Datenanalyse und Statistik
|
|
|
- Theresa Blau
- vor 10 Jahren
- Abrufe
Transkript
1 Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart
2 Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe Die Datenminen Riesige Halde mit nichtrepräsentativen Daten Die unwegsamen Ausreißerberge Bayes-Land Gletscherspalte der gleichen Messwerte Klippe der unüberprüfbaren Voraussetzungen Vorhersagebereich Rangviertel ML-City Schätzervorstadt Vertrauensbereich Statistika Modell-Platz Aussichtsturm Grafingen Normalviertel Klippe der unüberprüfbaren Voraussetzungen Sequenzielle Passage Momentenmethoden u. Lineare Modelle t-dorf Steppe der unwesentlich verletzten Voraussetzungen Todeswüste, der nicht erfüllten Voraussetzungen Steig der Nichtparametrik Posthoc robuster Weg Bonferroni Passage Sümpfe des multiplen Testens Benjamini Passage Nacht der angenommen Hypothesen Schlaraffia oder das Land des gelungen statistischen Nachweis Land des offenen Betrugs
3 Datenanalyse und Statistik p. 3/44 Einteilung der Graphiken und Parameter Erste Variable diskret stetig keine?? zweite Variable diskret?? stetig wie diskret-stetig? stetige Daten diskrete Daten stetig stetig diskret diskret diskret stetig
4 Datenanalyse und Statistik p. 4/44 Lernziele Zu jeder Graphik lernen wir: Für welche Daten eignet sich die Graphik? Wie ist die Graphik aufgebaut? Was kann man in der Graphik sehen? Woran kann man es erkennen? Was übersieht man in der Graphik? Für welche Fragestellungen eignet sich die Graphik? Warum lernen wir das?
5 Vorbereitung: Darstellung des Wertes durch die Lage Datenanalyse und Statistik p. 5/44
6 Datenanalyse und Statistik p. 6/44 Streudiagramm Acorn.size Tree.Height
7 Datenanalyse und Statistik p. 7/44 Graphiken für stetige Daten Punktdiagramm (stapeln, verzittern) Histogramm Kastendiagramm / Boxplot Q Q-Plots (Quantils-Quantils Plot) (Empirische Verteilungsfunktion)
8 Datenanalyse und Statistik p. 8/44 Punktdiagramm Punktdiagramm gestapeltes Punktdiagramm verzittertes Punktdiagramm
9 Datenanalyse und Statistik p. 9/44 Punktdiagramm Vollständig bis auf Überdeckung Verzittern und Stapeln Was sieht man?
10 Datenanalyse und Statistik p. 10/44 Histogramm Histogram of Acorn.size Acorn.size
11 Datenanalyse und Statistik p. 11/44 Histogramm Histogram of Acorn.size Acorn.size mit Erklaerung
12 Datenanalyse und Statistik p. 12/44 Histogramm Histogram of Acorn.size Density Acorn.size als Dichteschaetzung
13 Datenanalyse und Statistik p. 13/44 Histogramm Stellt Anzahl von Datenpunkten im Intervall dar. Stellt die Dichte (Datenpunkte pro Punkt und Einheitslänge) der Punkte dar. Balkenhöhe ist zufällig. Variation von Balkenanfang und Balkenanzahl führt zu verschiedenen Eindrücken. Zu kleine Balken Zufallsflimmer Zu große Balken Information zu sehr zusammengefaßt. Extreme Ausreißer eventuell am linken oder rechten Rand erkennbar.
14 Einfluß des Balkenanfangs Histogram of Acorn.size Histogram of Acorn.size Histogram of Acorn.size Acorn.size Acorn.size Histogram of Acorn.size Acorn.size Density Density Density Density Acorn.size Histogram of Acorn.size Histogram of Acorn.size Density Density Acorn.size Acorn.size Datenanalyse und Statistik p. 14/44
15 Datenanalyse und Statistik p. 15/44 Beschreibung der Verteilungsform und Normalverteilung als Referenzverteilung
16 Datenanalyse und Statistik p. 16/44 Normalverteilung Histogram of rnorm(10000) Histogram of rnorm(1000) Histogram of rnorm(1000) rnorm(10000) rnorm(1000) rnorm(1000) Histogram of rnorm(100) Histogram of rnorm(100) Histogram of rnorm(100) rnorm(100) rnorm(100) rnorm(100) Histogram of rnorm(20) Histogram of rnorm(20) Histogram of rnorm(20) rnorm(20) rnorm(20) rnorm(20)
17 Datenanalyse und Statistik p. 17/44 Dichte der Normalverteilung Histogramm und Dichte einer Normalverteilung Density f(x) = 1 2πσ 2e (x µ) 2 2σ rnorm(100)
18 Datenanalyse und Statistik p. 18/44 Verteilungseigenschaften symmetrisch eingipflig rechtsschief zweigipflig/bimodal rnorm(1000, mean = 3) rlnorm(1000, mean c(rnorm(1000, = log(3), sd = mean 0.3) = 3, sd = 0.4), rnorm(500, mean = 5, sd = 0.4)) multimodal linksschief, eingeschraenkt Gleichverteilung auf [0,1] c(rnorm(1000, 3, 0.3), rnorm(500, 5, 0.3), rnorm(1000, 1, rbeta(1000, 0.3)) 10, 2) rbeta(10000, 1, 1) Schwere Verteilungsschwaenze Ausreisser rechtsschief monoton fallend unten beschraenkt rcauchy(1000) c(rnorm(100, mean = 3), 20) rexp(300)
19 Datenanalyse und Statistik p. 19/44 Kenngrößen und Parameter Lage Streuung Form Verteilung Kenngrößen und Parameter sind konventionelle Zusammenfassungen der Daten in einzelne Zahlen, die jeweils einen bestimmten Aspekt quantiativ erfassen.
20 Datenanalyse und Statistik p. 20/44 Lageparameter Lage Mittelwert (geometrisch und arithmetisch) Median Modus Quantile (Quartile, Dezentile) Streuung Form Verteilung
21 Datenanalyse und Statistik p. 21/44 (arithmetischer) Mittelwert x = 1 n n x i = 1 n (x 1 + x x n ) i=1 > mean(iris$sepal.length) [1]
22 Datenanalyse und Statistik p. 22/44 Mittelwert Histogram of Sepal.Length Histogram of Sepal.Width Sepal.Length Sepal.Width Histogram of Petal.Length Histogram of Petal.Width Petal.Length Petal.Width
23 Datenanalyse und Statistik p. 23/44 (geometrischer) Mittelwert Für die ratio-skala gibt es noch den geometrischen Mittelwert x = n n x i = (x 1 x 2 x n ) 1 n i=1 > exp(mean(log(iris$sepal.length))) [1]
24 Datenanalyse und Statistik p. 24/44 Median Der Median ist der mittlere Wert: > median(c(4, 5, 1, 3, 6, 7, 8)) [1] 5 > median(c(4, 1, 3, 6, 7, 8)) [1] 5 > median(iris$sepal.length) [1] 5.8 > sapply(iris[, 1:4], median) Sepal.Length Sepal.Width Petal.Length Petal.Width
25 Datenanalyse und Statistik p. 25/44 Modus Der Modus oder Modalwert bezeichnet den Bereich mit der größten Punktdichte. Histogram of iris$sepal.length Histogram of iris$petal.length iris$sepal.length iris$petal.length
26 Datenanalyse und Statistik p. 26/44 Quantile Das (empirische) p-quantil ˆq p ist der Wert für den der Anteil p des sortierten Datensatzes kleiner ist. Quantile Beobachtungswert, Quantil Anteil kleiner, p
27 Datenanalyse und Statistik p. 27/44 Spezielle Quantile 1 2-Quantil ist der Median 1 4-Quantil heißt auch erstes Quartil 3 4 -Quantil heißt auch drittes Quartil n 10-Quantil heißt auch n-tes Dezentil 0-Quantil heißt auch Minimum (sehr zufällig!!!) 1-Quantil heißt auch Maximum (sehr zufällig!!!)
28 Datenanalyse und Statistik p. 28/44 Streuparameter Lage Streuung Varianz Standardabweichung IQR Variationkoeffizient geometrische Standardabweichung Form Verteilung
29 Datenanalyse und Statistik p. 29/44 Streuparameter für die relle Skala Varianz var(x) = 1 n 1 Standardabweichung n (X i X) 2 i=1 Interquartilsabstand ŝd(x) = var(x) IQR(X) = q 0.75 q 0.25
30 Datenanalyse und Statistik p. 30/44 classical mean= 5.84 sd= 0.83 classical mean= 3.76 sd= x robust: mean= 5.83 sd= x robust: mean= 4.85 sd= x x
31 Datenanalyse und Statistik p. 31/44 Streuparameter für die ratio Skala Variationskoeffizient v(x) = ŝd(x) x Standardabweichung des Logarithmus ŝd(ln(x)) Geometrische Standardabweichung exp(ŝd(ln(x)))
32 Datenanalyse und Statistik p. 32/44 Blick mit der Ratioskala classical geom. mean= 5.79 gsd= 1.15 classical geom. mean= 3.24 gsd= x classical geom. mean= 3.03 gsd= x classical geom. mean= 0.84 gsd= x x
33 Datenanalyse und Statistik p. 33/44 Weitere Parameter Lage Streuung Form Schiefe Wölbung... Verteilung Hängt vom Verteilungsmodell ab.
34 Datenanalyse und Statistik p. 34/44 Kastendiagramm/Boxplot Dotplot Boxplot Erklärung zum Boxplot 18,2 einzelner Ausreißer obere Ausreißergrenze oberster Nichtausreißer 18,1 18,0 17,9 17,8 Obere Hälfte der Daten Untere Hälfte der Daten 1,5xIQR IQR Mittlere Hälfte der Daten 4. Viertel der Daten 3.Quartil 3. Viertel der Daten Median 2. Viertel der Daten 1.Quartil 1. Viertel der Daten 1,5xIQR unterster Nichtausreißer untere Ausreißergrenze
35 Datenanalyse und Statistik p. 35/44 Kastendiagramme Boxplots der reellen Variablen des Iris Datensatzes Sepal.Length Petal.Length
36 Datenanalyse und Statistik p. 36/44 Interpretation Ausreißer Stichprobenlage / Median Stichprobenstreuung / IQR Symmetrie und Schiefe der Verteilung eventuell extreme Werthäufungen
37 Datenanalyse und Statistik p. 37/44 Exkurs: Ausreißer Definition: Ein Ausreißer ist ein Datenpunkt der einen ungewöhnlich extremen Wert hat. Mögliche Ursachen: Zufall (Es gibt halt extreme Werte) Schwere Verteilungsschwänze (Ausreißer hier typisch) Datenfehler oder Übermittlungsfehler Untypischer Spezialfall (der Millionär mit Zweitwohnsitz im armen Bergbauerndorf) Individum fehlerhafterweise in der Stichprobe (z.b. andere Art) Anthropogene Überprägung (das verlorene Geldstück mit hohem Kupfergehalt.)
38 Datenanalyse und Statistik p. 38/44 Q Q-Plots Sepal.Length Sepal.Width Sample Quantiles Sample Quantiles Theoretical Quantiles Theoretical Quantiles Petal.Length Petal.Width Sample Quantiles Sample Quantiles Theoretical Quantiles Theoretical Quantiles
39 Datenanalyse und Statistik p. 39/44 Interpretation Q Q-Plot Ungefähre Gerade Verteilungsmodell passend Treppenstufen Bindungen (gleiche Werte) Gegen S Ausreißer? schwere Verteilungsschwänze?
40 Datenanalyse und Statistik p. 40/44 Exkurs: Bindungen Definition: Von einer Bindung spricht man, wenn ein Datenwert in einer stetigen Variable zwei oder mehrfach auftritt. Mögliche Ursachen: Rundung Ungenau Datenerhebung Spezieller Wert hat positive Wahrscheinlichkeit Variable nicht wirklich stetig Manche statistische Verfahren verlieren an zunehmend an Genauigkeit je mehr Bindungen auftreten.
41 x x Datenanalyse und Statistik p. 41/44 Empirische Verteilungsfunktion ˆF(x) = Anteil des Datensatzes x Sepal.Length Sepal.Width Fn(x) Fn(x) x x Petal.Length Petal.Width Fn(x) Fn(x)
42 Datenanalyse und Statistik p. 42/44 Emprische Verteilungsfunktion Quantile können leicht abgelesen werden. Wahrscheinlichkeiten können leicht abgelesen werden. Bindungen erzeugen hohe Sprünge (fast unsichtbar). Sonst kann eigentlich nichts abgelesen werden.
43 Datenanalyse und Statistik p. 43/44 Zusammenfassung zu stetigen Daten Lage- und Streuparameter / quantitativ Punktdiagramm (stapeln, verzittern) / Daten Histogramm (Balken varieren) / Verteilungsform Kastendiagramm / Ausreißer, Streung, Lage, Symmetrie Q Q-Plot / Vergleich mit Verteilung Empirische Verteilungsfunktion / Quantile
44 Datenanalyse und Statistik p. 44/44
Stochastik und Statistik Vorlesung 2 (Graphik I)
Stochastik und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Stochastik und Statistik p.1/44 Daten Schätzung Test Mathe Die Datenminen Riesige Halde mit nichtrepräsentativen
Stochastik und Statistik
Stochastik und Statistik p. 1/44 Stochastik und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Stochastik und Statistik p. 2/44 Daten Schätzung Test Mathe Die Datenminen
Datenanalyse und Statistik
Datenanalyse und Statistik Vorlesung 3 (Graphik II) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p.1/48 Daten Schätzung Test Mathe Die Datenminen Riesige Halde mit nichtrepräsentativen
Überblick und Ausblick
Letzte Vorlesung Statistik Vorlesung Datenanalyse und Statistik Gliederung 1 Sortiert nach dem Inhalt der Vorlesung Sortiert nach Daten 2 Kovarianzmatrizen Klusteranalyse Hauptkomponentenanalyse Faktorenanalyse
2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen
4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form
Statistik I für Betriebswirte Vorlesung 2
Statistik I für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 16. April 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 2 1 ii) empirische
Melanie Kaspar, Prof. Dr. B. Grabowski 1
7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen
1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18
3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation
Evaluation der Normalverteilungsannahme
Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden
Statistik Vorlesung Statistik 1
Statistik Vorlesung Statistik 1 K.Gerald van den Boogaart http://www.stat.boogaart.de/ Statistik p. 1 Organisation Webseite http://stat.boogaart.de/ Bildungsserver https://bildungsportal.sachsen.de/opal
Statistische Thermodynamik I Lösungen zur Serie 1
Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen
Einfache statistische Auswertungen mit dem TI-Nspire
1. Neues Dokument und darin eine neue Seite anlegen Als Typ 6: Lists & Spreadsheet wählen. Darin die Messwerte in einer Spalte erfassen. Dies ergibt die Urliste. Wenn mehrere Messwerte vorliegen, die diejenigen,
90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft
Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte
Überblick über die Tests
Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt
Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8
. Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8
Willkommen zur Vorlesung Statistik
Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische
Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum
Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3
Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE
Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18
Statistik Vorlesung 6 (Tests II)
Statistik Vorlesung 6 (Tests II) K.Gerald van den Boogaart http://www.math-inf.uni-greifswald.de/statistik Statistik p.1/50 Daten Schätzung Test Mathe Die Datenminen Riesige Halde mit nichtrepräsentativen
Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik
Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche
Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge
2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten
Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten
DAS THEMA: TABELLEN UND ABBILDUNGEN Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen Standardisierung von Daten z-standardisierung Standardnormalverteilung 1 DIE Z-STANDARDISIERUNG
Deskriptive Statistik
Deskriptive Statistik Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst aufräumen 1 Modell vs. Daten Bis jetzt
- Beschreibung der Stichprobe(n-Häufigkeitsverteilung) <- Ermittlung deskriptiver Maßzahlen (Mittelungsmaße, Variationsmaße, Formparameter)
Einführung in die Statistik mit EXCEL und SPSS
Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen
1 Darstellen von Daten
1 Darstellen von Daten BesucherInnenzahlen der Bühnen Graz in der Spielzeit 2010/11 1 Opernhaus 156283 Hauptbühne 65055 Probebühne 7063 Ebene 3 2422 Next Liberty 26800 Säulen- bzw. Balkendiagramm erstellen
Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel
Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung
Einführung in statistische Analysen
Einführung in statistische Analysen Andreas Thams Econ Boot Camp 2008 Wozu braucht man Statistik? Statistik begegnet uns jeden Tag... Weihnachten macht Deutschen Einkaufslaune. Im Advent überkommt die
Stichprobenauslegung. für stetige und binäre Datentypen
Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung
4. Erstellen von Klassen
Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl
Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik
2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala
Modul 1 STATISTIK Eine erste Einführung
Kassel Modul 1 STATISTIK Eine erste Einführung 2009 Alphadi - www.alphadi.de Copyright Die Informa@onen in diesem Produkt werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht. Warennamen
Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien
Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische
Grundlagen der Inferenzstatistik
Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,
Risiko und Symmetrie. Prof. Dr. Andrea Wirth
Risiko und Symmetrie Prof. Dr. Andrea Wirth Gliederung 1. Einleitung Was ist eigentlich Risiko? 2. Risiko Mathematische Grundlagen 3. Anwendungsbeispiele Wo genau liegt der Schmerz des Risikos? 4. Sie
9. Schätzen und Testen bei unbekannter Varianz
9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,
Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau
1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank
Statistik II für Betriebswirte Vorlesung 2
PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander
Grundlagen der Datenanalyse am Beispiel von SPSS
Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein [email protected] Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe
Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung
Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik
Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test
1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test
Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.
Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit
Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller
Physica-Lehrbuch Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch von Christine Duller Neuausgabe Einführung in die Statistik mit EXCEL und SPSS Duller schnell
Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall
Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen
QM: Prüfen -1- KN16.08.2010
QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,
METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER
METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede
Quantilsschätzung als Werkzeug zur VaR-Berechnung
Quantilsschätzung als Werkzeug zur VaR-Berechnung Ralf Lister, Aktuar, [email protected] Zusammenfassung: Zwei Fälle werden betrachtet und die jeweiligen VaR-Werte errechnet. Im ersten Fall wird
Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1
LÖSUNG 3A Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit den Berechnungsfunktionen LG10(?) und SQRT(?) in "Transformieren", "Berechnen" können logarithmierte Werte sowie die Quadratwurzel
Eine computergestützte Einführung mit
Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik
Deskriptive Statistik. (basierend auf Slides von Lukas Meier)
Deskriptive Statistik (basierend auf Slides von Lukas Meier) Deskriptive Statistik: Ziele Daten zusammenfassen durch numerische Kennzahlen. Grafische Darstellung der Daten. Quelle: Ursus Wehrli, Kunst
Willkommen zur Vorlesung Statistik
Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang
Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist
Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei
Verfahren für metrische Variable
Verfahren für metrische Variable Grafische Methoden Histogramm Mittelwertsplot Boxplot Lagemaße Mittelwert, Median, Quantile Streuungsmaße Standardabweichung, Interquartilsabstand Lagemaße und Streumaße
STATISTIK. Erinnere dich
Thema Nr.20 STATISTIK Erinnere dich Die Stichprobe Drei Schüler haben folgende Noten geschrieben : Johann : 4 6 18 7 17 12 12 18 Barbara : 13 13 12 10 12 3 14 12 14 15 Julia : 15 9 14 13 10 12 12 11 10
Data Mining: Einige Grundlagen aus der Stochastik
Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener
Forschungsstatistik I
Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike [email protected] WS 008/009 Fachbereich
B. Heger / R. Prust: Quantitative Methoden der empirischen Sozialforschung (Master Modul 1.3) GET FILE ='Z:\ALLBUS_2007_neu.sav'.
B. Heger / R. Prust: Quantitative Methoden der empirischen Sozialforschung (Master Modul 1.3) Übung 1 (mit SPSS-Ausgabe) 1. Öffnen Sie den Datensatz ALLBUS_2007_neu! GET FILE ='Z:\ALLBUS_2007_neu.sav'.
Korrelation - Regression. Berghold, IMI
Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines
Einführung in die statistische Datenanalyse I
Einführung in die statistische Datenanalyse I Inhaltsverzeichnis 1. EINFÜHRUNG IN THEORIEGELEITETES WISSENSCHAFTLICHES ARBEITEN 2 2. KRITIERIEN ZUR AUSWAHL STATISTISCH METHODISCHER VERFAHREN 2 3. UNIVARIATE
Verteilungsmodelle. Verteilungsfunktion und Dichte von T
Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung
Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt
G-Protein gekoppelte Rezeptoren. Genomische Datenanalyse 3. Kapitel
G-Protein gekoppelte Rezeptoren Genomische Datenanalyse 3. Kapitel Proteinsequenzen: Eine andere Form genomischer Daten MEEPGAQCAPPPPAGSETWVPQANL SSAPSQNCSAKDYIYQDSISLPWKV LLVMLLALITLATTLSNAFVIATVY RTRKLHTPANYLIASLAVTDLLVSI
Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.
Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive
Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff
Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer
Auswertung und Darstellung wissenschaftlicher Daten (1)
Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea
Histogramm und Wahrscheinlichkeitsnetz 1/16
Histogramm und Wahrscheinlichkeitsnetz 1/16 Ziel: Ziel der Aufgabe Ziel ist es, die Grafiken Histogramm und Wahrscheinlichkeitsnetz und die Funktionalitäten (z.b. C-Wert-Funktion) von qs-stat ME kennen
Einführung in die Statistik mit EXCEL und SPSS
Christine Duller 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Einführung in die Statistik mit EXCEL und SPSS Ein
Uli Greßler. Qualitätsmanagement. Überwachung der Produkt- und Prozessqualität. Arbeitsheft. 2. Auflage. Bestellnummer 04796
Uli Greßler Qualitätsmanagement Überwachung der Produt- und Prozessqualität Arbeitsheft 2. Auflage Bestellnummer 04796 Haben Sie Anregungen oder Kritipunte zu diesem Produt? Dann senden Sie eine E-Mail
2. Eindimensionale (univariate) Datenanalyse
2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten
Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8
1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen
Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35
Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man
Business Value Launch 2006
Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de
B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!
Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden
Teil II: Einführung in die Statistik
Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu
1.3 Die Beurteilung von Testleistungen
1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen
Eine Einführung in R: Statistische Tests
Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/
Zusammenhänge zwischen metrischen Merkmalen
Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl
Beweisbar sichere Verschlüsselung
Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit [email protected] 6
Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über
Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)
