf die chemischen Verbindungen

Mehr

Seminar: Photometrie

Seminar: Photometrie Seminar: Photometrie G. Reibnegger und W. Windischhofer (Teil II zum Thema Hauptgruppenelemente) Ziel des Seminars: Theoretische Basis der Photometrie Lambert-Beer sches Gesetz Rechenbeispiele Literatur:

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2000 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2000 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 000 Aufgabe III Atomphysik 1. Laserbremsung eines Atomstrahls In einem Atomofen befindet sich Cäsium-Gas der Temperatur T. Die mittlere m Geschwindigkeit der

Mehr

Beugung, Idealer Doppelspalt

Beugung, Idealer Doppelspalt Aufgaben 10 Beugung Beugung, Idealer Doppelspalt Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Protokoll zum Grundversuch Franck-Hertz Versuch

Protokoll zum Grundversuch Franck-Hertz Versuch Protokoll zum Grundversuch Franck-Hertz Versuch Fabian Schmid-Michels fschmid-michels@uni-bielefeld.de Nils Brüdigam nils.bruedigam@googlemail.com Universität Bielefeld Sommersemester 2007 Grundpraktikum

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Betreuer Andreas Branding - 1 - Theorie Zur Erläuterung

Mehr

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle?

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? FK Ex 4-07/09/2015 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Ψ = Dexp( k II a) mit k II = [ 2m e (V 0 E)/ 2] 1/2

Ψ = Dexp( k II a) mit k II = [ 2m e (V 0 E)/ 2] 1/2 Institut für Physikalische Chemie Lösungen zu den Übungen zur Vorlesung Physikalische Chemie II im WS 015/016 Prof. Dr. Eckhard Bartsch / Marcel Werner M.Sc. Aufgabenblatt 11 vom 9.01.16 Aufgabe 11 1 L

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Welche beiden Metalle prägten eine Epoche?

Welche beiden Metalle prägten eine Epoche? Posten 1a Welche beiden Metalle prägten eine Epoche? a) Silber / Gold (=> Posten 2a) b) Bronze / Eisen (=> Posten 3d) c) Eisen / Gold (=> Posten 4j) d) Silber / Bronze (=> Posten 5s) Posten 2d Welcher

Mehr

2. Musterklausur in K1

2. Musterklausur in K1 Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Musterklausur in K Die Klausur stellt nur eine kleine Auswahl der möglichen Themen dar. Inhalt der Klausur kann aber der gesamte

Mehr

Bereich Schwierigkeit Thema Atomphysik X Atommodelle. Dalton, Thomson und Rutherford. Mögliche Lösung

Bereich Schwierigkeit Thema Atomphysik X Atommodelle. Dalton, Thomson und Rutherford. Mögliche Lösung Atomphysik X Atommodelle Dalton, Thomson und Rutherford a) Formulieren Sie die Daltonsche Atomhypothese. b) Nennen Sie die wesentlichen Merkmale des Atommodells von Thomson. c) Beschreiben Sie die Rutherfordschen

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

8. Zusammenfassung und Schlussbetrachtung

8. Zusammenfassung und Schlussbetrachtung 8. Zusammenfassung und Schlussbetrachtung Ziel dieser Arbeit war die analytische Berechnung von Fokker-Planck-Koeffizienten, Transportparametern sowie von mittleren freien Weglängen der Teilchen kosmischer

Mehr

Moleküle und Wärmestatistik

Moleküle und Wärmestatistik Moleküle und Wärmestatistik Musterlösung.08.008 Molekülbindung Ein Molekül bestehe aus zwei Atomkernen A und B und zwei Elektronen. a) Wie lautet der Ansatz für die symmetrische Wellenfunktion in der Molekülorbitalnäherung?

Mehr

PC2: Spektroskopie Störungsrechnung

PC2: Spektroskopie Störungsrechnung PC: Spektroskopie Störungsrechnung (neu überarbeitet im SS 014, nach: Wedler-Freund, Physikalische Chemie) Wir betrachten ein System aus quantenchemischen Zuständen m, n, zwischen denen durch die Absorption

Mehr

Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019

Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019 Lösungen der Abituraufgaben Physik Harald Hoiß 26. Januar 2019 Inhaltsverzeichnis 1. Wasserstoffatom 1 1.1. Spektren.............................................. 1 2. Anwendungen zum quantenmechanischen

Mehr

3. Klausur in K2 am

3. Klausur in K2 am Name: Punkte: Note: Ø: Profilfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am 4.3. 05 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h =

Mehr

Schriftliche Leistungsüberprüfung PC/CBI

Schriftliche Leistungsüberprüfung PC/CBI Abschlusstest - Physikalische Chemie CBI/LSE - SS08 - Blatt 1 Schriftliche Leistungsüberprüfung PC/CBI SS08-25.07.2008 Hörsaal H1/H2 Name: Vorname: geb. am: in: Matrikelnummer: Unterschrift: Für die Beantwortung

Mehr

Stark konz., Fluoreszierend

Stark konz., Fluoreszierend hemie-protokoll 28.10.02, Seite 1 von 5 Lukman Iwan, 30.10.02 Stundenprotokoll vom Montag, 28. Oktober 2002 Es fehlen: keine VB: Lösungsmittel Extraktfarbe VD: Ethanol (Brennspiritus) Blaugrün, Stark konz.,

Mehr

Zusätzliche Aspekte der Absorbtion und Emission von Photonen

Zusätzliche Aspekte der Absorbtion und Emission von Photonen Vorlesung 9 Zusätzliche Aspekte der Absorbtion und Emission von Photonen Plancksche Verteilung und thermisches Gleichgewicht: Wir betrachten ein Medium aus Atomen. Die Atome wechselwirken nicht direkt

Mehr

Physik III - Anfängerpraktikum- Versuch 601

Physik III - Anfängerpraktikum- Versuch 601 Physik III - Anfängerpraktikum- Versuch 601 Sebastian Rollke (103095) und Daniel Brenner (105292) 21. September 2005 Inhaltsverzeichnis 1 Theorie 2 1.1 Grundlagen.......................................

Mehr

Auswertung: Franck-Hertz-Versuch

Auswertung: Franck-Hertz-Versuch Auswertung: Franck-Hertz-Versuch Christine Dörflinger und Frederik Mayer, Gruppe Do-9 10. Mai 2012 1 Inhaltsverzeichnis 1 Erste Anregung von Quecksilber 3 1.1 Aufbauen der Schaltung der Quecksilber-Franck-Hertz-Röhre................

Mehr

Oktett-Theorie von Lewis

Oktett-Theorie von Lewis Oktett-Theorie von Lewis Oktettregel Atome versuchen durch die Nutzung gemeinsamer Elektronenpaare möglichst ein Elektronenoktett zu erlangen. allgemeiner: Edelgasregel Atome streben durch Vereinigung

Mehr

Aufgabe 3 wird für unsere weiteren Betrachtungen komplett gestrichen.

Aufgabe 3 wird für unsere weiteren Betrachtungen komplett gestrichen. Charlotte-Wolff-Kolleg A40, Q-Phase, Kurs: LK-Physik Fachlehrer: Lothar Winkowski Zeit: Dienstag, den 23.08.11, 3. Block ( 12.00 13.30 Uhr Thema: Elastischer und unelastischer Stoß Protokollant: Benjamin

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Arbeitsblatt Wie entstehen Farben?

Arbeitsblatt Wie entstehen Farben? Arbeitsblatt Wie entstehen Farben? Der für das menschliche Auge sichtbare Wellenlängenbereich liegt bei 380-750 nm. Farbstoffe sind in der Lage bestimmte Wellenlängen des Lichts zu absorbieren und eine

Mehr

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS

9. Moleküle. 9.1 Wasserstoff-Molekül Ion H Wasserstoff-Molekül H Schwerere Moleküle 9.4 Angeregte Moleküle. Physik IV SS 9.1 Wasserstoff-Molekül Ion H + 9. Wasserstoff-Molekül H 9.3 Schwerere Moleküle 9.4 Angeregte Moleküle 9.1 9.1 Wasserstoff-Molekül Ion H + Einfachstes Molekül: H + = p + e p + Coulomb-Potenzial: Schrödinger-Gleichung:

Mehr

Universität Regensburg

Universität Regensburg Universität Regensburg Fakultät für Chemie und Pharmazie Institut für Anorganische Chemie Prof. Dr. R. Winter 93040 Regensburg Musterlösungen Übung 7. 1. Geben Sie an, ob die folgenden Orbitalüberlappungen

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das Bohr sche Atommodell: Strahlenabsorption, -emission, Elektromagentische Strahlung, Wellen, Wellenlänge, Frequenz, Wellenzahl. Postulate: * Elektronen bewegen

Mehr

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld

11. Elektrodynamik Das Gaußsche Gesetz 11.2 Kraft auf Ladungen Punktladung im elektrischen Feld Dipol im elektrischen Feld Inhalt 11. Elektrodynamik 11.1 Das Gaußsche Gesetz 11.2 Kraft auf Ladungen 11.2.1 Punktladung im elektrischen Feld 11. Elektromagnetische Kraft 11 Elektrodynamik 11. Elektrodynamik (nur Vakuum = Ladung

Mehr

Bewegung im elektromagnetischen Feld

Bewegung im elektromagnetischen Feld Kapitel 6 Bewegung im elektromagnetischen Feld 6. Hamilton Operator und Schrödinger Gleichung Felder E und B. Aus der Elektrodynamik ist bekannt, dass in einem elektrischen Feld E(r) und einem Magnetfeld

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Das (wellen-) quantenchemische Atommodell Orbitalmodell Beschreibung atomarer Teilchen (Elektronen) durch Wellenfunktionen, Wellen, Wellenlänge, Frequenz, Amplitude,

Mehr

Stark-Effekt für entartete Zustände

Stark-Effekt für entartete Zustände Stark-Effekt für entartete Zustände Die Schrödingergleichung für das Elektron im Wasserstoff lautet H nlm = n nlm mit H = p2 e2 2 m e 4 r Die Eigenfunktion und Eigenwerte dieses ungestörten Systems sind

Mehr

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische

Mehr

Ultraviolette Photoelektronenspektroskopie (UPS)

Ultraviolette Photoelektronenspektroskopie (UPS) Ultraviolette Photoelektronenspektroskopie (UPS) hν e - Photoeffekt: (Nobelpreis Einstein 1905): E kin (max) = hν - φ allgemeiner: E kin = hν E bin -φ Φ: Austrittsarbeit [ev], E bin : Bindungsenergie,

Mehr

Wiederholung der letzten Vorlesungsstunde:

Wiederholung der letzten Vorlesungsstunde: Wiederholung der letzten Vorlesungsstunde: Chemische Bindungen, starke, schwache Bindungen, Elektronenpaarbindung, bindende und freie Elektronenpaare, Oktettregel, Edelgaskonfiguration, Lewis-Formeln,

Mehr

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 3: Drehschwingungen. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 3: Drehschwingungen Durchgeführt am 27.10.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

MUSTERLÖSUNG ZUR KLAUSUR PHYSIKALISCHE CHEMIE II (3.Sem)

MUSTERLÖSUNG ZUR KLAUSUR PHYSIKALISCHE CHEMIE II (3.Sem) Universität Regensburg Institut für Physikalische und Theoretische Chemie IPTC Prof. Dr. B. Dick Dr. S. A. Baeurle R. J. Kutta WS/ 006/007 MUSTERLÖSUNG ZUR KLAUSUR PHYSIKALISCHE CHEMIE II 3.Sem Aufgabe

Mehr

Theorie der Farbigkeit

Theorie der Farbigkeit 1. Theorie der Farbigkeit 1.1 Theorie der Farbigkeit Chromophore Zentraler Bestandteil aller Farbstoffe sind die Chromophore. Als Chromophor (griech. Farbträger) bezeichnet man den Teil eines Farbstoffs,

Mehr

7. Klausur am

7. Klausur am Name: Punkte: Note: Ø: Profilkurs Physik Abzüge für Darstellung: Rundung: 7. Klausur am 8.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h = 6,66 0-34

Mehr

Modul: Allgemeine Chemie

Modul: Allgemeine Chemie Modul: Allgemeine Chemie 5. Grundlagen der chemischen Bindung Ionenbindung Eigenschaften, Ionengitter, Kugelpackung Strukturtypen, Kreisprozesse Kovalente Bindung Lewis Formeln, Oktettregel, Formalladungen

Mehr

HAW Hamburg Fachbereich HWI Hamburg, Prof. Dr. Badura B. Hamraz, O. Zarenko, M. Behrens. Chemie Testat 2. Name: Vorname: Matrikelnummer:

HAW Hamburg Fachbereich HWI Hamburg, Prof. Dr. Badura B. Hamraz, O. Zarenko, M. Behrens. Chemie Testat 2. Name: Vorname: Matrikelnummer: Chemie Testat 2 Name: Vorname: Matrikelnummer: Bearbeitungszeit: 1 Stunde Zugelassene Hilfsmittel: Stifte, unbeschriebenes Papier, ein nichtprogrammierbarer Taschenrechner und ein Periodensystem Bitte

Mehr

HOCHSCHULE HARZ Fachbereich Automatisierung und Informatik. Physik. Der Franck-Hertz-Versuch

HOCHSCHULE HARZ Fachbereich Automatisierung und Informatik. Physik. Der Franck-Hertz-Versuch Gruppe: HOCHSCHULE HARZ Fachbereich Automatisierung und Informatik Physik Versuch-Nr.: Der Franck-Hertz-Versuch Gliederung: 1. Theoretische Grundlagen 2. Versuchsbeschreibung 3. Versuchsaufbau 4. Messungen

Mehr

Physik 4, Übung 12, Prof. Förster

Physik 4, Übung 12, Prof. Förster Physik 4, Übung 12, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Aufgabensammlung. zum. RCL "Fotoeffekt"

Aufgabensammlung. zum. RCL Fotoeffekt Aufgabensammlung zum RCL "Fotoeffekt" S. Gröber Technische Universität Kaiserslautern März 2009 Inhaltsverzeichnis I. Aufgaben 1. Intensität von Licht 2 2. Versuchsaufbau zum RCL Fotoeffekt 2 3. Einsteinsche

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Die Silizium - Solarzelle

Die Silizium - Solarzelle Die Silizium - Solarzelle 1. Prinzip einer Solarzelle Die einer Solarzelle besteht darin, Lichtenergie in elektrische Energie umzuwandeln. Die entscheidende Rolle bei diesem Vorgang spielen Elektronen

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

Physik 4, Probeklausur, Prof. Förster

Physik 4, Probeklausur, Prof. Förster Physik 4, Probeklausur, Prof. Förster chris@university-material.de Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit.

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

Skript zum Versuch A50. Absorptionsspektren von Farbstoffen. Jan Herausgeber: Institut für Physikalische Chemie

Skript zum Versuch A50. Absorptionsspektren von Farbstoffen. Jan Herausgeber: Institut für Physikalische Chemie Physikalische-Chemisches Praktikum für Anfänger Skript zum Versuch A50 Absorptionsspektren von Farbstoffen Jan. 2018 Herausgeber: Institut für Physikalische Chemie 1 Aufgabe Es sind die Absorptionsspektren

Mehr

Das quantenmechanische Atommodell

Das quantenmechanische Atommodell Ende 93 konzipierte de Broglie seine grundlegenden Ideen über die Dualität von Welle und Korpuskel. Albert Einstein hatte schon 905 von den korpuskularen Eigenschaften des Lichtes gesprochen; de Broglie

Mehr

Klausur Bachelorstudiengang CBI / LSE. Physikalische Chemie

Klausur Bachelorstudiengang CBI / LSE. Physikalische Chemie Bachelorstudiengang CBI / LSE - Teil Physikalische Chemie SS10 - Blatt 1 / 15 Klausur Bachelorstudiengang CBI / LSE Physikalische Chemie 27.09.2010 Name: Vorname: geb. am: in: Studienfach: Matrikelnummer:

Mehr

Vorbereitung: Franck-Hertz-Versuch. Christine Dörflinger und Frederik Mayer, Gruppe Do-9 3. Mai 2012

Vorbereitung: Franck-Hertz-Versuch. Christine Dörflinger und Frederik Mayer, Gruppe Do-9 3. Mai 2012 Vorbereitung: Franck-Hertz-Versuch Christine Dörflinger und Frederik Mayer, Gruppe Do-9 3. Mai 2012 1 Inhaltsverzeichnis 0 Allgemeines 3 1 Aufgabe 1 3 1.1 Versuchsaufbau.............................................

Mehr