2 Elektrischer Stromkreis
|
|
|
- August Linden
- vor 9 Jahren
- Abrufe
Transkript
1 2 Elektrischer Stromkreis 2.1 Aufbau des technischen Stromkreises Nach der Durcharbeitung dieses Kapitels haben Sie die Kompetenz... Stromkreise in äußere und innere Abschnitte einzuteilen und die Bedeutung für die Praxis aufzuzeigen. Im Themenkreis 1 wurden die einzelnen elektrischen Grundgrößen erarbeitet und ihre Zusammenhänge dargestellt. In diesem Themenkreis erfolgt nun die Betrachtung des Zusammenwirkens der einzelnen Grundgrößen im Stromkreis. Dazu wird ein aus Spannungsquelle, Schalter, Leitungen und einem Widerstand als Verbraucher bestehender Stromkreis betrachtet. Nach dem Schließen des Stromkreises mittels Schalter beginnt die Ladungsbewegung. Von der Spannung bewegt strömen Elektronen vom Minus-Pol (¼ Elektronenüberschuss) durch den Widerstand R zum Plus-Pol (¼ Elektronenmangel). In der Spannungsquelle erfolgt wieder eine Ladungstrennung, wobei die Elektronen zum Minus-Pol verschoben werden. Der Kreislauf ist somit geschlossen. Solange die Energieumwandlung in der Spannungsquelle anhält, wird der Elektronenfluss aufrechterhalten. Die Stromrichtung ist, wie bereits bekannt, von Plus nach Minus festgelegt. Die Ursache des Stromflusses ist die Spannung. Für den gesamten Stromkreis gilt die Aussage: Bild Zusammenwirken der Grundgrößen im Stromkreis Ohne Spannung kein Strom. Der Strom ist an allen Stellen des Kreises gleich groß. Der Stromkreis wird in einen äußeren und inneren Stromkreis aufgeteilt. Im äußeren Stromkreis sind alle Verbraucher zusammengefasst, während der innere Stromkreis durch die Spannungsquelle gebildet wird. Daraus erklären sich auch die Begriffe Verbraucherund Erzeugerkreis. Die Definition der Stromrichtung ist auf den äußeren Stromkreis bezogen. In der Spannungsquelle fließt der Strom von Minus nach Plus, die Elektronen natürlich entgegengesetzt.
2 2.2 Strömungsgesetze im elektrischen Stromkreis Strömungsgesetze im elektrischen Stromkreis Nach der Durcharbeitung dieses Kapitels haben Sie die Kompetenz... Berechnungen an einfachen elektrischen Stromkreisen mit dem Ohm schen Gesetz durchzuführen, zwischen linearen und nichtlinearen Widerständen zu unterscheiden und ihr Verhalten im Stromkreis zu erklären Ohm sches Gesetz Den Zusammenhang zwischen der elektrischen Spannung U, dem elektrischen Strom I und dem Widerstand R erkannte als Erster der deutsche Physiker Georg Simon Ohm ( ), weshalb die mathematische Formulierung dieser Abhängigkeit als Ohm sches Gesetz bezeichnet wird. Bild Geschlossener Stromkreis Im geschlossenen Stromkreis sind bei konstantem Widerstand der Strom und die Spannung einander proportional. Bei konstanter Spannung U und Vergrößerung des Widerstandes R ist der Zusammenhang zwischen Strom und Spannung umgekehrt proportional. I U folglich (wenn R ¼ konstant) I ¼ k U k ¼ Proportionalitätsfaktor I 1 R (wenn U ¼ konstant) Zusammenfassend lässt sich daraus die Größengleichung des Ohm schen Gesetzes ableiten: Mit k ¼ 1 R I ¼ U R ergibt sich das Ohm sche Gesetz ( ) Die Einheitengleichung ergibt wie folgt: ½IŠ ¼ V ¼ A ( ) W Das Ohm sche Gesetz lässt sich durch verschiedene Formulierungen darstellen: 1. Die am Widerstand R anliegende Spannung U treibt den Strom I durch diesen Widerstand. 2. Um den Strom I durch den Widerstand R zu treiben, muss die Spannung U angelegt werden. Bild Spannung und Strom am Widerstand
3 48 2 Elektrischer Stromkreis 3. Um bei der angelegten Spannung U den Strom I zu begrenzen, muss der Widerstand R vorhanden sein. Die Umstellung des Ohm schen Gesetzes nach R führt zur Definitionsgleichung des Widerstandes R. Definitionsgleichung des Widerstandes R ¼ U I ( ) Zur Erinnerung sei an dieser Stelle nochmals auf die bereits bekannte Bemessungsgleichung eines Widerstandes hingewiesen. Mit der Gleichung wurde der Leitwert G definiert. Die Einführung des Leitwertes in das Ohm sche Gesetz ergibt: Bemessungsgleichung des Widerstandes R ¼ l k A ¼ r l A Leitwert: G ¼ 1 R I ¼ U G ( ) Beispiel Bestimmen Sie bei gegebenem Strom I ¼ 3 A und Widerstand R ¼ 50 W die Spannung U. U ¼ I R ¼ 3 A 50 W U ¼ 150 V Ûbung Zeichnen Sie in einen einfachen Stromkreis die technische Stromrichtung und die Elektronenflussrichtung ein. Wie fließen Strom und Elektronen im inneren Stromkreis, also in der Spannungsquelle? Ûbung Ergänzen Sie in der Tabelle die fehlenden Werte für jede Spalte: Ûbung Der Verbraucher in einem Stromkreis wird durch einen 400 m langen Kupferdraht mit einem Querschnitt von A ¼ 50 mm 2 gebildet. Der Stromkreis wird mit U ¼ 2 V gespeist. Berechnen Sie für eine Drahttemperatur von 20 C und 50 C den Strom I R 10 W 1,5 MW 1 GW U 20 V 1 mv 10 3 V 150 V 20 V I 5 na 0,5 A 10 A 1 ma G 3 S 10 S
4 2.2 Strömungsgesetze im elektrischen Stromkreis Widerstandsdiagramme Einführung In der Technik werden vielfältige Diagramme und Kennlinien verwendet. Das Ohm sche Gesetz ist eine lineare Gleichung. Jede lineare Gleichung kann in eine lineare Funktion überführt werden. Deshalb kann auch das Ohm sche Gesetz in eine Funktionsgleichung umgewandelt und als Graph dargestellt werden. Für die allgemeine lineare Funktion gilt: y ¼ f ðxþ ¼ m x ( ) x ¼ unabhängige Variable y ¼ unabhängige Variable m ¼ Dy Dx ¼ Steigungsfaktor Bild Lineare Funktion Die in der Gleichung angeführte Schreibweise des Ohm schen Gesetzes entspricht der einer allgemeinen linearen Funktion. I ¼ f ðuþ ¼ 1 R U l l l y ¼ f ðxþ ¼ m x Der Vergleich der Koeffizienten beider Gleichungen führt zur folgenden Gegenüberstellung: I ¼b y ¼ abhängige Variable 1 ¼b m ¼ Steigungsfaktor R U ¼b x ¼ unabhängige Variable Die Aussagen I ¼b abhängige Variable und U ¼b unabhängige Variable sind auch physikalisch richtig, da ohne Spannung kein Strom fließt.
5 50 2 Elektrischer Stromkreis Lineare Widerstände Die Darstellung des Ohm schen Gesetzes als lineare Funktion ergibt die Widerstandskennlinie. Es werden auch die Bezeichnungen Widerstandsdiagramm oder Widerstandsgerade verwendet. Der Steigungsfaktor m ¼b 1 beschreibt die R Steigung der Widerstandskennlinie, die somit ein Maß für die Größe des Widerstandswertes ist. Aus der Widerstandskennlinie nach Bild wird für die Steigung das Verhältnis DU zu DI abgelesen. Für den Steigungsfaktor erhält man somit eine weitere Bestimmungsmöglichkeit. Es gilt: Die Kehrwertbildung der gewonnenen Gleichung führt wieder zum Ohm schen Gesetz und zeigt die Richtigkeit dieser Betrachtung. Bild Steigungsfaktor: m ¼b 1 R ¼ DI DU R ¼ DU DI ) R ¼ U I Widerstandskennlinie ( ) Steigungsfaktor und Widerstandswert sind reziprok zueinander. Einem großen Steigungsfaktor steht ein kleiner Widerstandswert gegenüber und umgekehrt. großer Steigungsfaktor ) kleiner Widerstandswert Als Beispiel sind im Bild einige Widerstandskennlinien dargestellt. Widerstandskennlinien für verschie- Bild dene Widerstände Aus den Spannungs- und Stromverhältnissen der gegebenen Widerstandskennlinien ergibt sich: R 3 ¼ DU DI 000 < R 2 ¼ DU DI 00 < R 1 ¼ DU DI 0 Der Widerstand R 3 hat den kleinsten Wert, während R 1 den größten Wert aufweist. Wird an einem Widerstand R eine bestimmte Spannung U angelegt, so fließt der mit Hilfe
6 2.2 Strömungsgesetze im elektrischen Stromkreis 51 des Ohm schen Gesetzes berechenbare Strom I. Im Widerstandsdiagramm wird dieser Punkt als Arbeitspunkt (AP) bezeichnet. Jeder Punkt der Kennlinie kann Arbeitspunkt sein. Bei den bisher vorgestellten Widerstandsdiagrammen handelt es sich um konstante oder lineare Widerstände. Alle Punkte der Kennlinie können mit dem Ohm schen Gesetz berechnet werden. Die Steigung eines linearen Widerstandes ist an allen Stellen der Kennlinie gleich groß. Beispiel Gegeben sind die Widerstände R 1 ¼ 1 W; R 2 ¼ 0,5 W und R 3 ¼ 10 W. Konstruieren Sie in einem Koordinatensystem die drei Kennlinien der Widerstände. Der zu verwendende Spannungsbereich beträgt V, der Strombereich A. Zur Berechnung des Kennlinienpunktes wird die Spannung gewählt: Berechnung des Stromes zur gewählten Spannung: Der berechnete Punkt der Widerstandsgeraden hat das Wertepaar: Bild Widerstandskennlinie mit Arbeitspunkt Zur Konstruktion einer linearen Ursprungsfunktion genügen 2 Punkte: Ein Punkt der Kennlinie und der Koordinatenursprung. 1. Widerstandsgerade für R 1 ¼ 1 W U gewählt ¼ 10 V I ¼ U R ¼ 10 V 1 W ¼ 10 A P 1 : (10 V/10 A) Die Verbindung zwischen P 1 und dem Koordinatenursprung gibt die Widerstandskennlinie für R 1. Für die Berechnung des Punktes auf der Kennlinie wird ebenfalls U ¼ 10 V gewählt und damit wird der zugehörige Strom berechnet: Der berechnete Strom ist größer als der vorgegebene Strombereich, somit ist eine kleinere Spannung zu wählen, z. B. U ¼ 5 V: 2. Widerstandsgerade für R 2 ¼ 0,5 W I ¼ U R ¼ 10 V 0,5 W ¼ 20 A I ¼ U R ¼ 5 V 0,5 W ¼ 10 A
7 52 2 Elektrischer Stromkreis Der berechnete Punkt der Widerstandsgeraden liegt somit bei: P 2 : (5 V/10 A) Die Eintragung ins Kennlinienfeld ergibt die Widerstandskennlinie für R Widerstandsgerade für R 3 ¼ 10 W Die Berechnung erfolgt analog der Kennlinien von R 1 und R 2 : I ¼ U R ¼ 10 V 10 W ¼ 1 A P 3 : (10 V/1 A) Eintragung der Kennlinie für R 3 ins Kennlinienfeld ergibt die gesuchte Ûbung Konstruieren Sie für 3 gegebene Widerstände die Widerstandsgeraden. Benutzen Sie dazu einen Spannungsbereich von V. Der entsprechende Strombereich ist selbst zu wählen. R 1 ¼ 400 W, R 2 ¼ 800 W, R 3 ¼ 500 W. Ûbung Gegeben sei der Arbeitspunkt eines Widerstandes: AP: (1,5 V/3 ma). Berechnen Sie den sich daraus ergebenden Widerstandswert R. Konstruieren Sie aus diesen Angaben die Widerstandsgerade.
8 2.2 Strömungsgesetze im elektrischen Stromkreis Nichtlineare Widerstände Widerstände, die ihren Wert mit zunehmender Spannung ändern, werden als nichtlineare Widerstände bezeichnet. Bild Schaltzeichen eines nichtlinearen Widerstandes Die Kennlinie eines nichtlinearen Widerstandes ist als Beispiel im Bild dargestellt. In jedem möglichen Arbeitspunkt der Kennlinie ist dabei der Widerstandswert unterschiedlich, da die Steigung in allen Punkten verschieden ist. Bild Arbeitspunkte auf einer nichtlinearen Widerstandskennlinie Beispiel Gegeben ist die Kennlinie eines nichtlinearen Widerstandes. Ermitteln Sie für die 3 gegebenen Arbeitspunkte die Widerstandswerte. Aus der Kennlinie lassen sich die Wertepaare der Arbeitspunkte ablesen. Damit können die Widerstandswerte berechnet werden. AP 1 : ð4 V=10 maþ ) R 1 ¼ U I ¼ 4 V 0,01 A AP 2 : ð7 V=30 maþ ) R 2 ¼ AP 3 : ð9 V=70 maþ ) R 3 ¼ R 1 ¼ 400 W 7 V 0,03 A R 2 ¼ 233,3 W 9 V 0,07 A R 3 ¼ 128,5 W
Grundlagen und Bauelemente der Elektrotechnik
Heinz Josef Bauckholt Grundlagen und Bauelemente der Elektrotechnik ISBN-10: 3-446-41257-3 ISBN-13: 978-3-446-41257-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41257-6
Grundlagen und Bauelemente der Elektrotechnik
Heinz Josef Bauckholt Grundlagen und Bauelemente der Elektrotechnik ISBN-10: 3-446-41257-3 ISBN-13: 978-3-446-41257-6 Vorwort Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41257-6
Elektrische Grundlagen der Informationstechnik. Laborprotokoll: Nichtlineare Widerstände
Fachhochschule für Technik und Wirtschaft Berlin Elektrische Grundlagen der Informationstechnik Laborprotokoll: Nichtlineare Widerstände Mario Apitz, Christian Kötz 2. Januar 21 Inhaltsverzeichnis 1 Vorbeitung...
Das Ohmsche Gesetz. Selina Malacarne Nicola Ramagnano. 1 von 15
Das Ohmsche Gesetz Selina Malacarne Nicola Ramagnano 1 von 15 21./22. März 2011 Programm Spannung, Strom und Widerstand Das Ohmsche Gesetz Widerstandsprint bestücken Funktion des Wechselblinkers 2 von
Grundbegriffe der Elektrotechnik
Grundbegriffe der Elektrotechnik Inhaltsverzeichnis 1 Die elektrische Ladung Q 1 2 Die elektrische Spannung 2 2.1 Die elektrische Feldstärke E....................................................... 2 2.2
Mathematik - 1. Semester. folgenden Zahlenpaare die gegebene Gleichung erfüllen:
Mathematik -. Semester Wi. Ein Beispiel Lineare Funktionen Gegeben sei die Gleichung y x + 3. Anhand einer Wertetabelle sehen wir; daß die folgenden Zahlenpaare die gegebene Gleichung erfüllen: x 0 6 8
Serie 180, Musterlösung
Brückenkurs Physik [email protected] www.adams-science.org Serie 180, Musterlösung Brückenkurs Physik Datum: 10. September 2018 1. Coulombgesetz HGEZP2 Berechnen Sie die Kräfte (a) Q 1 = 25 µc und Q
Elektrotechnik: Übungsblatt 2 - Der Stromkreis
Elektrotechnik: Übungsblatt 2 - Der Stromkreis 1. Aufgabe: Was zeichnet elektrische Leiter gegenüber Nichtleitern aus? In elektrischen Leitern sind die Ladungen leicht beweglich, in Isolatoren können sie
Laboratorium für Grundlagen Elektrotechnik
niversity of Applied Sciences Cologne Fakultät 07: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 1 1.1 Aufnahme von Widerstandskennlinien
Einführung. Ablesen von einander zugeordneten Werten
Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,
Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz
Der elektrische Widerstand R Auswirkung im Stromkreis Definition Ohmsches Gesetz Kennlinie Wir wissen, am gleichen Leiter bewirken gleiche Spannungen gleiche Ströme. Wie ändert sich der Strom, wenn man
Funktionen in der Mathematik
R. Brinkmann http://brinkmann-du.de Seite 05.0.008 Funktionen in der Mathematik Bei der mathematischen Betrachtung natürlicher, technischer oder auch alltäglicher Vorgänge hängt der Wert einer Größe oft
Rudolf Brinkmann Seite und W = {x 3 x 6}
Rudolf Brinkmann Seite 0.0.008 Lineare Funktionen Es soll der Graph der Funktion f = {,y y = f() = } in den Bereichen D { } = und W = { 6} - - 0 f() = -6-0 6 9 erstellt werden. 6 6 5 0 Definition Eine
Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,
Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.
Grundwissen. Physik. Jahrgangsstufe 7
Grundwissen Physik Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Seite 1 1. Aufbau der Materie 1.1 Atome Ein Atom besteht aus dem positiv geladenen Atomkern und der negativ geladenen Atomhülle aus
Lernkontrolle Relationen, Funktionen, lineare Funktionen
Lernkontrolle Relationen, Funktionen, lineare Funktionen A 1) Im folgenden Diagramm bedeuten A, B, C, D jeweils die Kinder einer Familie; die Pfeile drücken die Relation "hat als Schwester" aus. a) Wie
Aufg. P max 1 12 Klausur "Elektrotechnik" am
Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 12 Klausur "Elektrotechnik" 2 12 3 12 6141 4 10 am 07.02.1997 5 16 6 13 Σ 75 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene
Was ist eine Funktion?
Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen
Leiterkennlinien elektrischer Widerstand
Leiterkennlinien elektrischer Widerstand Experiment: Wir untersuchen den Zusammenhang zwischen der anliegenden Spannung und der Stromstärke I bei verschiedenen elektrischen Leitern. Als elektrische Leiter
Gegeben ist eine Schaltung nach Bild1 mit zwei Siliziumdioden: Bild1. Aufgabenstellungen
Übung1 Gegeben ist eine Schaltung nach Bild1 mit zwei Siliziumdioden: Werte: R1= 2 kω Bild1 R2= 1kΩ U0= 6V Aufgabenstellungen Lösung Berechnen Sie die von dem Widerstand R2 aufgenommene Leistung, wenn
Grundlagen. Stromkreisgesetze. Andreas Zbinden. Gewerblich- Industrielle Berufsschule Bern. 1 Ohmsches Gesetz 2. 2 Reihnenschaltung von Widerständen 6
Elektrotechnik Grundlagen Stromkreisgesetze Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ohmsches Gesetz 2 2 Reihnenschaltung von Widerständen 6 3 Parallelschaltung von
Elektro výuková prezentace. Střední průmyslová škola Ostrov
Elektro výuková prezentace Střední průmyslová škola Ostrov 1. r Strom 2. r Widderstand 3. e Ladung 4. e Spannung 5. e Stromstärke 6. e Stromrichtung 7. s Feld 8. e Stromquelle 9. s Gesetz náboj proud pole
Lösungen zum Arbeitsblatt: y = mx + b Alles klar???
I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5
Schaltungen mit mehreren Widerständen
Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und
Technische Assistenten Zwischenprüfung Elektrotechnik Teil A 2000/2001
ZP 1/11 Aufgabe 1: Ergänzen Sie die Tabelle sinnvoll! Formelbuchstabe Größe Einhe i- tenabkürzung Einheit Strecke I s Widerstand Volt kg Joule P Wirkungsgrad Hertz Aufgabe 2: Ergänzen Sie die Tabelle sinnvoll!
Laborbericht. Fach: Elektrotechnik. Datum: Übung: 1.1 Elektrische Widerstände und Ohmsches Gesetz. Protokollführer: Malte Spiegelberg
Laborbericht Fach: Elektrotechnik Datum: 24.10.2008 Übung: 1.1 Elektrische Widerstände und Ohmsches Gesetz Protokollführer: Malte Spiegelberg Laborpartner: Dennis Wedemann Inhaltsverzeichnis: 1. Vorbesprechung
Gleichstromtechnik. Vorlesung 15: Verbindung von Zweipolen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann
Gleichstromtechnik Vorlesung 15: Fakultät für Elektro- und nformationstechnik, Manfred Strohrmann Grundidee Betrieb eines passiven Zweipols an einer linearen Quelle über verlustfreie Leitungen Spannungen
Logarithmische Skalen
Logarithmische Skalen Arbeitsblatt Logarithmische Skalen ermöglichen dir eine übersichtlichere Darstellung von Kurvenverläufen vor allem dann, wenn sie sich über sehr große Zahlenbereiche erstrecken. 1
Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik
HTW Dresden Fakultät Elektrotechnik Übungsaufgaben Elektrotechnik/Elektronik für Medieninformatik Gudrun Flach February 3, 2019 Grundlegende Begriffe Grundlegende Begriffe Aufgabe 1 Bestimmen Sie die Beziehungen
Übung 2 Einschwingvorgänge 2 Diode Linearisierung
Universität Stuttgart Übung 2 Einschwingvorgänge 2 Diode Linearisierung Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Aufgabe 2.1
Zusatzmaterialien Funktionen von R. Brinkmann
Zusatzmaterialien Funktionen von R. Brinkmann http://brinkmann-du.de 6..0 Ausführliche Lösungen Kapitel. U U Finden Sie weitere Beispiele für solche Abhängigkeiten. Die Leistung eines Verbrennungsmotors
Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.
LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)
Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten
2. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit
Elektrotechnik Protokoll - Nichtlineare Widerstände
Elektrotechnik Protokoll - Nichtlineare Widerstände André Grüneberg Andreas Steffens Versuch: 17. Januar 1 Protokoll: 8. Januar 1 Versuchsdurchführung.1 Vorbereitung außerhalb der Versuchszeit.1.1 Eine
Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 2. Weitere Übungsteilnehmer: Messungen an linearen und nichtlinearen Widerständen
Department nformations- und Elektrotechnik Studiengruppe: Übungstag: Professor: Labor für Grundlagen der Elektrotechnik EE1- ETP1 Labor 2 Testat: Protokollführer (Name, Vorname): Weitere Übungsteilnehmer:
Stromstärke Elektrischer Strom ist bewegte Ladung Der Ladungstransport erfolgt in Metallen durch Leitungselektronen, in Elektrolyten durch Ionen, in G
Elektrischer Strom Stromstärke Elektrischer Strom ist bewegte Ladung Der Ladungstransport erfolgt in Metallen durch Leitungselektronen, in Elektrolyten durch Ionen, in Gasen durch Ionen und Elektronen.
Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 1: Messungen an linearen und nichtlinearen Widerständen
ersuchsdurchführung ersuch : Messungen an linearen und nichtlinearen Widerständen. Linearer Widerstand.. orbereitung Der Widerstand x ist mit dem digitalen ielfachmessgerät zu messen. Wie hoch darf die
Physikepoche Klasse 11. Elektrizitätslehre
Physikepoche Klasse 11 Elektrizitätslehre Der elektrische Gleichstromkreis Nur in einem geschlossenen Stromkreis können die elektrischen Ladungsträger vom negativen Pol der Spannungsquelle zum positiven
Spule, Kondensator und Widerstände
Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische
ELEKTRISCHE SPANNUNGSQUELLEN
Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN
Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene
Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander
LABORÜBUNG Diodenkennlinie
LABORÜBUNG Diodenkennlinie Letzte Änderung: 30.11.2004 Lothar Kerbl Inhaltsverzeichnis Messaufgabe 1: Kennlinie im Durchlassbereich... 2 Theoretische Kennlinie... 3 Messaufgabe 2 : Kennlinie einer Zenerdiode...
v p v n Diplomprüfung Elektronik SS 2006 Montag,
FH München FB 3 Maschinenbau Diplomprüfung Elektronik SS 6 Montag, 7.7.6 Prof. Dr. Höcht Prof. Dr. Kortstock Zugelassene Hilfsmittel: Alle eigenen Name: Vorname: Sem.: Dauer der Prüfung: 9 Minuten Homogene
GRUNDLAGEN DER ELEKTROTECHNIK
GNDLGEN DE ELEKTOTECHNK ersuch 2: Messungen an linearen und nichtlinearen Widerständen 1 ersuchsdurchführung 1.1 Linearer Widerstand 1.1.1 orbereitung Der Widerstand x ist mit dem digitalen ielfachmessgerät
Der elektrische Widerstand
Kapitel 3 Der elektrische Widerstand Die elektrische Spannung U haben Sie nun hinlänglich als Ursache für den elektrischen Strom kennengelernt. Wie viel Strom effektiv durch einen Leiter fliesst, d.h.,
Abiturprüfung Physik, Leistungskurs
Seite 1 von 8 Abiturprüfung 2013 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Aspekte zur experimentellen Überprüfung des Induktionsgesetzes In der folgenden Aufgabe soll eine Teilaussage des allgemeinen
Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder
DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/
Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke
E Elektrische Meßinstrumente Stoffgebiet: Elektrische Grundgrößen, Ohmsches Gesetz, Kirchhoffsche Gesetze, Wheatstonesche Brücke Versuchsziel: Benützung elektrischer Messinstrumente (Amperemeter, Voltmeter,
Grundlagen der Elektrotechnik LF-2
Grundbildung IT-Systemelektroniker Grundlagen der Elektrotechnik LF-2 Mitschriften der Ausbildung Jörg Schumann 13. Februar 2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Ladungsträger 3 2 elektrische Spannung
Über die Bedeutung der zwei Zahlen m und x 1 für das Aussehen des Graphen wird an anderer Stelle informiert.
Lineare Funktionen - Term - Grundwissen Woran erkennt man, ob ein Funktionsterm zu einer Linearen Funktion gehört? oder Wie kann der Funktionsterm einer Linearen Funktion aussehen? Der Funktionsterm einer
GRUNDLAGENLABOR CLASSIC NICHTLINEARITÄTEN UND KENNLINIEN
GRUNDLGENLBOR CLSSIC NICHTLINERITÄTEN UND KENNLINIEN Inhalt: 1. Einleitung und Zielsetzung...2 2. Theoretische ufgaben Vorbereitung...2 3. Praktische Messaufgaben...8 Filename: Version: uthor: Kennlinien_Nichtlinearitäten_3_0.doc
Der spezifische Widerstand von Drähten (Artikelnr.: P )
Lehrer-/Dozentenblatt Der spezifische Widerstand von Drähten (Artikelnr.: P1372700) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Elektrizitätslehre Unterthema:
5.5 Ortskurven höherer Ordnung
2 5 Ortskurven 5.5 Ortskurven höherer Ordnung Ortskurve Parabel Die Ortskurvengleichung für die Parabel lautet P A + p B + p 2 C. (5.) Sie kann entweder aus der Geraden A + p B und dem Anteil p 2 C oder
Zulassungstest zur Physik II für Chemiker
SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24
1.2 Stromkreis Stromquelle Batterie
1.2 Stromkreis 1 + + + Stromquelle Batterie + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - Pluspol: Positiv geladene Atome warten sehnsüchtig auf Elektronen. Minuspol:
Inhalt. 1. Erläuterungen zum Versuch 1.1. Aufgabenstellung und physikalischer Hintergrund 1.2. Messmethode und Schaltbild 1.3. Versuchdurchführung
Versuch Nr. 02: Bestimmung eines Ohmschen Widerstandes nach der Substitutionsmethode Versuchsdurchführung: Donnerstag, 28. Mai 2009 von Sven Köppel / Harald Meixner Protokollant: Harald Meixner Tutor:
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #9 am 30.05.007 Vladimir Dyakonov Leistungsbeträge 00 W menschlicher Grundumsatz 00 kw PKW-Leistung
Elektrische Ladung und elektrischer Strom
Elektrische Ladung und elektrischer Strom Es gibt positive und negative elektrische Ladungen. Elektron Atomhülle Atomkern Der Aufbau eines Atoms Alle Körper sind aus Atomen aufgebaut. Ein Atom besteht
Elektrotechnik für MB
Elektrotechnik für MB Gleichstrom Elektrische und magnetische Felder Wechsel- und Drehstrom Grundlagen und Bauelemente der Elektronik Studium Plus // IW-MB WS 2015 Prof. Dr. Sergej Kovalev 1 Ziele 1. Gleichstrom:
1. Klausur in K1 am
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 1. Klausur in K1 am 19. 10. 010 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben:
Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 1: Messungen an linearen und nichtlinearen Widerständen
1 ersuchsdurchführung 1.1 Linearer Widerstand 1.1.1 orbereitung Der Widerstand R 1000 Ω ist mit dem digitalen ielfachmessgerät zu messen. Wie hoch darf die Messspannung gewählt werden, wenn die erlustleistung
3. Übung zur Vorlesung Steuer- und Regelungstechnik
3. Übung zur Vorlesung Steuer- und Regelungstechnik Linearisierung Felix Goßmann M.Sc. Institut für Steuer- und Regelungstechnik Fakultät für Luft- und Raumfahrttechnik Universität der Bundeswehr München
Bundestechnologiezentrum für Elektro- und Informationstechnik e.v.
Lernprogramm Grundlagen der Elektrotechnik 2 Themenübersicht Elektischer Widerstand und deren Schaltungen Linearer Widerstand im Stromkreis Ohmsches Gesetz Ohmsches Gesetz Strom und Spannung am linearen
2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner
. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können
Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin:
Grundpraktikum I Spannungsquellen 1/5 Übungsdatum: 7.11. Abgabetermin: 3.1. Grundpraktikum I Spannungsquellen [email protected] Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum I Spannungsquellen
2 Gleichstrom-Schaltungen
für Maschinenbau und Mechatronik Carl Hanser Verlag München 2 Gleichstrom-Schaltungen Aufgabe 2.1 Berechnen Sie die Kenngrößen der Ersatzquellen. Aufgabe 2.5 Welchen Wirkungsgrad hätte die in den Aufgaben
Originaldokument enthält an dieser Stelle eine Grafik! Original document contains a graphic at this position!
FUNKTIONSWEISE Thema : HALBLEITERDIODEN Die Eigenschaften des PN-Überganges werden in Halbleiterdioden genutzt. Die p- und n- Schicht befinden sich einem verschlossenen Gehäuse mit zwei Anschlussbeinen.
1 Grössen und Einheiten
1/7 1 Grössen und Einheiten 1.1 S-Einheiten Das Système nternational d'nités definiert die sieben Basiseinheiten: Meter für die Länge, Kilogramm für die Masse, Sekunde für die Zeit, Ampère für die Stromstärke,
Ich kenne die Begriffe Zuordnung und Funktion. Ich kann an Beispielen erklären, ob und warum eine Zuordnung eine Funktion ist oder nicht.
Mathematik 8a Vorbereitung zu Arbeit Nr. 4 - Lineare Funktionen am..07 Checkliste Was ich alles können soll Ich kenne die Begriffe Zuordnung und Funktion. Ich kann an Beispielen erklären, ob und warum
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2009
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 009 VL #6 am 7.05.009 Vladimir Dyakonov / Volker Drach Leistungsbeträge 00 W menschlicher Grundumsatz
TRA - Grundlagen des Transistors
TRA Grundlagen des Transistors Anfängerpraktikum 1, 2006 Janina Fiehl Daniel Flassig Gruppe 87 Aufgabenstellung n diesem Versuch sollen wichtige Eigenschaften des für unsere nformationsgesellschaft vielleicht
Berechnen Sie die Körpergröße eines Mannes, dessen Oberschenkelknochen eine Länge von 50 cm aufweist!
Aufgabe 1 Archäologie In der Archäologie gibt es eine empirische Formel, um von der Länge eines entdeckten Oberschenkelknochens auf die Körpergröße der zugehörigen Person schließen zu können. Für Männer
Prüfungsvorbereitung Physik: Elektrischer Strom und Elektromagnetismus
Prüfungsvorbereitung Physik: Elektrischer Strom und Elektromagnetismus Alle Grundlagen aus den vorhergehenden Prüfungen werden vorausgesetzt. Das heisst: Gut repetieren! Theoriefragen: Diese Begriffe müssen
Umgang mit Diagrammen Was kann ich?
Umgang mit Diagrammen Was kann ich? Aufgabe 1 (Quelle: DVA Ph 2008 14) Tom führt folgendes Experiment aus: Er notiert in einer Tabelle die Spannstrecken x, um die er das Auto rückwärts schiebt, und notiert
E-Labor im WS / SS. Gruppe: BITTE ANKREUZEN. Messprotokoll Versuchsbericht. Datum der Durchführung:
Abteilung Maschinenbau im WS / SS ersuch Gruppe: Name orname Matr.-Nr. Semester erfasser(in) Teilnehmer(in) Teilnehmer(in) Professor(in) / Lehrbeauftragte(r): BITTE ANKEZEN Messprotokoll ersuchsbericht
Lineare Quellen. Martin Schlup. 7. Februar 2014
Lineare Quellen Martin Schlup 7. Februar 204. Ideale Quellen Ideale Quellen sind Modelle mit Eigenschaften, die in Wirklichkeit nur näherungsweise realisiert werden können. Ideale Quellen sind z. B. in
Lineare Funktionen Arbeitsblatt 1
Lineare Funktionen Arbeitsblatt 1 Eine Funktion mit der Gleichung y = m x + b heißt lineare Funktion. Ihr Graph ist eine Gerade mit der Steigung m. Die Gerade schneidet die y-achse im Punkt P(0 b). Man
Kapitel 1. Kleinsignalparameter
Kapitel 1 Kleinsignalparameter Der Name analoge Schaltung drückt aus, dass das Ausgangssignal dieser Schaltung immer stufenlos dem Eingangssignal folgt, d. h. in irgendeiner Form eine Proportionalität
(Operationsverstärker - Grundschaltung)
Universität Stuttgart Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Übung 5 Aufgabe 5.1 ( - Grundschaltung) Im Bild 5.1 ist eine
Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =
Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem
Friedrich-Alexander-Universität Erlangen-Nürnberg. Lehrstuhl für Elektronische Bauelemente. Prof. Dr.-Ing. H. Ryssel. vhb-kurs Halbleiterbauelemente
Friedrich-Alexander-Universität Prof. Dr.-Ing. H. Ryssel vhb-kurs Halbleiterbauelemente Übungsaufgaben Teil 3: Feldeffekttransistoren Übung zum vhb-kurs Halbleiterbauelemente Seite 15 Feldeffekttransistoren
Der elektrische Widerstand R
Der elektrische Widerstand R Auswirkung im Stromkreis Definition Ohmsches Gesetz Definition des Widerstandes Der elektrischer Widerstand R eines Leiters ist der Quotient aus der am Leiter anliegenden Spannung
GRUNDLAGENLABOR CLASSIC LINEARE QUELLEN ERSATZSCHALTUNGEN UND KENNLINIEN
GRNDLAGENLABOR CLASSIC LINEARE QELLEN ERSATZSCHALTNGEN ND KENNLINIEN Inhalt:. Einleitung und Zielsetzung...2 2. Theoretische Aufgaben - Vorbereitung...2 3. Praktische Messaufgaben...3 Anhang: Theorie Quellen,
Basiswissen Physik Jahrgangsstufe (G9)
Wärmelehre (nur nspr. Zweig) siehe 9. Jahrgangsstufe (mat-nat.) Elektrizitätslehre Basiswissen Physik - 10. Jahrgangsstufe (G9) Ladung: Grundeigenschaft der Elektrizität, positive und negative Ladungen.
2 Elektrische Ladung, Strom, Spannung
2 Elektrische Ladung, Strom, Spannung In diesem Kapitel lernen Sie, ein Grundverständnis der Elektrizität zur Beschäftigung mit Elektronik, welche physikalischen Grundgrößen in der Elektronik verwendet
Nichtlineare Bauelemente - Protokoll zum Versuch
Naturwissenschaft Jan Hoppe Nichtlineare Bauelemente - Protokoll zum Versuch Praktikumsbericht / -arbeit Anfängerpraktikum, SS 08 Jan Hoppe Protokoll zum Versuch: GV Nichtlineare Bauelemente (16.05.08)
Motorrad umrüsten auf LED Blinker
Motorrad umrüsten auf LED Blinker Besitzer eines Motorrades stehen vielleicht vor der Entscheidung herkömmliche Blinker mit Glühlampen auf LED (Light Emitting Diode) umzurüsten. Wird bei einem lastabhängigen
Grundlagen der Elektrotechnik
Grundlagen der Elektrotechnik Kapitel : Wichtige Schaltungen der Elektrotechnik Wichtige Schaltungen der Elektrotechnik.1 Belasteter Spannungsteiler. Messschaltungen 4..1 Wheatstone-Messbrücke 4.. Kompensationsschaltung
6 Bestimmung linearer Funktionen
1 Bestimmung linearer Funktionen Um die Funktionsvorschrift einer linearen Funktion zu bestimmen, muss man ihre Steigung ermitteln. Dazu sind entweder Punkte gegeben oder man wählt zwei Punkte P 1 ( 1
Grundwissen Mathematik Klasse 8
Grundwissen Mathematik Klasse 8 1. Funktionen allgemein (Mathehelfer 2: S.47) Erstellen einer Wertetabelle bei gegebener Funktionsgleichung Zeichnen des Funktionsgraphen Ablesen von Wertepaaren ( x / f(x)
Grundlagen der Elektrotechnik I (W8800) Seite 4.1 Lösungen zu Übungsaufgaben
Grundlagen der Elektrotechnik I (W8800) Seite 4.1 4. Aufgabe Im dargestellten Netzwerk gibt es k = 4 Knoten (K1-K4), also k - 1 = 3 unabhängige Knotenpunktgleichungen. Weiterhin gibt es z = 7 Zweige. (Die
Vorbereitung zum Versuch Transistorschaltungen
Vorbereitung zum Versuch Transistorschaltungen Armin Burgmeier (47488) Gruppe 5 9. Dezember 2007 0 Grundlagen 0. Halbleiter Halbleiter bestehen aus Silizium- oder Germanium-Gittern und haben im allgemeinen
Prüfung _1. Lösung. Seite-01. Aufgabe ET2 U Q2
niversity of Applied Dipl.-Wirt. ng. (FH) Prüfung 6-_ Aufgabe ET Seite- Stand: 9..6; Bei dieser Aufgabe ist zu beachten, dass der Strom aus der Stromquelle negativ ist. Das bedeutet, dass man die Pfeilrichtung
Die Parallelschaltung elektrischer Widerstände
Kapitel 5 Die Parallelschaltung elektrischer Widerstände Wie verteilt sich eigentlich der elektrische Strom an einem Knoten? Wodurch wird festgelegt, durch welche Teile einer verzweigten Schaltung viel
Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise!
Aufgabe 2 Lagebeziehungen von Geraden im Raum Gegeben sind zwei Geraden g und h in 3. =( 3 Die Gerade g ist durch eine Parameterdarstellung X 4 2 Die Gerade h verläuft durch die Punkte A = (0 8 0 und B
