Datenanalyse und Statistik
|
|
|
- Stefanie Klein
- vor 7 Jahren
- Abrufe
Transkript
1 Datenanalyse und Statistik Vorlesung 3 (Graphik II) K.Gerald van den Boogaart Datenanalyse und Statistik p.1/48
2 Daten Schätzung Test Mathe Die Datenminen Riesige Halde mit nichtrepräsentativen Daten Die unwegsamen Ausreißerberge Bayes-Land Gletscherspalte der gleichen Messwerte Klippe der unüberprüfbaren Voraussetzungen Vorhersagebereich Rangviertel ML-City Schätzervorstadt Statistika Modell-Platz Aussichtsturm Grafingen Vertrauensbereich Normalviertel Klippe der unüberprüfbaren Voraussetzungen Sequenzielle Passage Momentenmethoden u. Lineare Modelle t-dorf Steppe der unwesentlich verletzten Voraussetzungen Todeswüste, der nicht erfüllten Voraussetzungen Posthoc robuster Weg Steig der Nichtparametrik Bonferroni Passage Sümpfe des multiplen Testens Benjamini Passage Nacht der angenommen Hypothesen Schlaraffia oder das Land des gelungen statistischen Nachweis Land des offenen Betrugs Datenanalyse und Statistik p.2/48
3 inteilung der Graphiken und Parameter Erste Variable diskret stetig keine X? zweite Variable diskret?? stetig? s.o. *stetige Daten diskrete Daten stetig stetig diskret diskret diskret stetig Datenanalyse und Statistik p.3/48
4 Diskrete Graphiken Kenngrössen Balkendiagramme Kuchendiagramme Tortendiagramm Datenanalyse und Statistik p.4/48
5 Datensatz > data(titanic) > ftable(titanic, col.vars = c("class", "Survived")) Class 1st 2nd 3rd Crew Survived No Yes No Yes No Yes No Yes Sex Age Male Child Adult Female Child Adult Datenanalyse und Statistik p.5/48
6 Kenngrössen Anteile: > margin(titanic, "Survived")/sum(Titanic) No Yes > margin(titanic, "Sex")/sum(Titanic) Male Female > margin(titanic, "Class")/sum(Titanic) 1st 2nd 3rd Crew Datenanalyse und Statistik p.6/48
7 Survived No Yes Balkendiagramm Geschlecht Klasse Male Female 1st 3rd Datenanalyse und Statistik p.7/48
8 Balkendiagramm Häufigkeiten werden als Flächen dargestellt. Häufigkeiten werden als Höhen dargestellt. Was sind die Unterschiede zum Histogramm? Was muß man bei ordinalen Daten beachten? Datenanalyse und Statistik p.8/48
9 Kuchendiagramme Survived Geschlecht No Male Yes Female Klasse 3rd 2nd 1st Crew Datenanalyse und Statistik p.9/48
10 Torte oder Diät Datenanalyse und Statistik p.10/48
11 Lesbare diskrete Graphiken Balkendiagramme Datenanalyse und Statistik p.11/48
12 Einteilung der Graphiken *stetige Daten *diskrete Daten stetig stetig diskret diskret diskret stetig Datenanalyse und Statistik p.12/48
13 Stetig Stetig Streudiagramm Kenngrößen für stetige Abhängigkeit QQ-plot Streudiagrammmatrix Datenanalyse und Statistik p.13/48
14 Streudiagramm Kelchblatt Sepal.Width Sepal.Length Datenanalyse und Statistik p.14/48
15 Streudiagramm Überlagerung bei Bindungen Verzerrung durch Ausreißer Probleme bei extremer Schiefe Nicht: Kenngrößen, nahe Ausreißer Datenanalyse und Statistik p.15/48
16 (Pearson) Korrelation cor(x Y ˆ ) = var(x) ˆ = var(y ˆ ) = cov(x Y ˆ ) = cov(x Y ˆ ) var(x) ˆ var(y ˆ ) 1 n 1 1 n 1 1 n 1 n (X i X) 2 i=1 n (Y i Ȳ )2 i=1 n (X i X)(Y i Ȳ ) i=1 Datenanalyse und Statistik p.16/48
17 Theoretischen Interpretation 1 cor(x Y ˆ ) 1 stochastisch unabhängig cov(x Y ) = 0 cor(x Y ) cor(x Y ˆ ) = 0 cor(x Y ) = 1 X Y cor(x Y ) = 1 X Y Datenanalyse und Statistik p.17/48
18 (Pearson) Korrelation cor(x,y)= 1 cor(x,y)= 0.75 cor(x,y)= 0.5 y y y X X X cor(x,y)= 0.25 cor(x,y)= 0 cor(x,y)= 0.25 y 2 1 y 2 1 y X X X cor(x,y)= 0.5 cor(x,y)= 0.75 cor(x,y)= 1 y 3 0 y 2 1 y X X X Datenanalyse und Statistik p.18/48
19 Motivation für Rangkorrelation y x Datenanalyse und Statistik p.19/48
20 Rangziffern r i = Rang der i-ten Beobachtung > x [1] > rank(x) [1] > y [1] [6] > rank(y) [1] Datenanalyse und Statistik p.20/48
21 Rangverfahren Idee: Ersetzte Daten durch ihren Rang Datenanalyse und Statistik p.21/48
22 Rangverfahren Idee: Ersetzte Daten durch ihren Rang Vorteil: Die Auswertbarkeit ist unabhängig von der Verteilung. Datenanalyse und Statistik p.21/48
23 Rangverfahren Idee: Ersetzte Daten durch ihren Rang Vorteil: Die Auswertbarkeit ist unabhängig von der Verteilung. Nachteil 1: Man verliert Information. Datenanalyse und Statistik p.21/48
24 Rangverfahren Idee: Ersetzte Daten durch ihren Rang Vorteil: Die Auswertbarkeit ist unabhängig von der Verteilung. Nachteil 1: Man verliert Information. Nachteil 2: Interpretation schwieriger. Datenanalyse und Statistik p.21/48
25 Rangverfahren Idee: Ersetzte Daten durch ihren Rang Vorteil: Die Auswertbarkeit ist unabhängig von der Verteilung. Nachteil 1: Man verliert Information. Nachteil 2: Interpretation schwieriger. Problem: Rangziffernbestimmung bei Bindungen problematisch Datenanalyse und Statistik p.21/48
26 Spearman Korrelation > plot(rank(x), rank(y)) rank(y) rank(x) Datenanalyse und Statistik p.22/48
27 Spearman Korrelation > cor(rank(x), rank(y)) [1] > cor(x, y, method = "spearman") [1] Datenanalyse und Statistik p.23/48
28 Vergleich Pearson Korrelation quantifiziert lineare Abhängigkeit Spearman Korrelation quantifiziert monotone Abhängigkeit Datenanalyse und Statistik p.24/48
29 Vergleich 100 Datensaetze a 100 Beobachtungen mit rho=0.70 Spearman Korrelation Pearson Korrelation Datenanalyse und Statistik p.25/48
30 Streudiagrammmatrix Sepal.Length Sepal.Width Petal.Length Petal.Width Species Datenanalyse und Statistik p.26/48
31 Einteilung der Graphiken *stetige Daten *diskrete Daten *stetig stetig diskret diskret diskret stetig Datenanalyse und Statistik p.27/48
32 diskret diskret gestapelte Balkendiagramme paralle Balkendiagramme Mosaikplots Datenanalyse und Statistik p.28/48
33 Passagiere der Titanic > data(titanic) > X <- apply(titanic, c(2, 3), sum) > X Age Sex Child Adult Male Female Datenanalyse und Statistik p.29/48
34 gestapelte Balkendiagramme Gestapeltes Balkendiagramm Child Adult Datenanalyse und Statistik p.30/48
35 parallele Balkendiagramme Paralleles Balkendiagramm Child Adult Datenanalyse und Statistik p.31/48
36 Vorbereitung auf Mosaikplot Mosaikplot Male Female Datenanalyse und Statistik p.32/48
37 Mosaikplot X Child Male Female Age Adult Sex Datenanalyse und Statistik p.33/48
38 Mosaikplot Titanic 1st 2nd 3rd Crew ChildAdult ChildAdult Child Adult Child Adult Female Yes No Sex Male Yes No Class Datenanalyse und Statistik p.34/48
39 Vergleich gestapelt parallel Mosaicplot Age Child Adult Male Female Child Adult Child Adult Sex gestapelt * parallel * Mosaicplot * Sex Male Female Child Adult Male Female Male Female Age Datenanalyse und Statistik p.35/48
40 Wer kann was? Überblick: stapeln Vergleich von Teilgruppen: parallel Bedingte Wahrscheinlichkeiten: Mosaik Datenanalyse und Statistik p.36/48
41 Einteilung der Graphiken *stetige Daten *diskrete Daten *stetig stetig *diskret diskret diskret stetig Datenanalyse und Statistik p.37/48
42 diskret stetig Farben und Symbole parallele Punktdiagramme parallele Boxplots gekerbte Boxplots Datenanalyse und Statistik p.38/48
43 Farben und Symbole Kelchblatt Sepal.Width Sepal.Length Datenanalyse und Statistik p.39/48
44 parallele Punktdiagramme Sepal.Length setosa versicolor virginica Datenanalyse und Statistik p.40/48
45 parallele Boxplot Petal.Width setosa versicolor virginica Datenanalyse und Statistik p.41/48
46 Boxplot (gekerbt) Sepal.Width setosa versicolor virginica Datenanalyse und Statistik p.42/48
47 Interpretation Sind die Mediane gleich so überlagern sich die Kerben mit einer Wahrscheinlichkeit von 95%. Überlagern sich die Kerben nicht, so ist das ein Hinweis auf verschiedene Mediane. Datenanalyse und Statistik p.43/48
48 Einteilung der Graphiken *stetige Daten *diskrete Daten *stetig stetig *diskret diskret diskret stetig Datenanalyse und Statistik p.44/48
49 Symbolik Kategorien Farben, Formen, Position Reelle Zahlen Position Positive Zahlen Position, Fläche, log Positionen Anzahlen, Wahrscheinlichkeiten Flächen, Höhen Dichten Höhe Datenanalyse und Statistik p.45/48
50 Zweck der Graphik Wie sind die Daten? Gibt es Ausreißer und Verteilungsbesonderheiten? Welche Zusammenhänge kann man erkennen/vermuten? Können wir unsere Vermutungen graphisch bestätigen? Wie geht es weiter? Datenanalyse und Statistik p.46/48
51 Fragen an die Graphiken Ist etwas ungewöhnlich? Warum? Wie sind die Daten verteilt? Gibt es Ausreißer oder Bindungen? Wird der optische Eindruck durch Besonderheiten verfälscht (z.b. Bindungen, zu kleine Balken, Überlagerung) Welche Abhängigkeiten sind erkennbar? Sind die Abhängigkeiten stark oder schwach, linear oder nichtlinear, zunehmen oder abnehmend? Entsprechend die Beobachtungen dem, was man inhaltlich erwarten würde? Was fällt sonst auf? Datenanalyse und Statistik p.47/48
52 Masszahlen Masszahlen werden verwendet um bestimmte Aspekte der Verteilung zusammenfassend darzustellen. Lage Streuung Form Zusammenhang Anteil fehlt noch: diskret-diskret, diskret-stetig (später R 2 ) Datenanalyse und Statistik p.48/48
Datenanalyse und Statistik
Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe
Stochastik und Statistik
Stochastik und Statistik p. 1/44 Stochastik und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Stochastik und Statistik p. 2/44 Daten Schätzung Test Mathe Die Datenminen
Überblick und Ausblick
Letzte Vorlesung Statistik Vorlesung Datenanalyse und Statistik Gliederung 1 Sortiert nach dem Inhalt der Vorlesung Sortiert nach Daten 2 Kovarianzmatrizen Klusteranalyse Hauptkomponentenanalyse Faktorenanalyse
2.Übung Stochastik und Statistik WS09/10 (Boogaart, Jansen)
2.Übung Stochastik und Statistik WS09/10 (Boogaart, Jansen) Aufgabe 1: Ein Versuch mit einem Schlafmittel In einem klinischen Versuch sollte die Wirksamkeit eines Schlafmittels getestet werden. Dazu wurden
If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra
If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If you torture your data long enough, they will tell you whatever you want to hear. James L. Mills Warum Biostatistik?
Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.
Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird
Statistik für Ingenieure Vorlesung 8
Statistik für Ingenieure Vorlesung 8 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 12. Dezember 2016 Bezeichnungen und Klassifikationen von Merkmalen Bezeichnungen: Grundgesamtheit:
Musterlösung zur Aufgabensammlung Statistik I Teil 3
Musterlösung zur Aufgabensammlung Statistik I Teil 3 2008, Malte Wissmann 1 Zusammenhang zwischen zwei Merkmalen Nominale, Ordinale Merkmale und Mischungen Aufgabe 12 a) x\ y 1.Klasse 2.Klasse 3.Klasse
Statistik Vorlesung 7 (Lineare Regression)
Statistik Vorlesung 7 (Lineare Regression) K.Gerald van den Boogaart http://www.stat.boogaart.de/ Statistik p.1/77 Gerade als Vereinfachung Wachstum bei Kindern height 76 78 80 82 18 20 22 24 26 28 age
Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011
Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen
Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden
Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse
Univariates Datenmaterial
Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =
Einführung 17. Teil I Kopfüber eintauchen in die Statistik 23. Kapitel 1 Kategoriale Daten zusammenfassen: Häufigkeiten und Prozente 25
Inhaltsverzeichnis Einführung 17 Über dieses Buch 17 Törichte Annahmen über den Leser 19 Wie dieses Buch aufgebaut ist 19 Teil I: Kopfüber eintauchen indie Statistik 19 Teil II: Von Wahrscheinlichkeiten,
Einführung in die Korrelationsrechnung
Einführung in die Korrelationsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg [email protected] Statistik 1 S. Garbade (SRH Heidelberg) Korrelationsrechnung
Einführung in die Maximum Likelihood Methodik
in die Maximum Likelihood Methodik Thushyanthan Baskaran [email protected] Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood
Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage
Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung
a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.
Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html
Skalenniveaus =,!=, >, <, +, -
ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,
Ein- und Zweistichprobentests
(c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen
Tabellarische und graphie Darstellung von univariaten Daten
Part I Wrums 1 Motivation und Einleitung Motivation Satz von Bayes Übersetzten mit Paralleltext Merkmale und Datentypen Skalentypen Norminal Ordinal Intervall Verältnis Merkmalstyp Diskret Stetig Tabellarische
Eine computergestützte Einführung mit
Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik
Charakterisierung der Daten: Sind es genug? Sind alle notwendig? Was ist naturgegeben, was von Menschen beeinflusst (beeinflussbar)?
3 Beschreibende Statistik 3.1. Daten, Datentypen, Skalen Daten Datum, Daten (data) das Gegebene Fragen über Daten Datenerhebung: Was wurde gemessen, erfragt? Warum? Wie wurden die Daten erhalten? Versuchsplanung:
Klausur Statistik I. Dr. Andreas Voß Wintersemester 2005/06
Klausur Statistik I Dr. Andreas Voß Wintersemester 2005/06 Hiermit versichere ich, dass ich an der Universität Freiburg mit dem Hauptfach Psychologie eingeschrieben bin. Name: Mat.Nr.: Unterschrift: Bearbeitungshinweise:
Einführung in die computergestützte Datenanalyse
Karlheinz Zwerenz Statistik Einführung in die computergestützte Datenanalyse 6., überarbeitete Auflage DE GRUYTER OLDENBOURG Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL
Teil: lineare Regression
Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge
Statistik. Datenanalyse mit EXCEL und SPSS. R.01denbourg Verlag München Wien. Von Prof. Dr. Karlheinz Zwerenz. 3., überarbeitete Auflage
Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz 3., überarbeitete Auflage R.01denbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt
Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von
Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN
Fachrechnen für Tierpfleger
Z.B.: Fachrechnen für Tierpfleger A10. Statistik 10.1 Allgemeines Was ist Statistik? 1. Daten sammeln: Durch Umfragen, Zählung, Messung,... 2. Daten präsentieren: Tabellen, Grafiken 3. Daten beschreiben/charakterisieren:
Deskriptive Statistik
Markus Wirtz, Christof Nachtigall Deskriptive Statistik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Statistische
Teil II: Einführung in die Statistik
Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu
1. Übungsblatt zu Wahrscheinlichkeitsrechnung und Statistik in den Ingenieurswissenschaften
1. Übungsblatt zu Aufgabe 1: In R können die Logarithmen zu verschiedenen Basen mit der Funktion log berechnet werden, wobei im Argument base die Basis festgelegt wird. Plotten Sie die Logarithmusfunktion
Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen
- nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige
1 Inhaltsverzeichnis. 1 Einführung...1
1 Inhaltsverzeichnis 1 Einführung...1 1.1 Arten der stochastischen Abhängigkeit...2 1.2 Wo kommen regressive Abhängigkeiten vor?...3 1.3 Hauptaufgaben von Regressionsmodellen...3 1.4 Wissenschaftstheoretische
P (X = 2) = 1/36, P (X = 3) = 2/36,...
2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel
Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate
Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für
Biostatistik Erne Einfuhrung fur Biowissenschaftler
Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher
Übung 1: Wiederholung Wahrscheinlichkeitstheorie
Übung 1: Wiederholung Wahrscheinlichkeitstheorie Ü1.1 Zufallsvariablen Eine Zufallsvariable ist eine Variable, deren numerischer Wert solange unbekannt ist, bis er beobachtet wird. Der Wert einer Zufallsvariable
2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen
4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Übungsbuch Statistik für Dummies
beborah Rumseif Übungsbuch Statistik für Dummies WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Über die Autorin 8 Über den Übersetzer 8 Einführung 15 Über dieses Buch 15 Törichte Annahmen
Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS Lösung Aufgabe 27. f X Y (a i b j ) = f i j = f ij f j
1 Deskriptive Statistik Lösungen zu Blatt 5 Christian Heumann, Susanne Konrath SS 2011 Lösung Aufgabe 27 (a) Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a 2 }, S Y {ja, nein} {b
Methodik für Linguisten
Claudia Methodik für Linguisten Eine Einführung in Statistik und Versuchsplanung narr VERLAG 1 Reisevorbereitungen und Wegweiser 2 Linguistik als empirische Wissenschaft 15 2.1 Karl Popper und der Falsifikationismus
Statistik, Geostatistik
Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.
- Beschreibung der Stichprobe(n-Häufigkeitsverteilung) <- Ermittlung deskriptiver Maßzahlen (Mittelungsmaße, Variationsmaße, Formparameter)
I. Deskriptive Statistik 1
I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................
4. Kumulierte Häufigkeiten und Quantile
4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:
Statistik und Wahrscheinlichkeitsrechnung
Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 26.02.2008 1 Warum Statistik und Wahrscheinlichkeits rechnung im Ingenieurwesen? Zusammenfassung der letzten Vorlesung Statistik und Wahrscheinlichkeitsrechnung
Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt
Statistik. Jan Müller
Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen
THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ
W THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ HERZLICH WILLKOMMEN BEI W Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Training Dr. Torsten Scholz
Modul G.1 WS 07/08: Statistik
Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen
Kategorielle Daten. Seminar für Statistik Markus Kalisch
Kategorielle Daten Markus Kalisch 1 Phase 3 Studie: Wirksamer als Placebo? Medikament Placebo Total Geheilt 15 9 24 Nicht geheilt 10 11 21 Total 25 20 45 Grundfrage: Sind Heilung und Medikamentengabe unabhängig?
Tutorial: Rangkorrelation
Tutorial: Rangkorrelation In vielen Sportarten gibt es mehr oder weniger ausgefeilte Methoden, nicht nur die momentanen Leistungen (der jetzige Wettkampf, das jetzige Rennen, das jetzige Spiel,..) der
Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06.
Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt Gerhard Tutz, Jan Ulbricht WS 05/0 Lösung Aufgabe 4 Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a },
Einführung in die Statistik mit EXCEL und SPSS
Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen
1.6 Der Vorzeichentest
.6 Der Vorzeichentest In diesem Kapitel soll der Vorzeichentest bzw. Zeichentest vorgestellt werden, mit dem man Hypothesen bezüglich des Medians der unabhängig und identisch stetig verteilten Zufallsvariablen
Verteilungsfunktion und dquantile
Statistik 1 für SoziologInnen Verteilungsfunktion und dquantile Univ.Prof. Dr. Marcus Hudec Kumulierte Häufigkeiten Hinweis: Damit die Kumulation inhaltlich sinnvoll ist, muss das Merkmal zumindest ordinal
Einführung in R. Kapitel 2 : Einfache Statistische Auswertungen
Einführung in R Kapitel 2 : Einfache Statistische Auswertungen Prof. Dr.B.Grabowski, HTW des Saarlandes, 12/2005 1 Inhaltsverzeichnis Einführung in R... 1 Kapitel 2 : Einfache Statistische Auswertungen...
Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14
Prof. Dr. Rainer Schwabe 08.07.2014 Otto-von-Guericke-Universität Magdeburg Institut für Mathematische Stochastik Nachhol-Klausur - Schätzen und Testen - Wintersemester 2013/14 Name:, Vorname: Matr.-Nr.
Statistik für Psychologen und Sozialwissenschaftler
Markus Bühner Matthias Ziegler Statistik für Psychologen und Sozialwissenschaftler Mit über 480 Abbildungen PEARSON Studium Ein Imprint von Pearson Education München Boston San Francisco Harlow, England
Korrelation Regression. Wenn Daten nicht ohne einander können Korrelation
DAS THEMA: KORRELATION UND REGRESSION Korrelation Regression Wenn Daten nicht ohne einander können Korrelation Korrelation Kovarianz Pearson-Korrelation Voraussetzungen für die Berechnung die Höhe der
ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE
ÜBUNGSAUFGABEN ZUR DESKRIPTIVEN UND EXPLORATIVEN DATENANALYSE 1.1 Füllen Sie bitte folgenden Lückentext aus. Daten, die in Untersuchungen erhoben werden, muss man grundsätzlich nach ihrem unterscheiden.
9. Kapitel: Grafische Darstellung quantitativer Informationen
9. Kapitel: Grafische Darstellung quantitativer Informationen 9.1: Fallstricke bei der Übersetzung von Zahlen in Bilder a) optische Täuschungen b) absichtliche Manipulationen 9.2: Typologie von Datengrafiken
Zusammenhänge zwischen metrischen Merkmalen
Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl
Statistik ohne Angst vor Formeln
Statistik ohne Angst vor Formeln Das Studienbuch für Wirtschaftsund Sozialwissenschaftler 4., aktualisierte Auflage Andreas Quatember Statistik ohne Angst vor Formeln - PDF Inhaltsverzeichnis Statistik
2 Beschreibende Statistik
Beschreibende Statistik Erfasse die Schwankungen, den Einfluß des Zufalls. Erster Schritt in diese Richtung: Beschreibende Statistik. Es geht darum, empirische Daten durch Tabellen und Graphiken darzustellen,
Korrelation - Regression. Berghold, IMI
Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation
1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18
3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen
Sozialwissenschaftliche Datenanalyse mit R
Katharina Manderscheid Sozialwissenschaftliche Datenanalyse mit R Eine Einführung F' 4-1 V : 'i rl ö LiSl VS VERLAG Inhaltsverzeichnis Vorwort 5 Danksagung 7 Inhaltsverzeichnis 9 R für sozialwissenschaftliche
Assoziation & Korrelation
Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den
Assoziation & Korrelation
Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den
Übungsblatt 9. f(x) = e x, für 0 x
Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable
Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)
Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) [email protected] Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein
TU Bergakademie Freiberg Datenanalyse/Statistik Wintersemester 2016/ Übungsblatt
Themen und Begriffe Skalenniveaus (Wiederholung) Repräsentativität (Wiederholung) statistische Grafiken Kastendiagramm bzw. Boxplot Punktdiagramm Balkendiagramm Mosaikplot Histogramm 2. Übungsblatt Einführung
Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure
Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure Von Prof. Hubert Weber Fachhochschule Regensburg 3., überarbeitete und erweiterte Auflage Mit zahlreichen Bildern, Tabellen sowie
Einfache Statistiken in Excel
Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum
Grundlagen der Statistik
Grundlagen der Statistik Übung 2 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe
Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum
Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3
5 Erwartungswerte, Varianzen und Kovarianzen
47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,
Inhaltsverzeichnis. Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite. 1.0 Erste Begriffsbildungen Merkmale und Skalen 5
Inhaltsverzeichnis Inhalt Teil I: Beschreibende (Deskriptive) Statistik Seite 1.0 Erste Begriffsbildungen 1 1.1 Merkmale und Skalen 5 1.2 Von der Urliste zu Häufigkeitsverteilungen 9 1.2.0 Erste Ordnung
Grundlagen der Probabilistik
Grundlagen der Probabilistik Gliederung Einleitung Theoretische Grundlagen der Stochastik Probabilistische Methoden Mögliche Ergebnisse von probabilistischen Untersuchungen Mögliche Fehlerquellen bei probabilistischen
Kapitel 1: Deskriptive Statistik
Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.
Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten
DAS THEMA: TABELLEN UND ABBILDUNGEN Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen Standardisierung von Daten z-standardisierung Standardnormalverteilung 1 DIE Z-STANDARDISIERUNG
1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:
Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60
Lineare Korrelation. Statistik für SozialwissenschaftlerInnen II p.143
Lineare Korrelation Statistik für SozialwissenschaftlerInnen II p.143 Produkt-Moment-Korrelation Der Produkt-Moment-Korrelationskoffizient r von Pearson ist ein Zusammenhangsmaß für metrische Variablen
Elisabeth Raab-Steiner/ Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS-Auswertung. 3., aktualisierte und überarbeitete Auflage
Elisabeth Raab-Steiner/ Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS-Auswertung 3., aktualisierte und überarbeitete Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 13
Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1
Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.
3. Deskriptive Statistik
3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht
Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche
Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael
