9. Elementare Wahrscheinlichkeitsrechnung
|
|
|
- Berthold Schuster
- vor 9 Jahren
- Abrufe
Transkript
1 9. Elementare Wahrscheinlichkeitsrechnung I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1, 2,, 6 des Experiments werden zur Ergebnismenge Ω ( Ergebnisraum ) zusammengefasst. Ω = { 1, 2, 3, 4, 5, 6 } Anzahl der Elemente von Ω: Ω = 6 Definition: Teilmengen von Ω heißen Ereignisse und werden mit A, B, C, abgekürzt. Einelementige Teilmengen heißen Elementarereignisse: ω 1, ω 2, ω 3, 9. Elementare Wahrscheinlichkeitsrechnung
2 Beispiel (Einmaliges Würfeln): verbal mengentheoretisch gerade Zahl A = { 2, 4, 6 } ungerade Zahl B = { 1, 3, 5 } Primzahl C = { 1, 2, 3, 5 } keine Primzahl D = { 4, 6 } Zahl 2 E = { 1, 2 } Zahl > 4 F = { 5, 6 } Definition: Schnittmenge ( A B) : Alle Elementarereignisse aus A und B Vereinigungsmenge ( A B) : Alle Elementarereignisse aus A oder B Beispiel (Einmaliges Würfeln): Ungerade Zahl oder Primzahl: B C = { 1, 2, 3, 5 } = C Zahl > 4 oder gerade Zahl: F A = { 2, 4, 5, 6 } Zahl > 4 und gerade Zahl: F A = { 6 } Gerade Zahl und ungerade Zahl: A B = Ø = { } 9. Elementare Wahrscheinlichkeitsrechnung
3 Beispiel (Einmaliges Würfeln): verbal mengentheoretisch gerade Zahl A = { 2, 4, 6 } ungerade Zahl B = { 1, 3, 5 } Primzahl C = { 1, 2, 3, 5 } keine Primzahl D = { 4, 6 } Zahl 2 E = { 1, 2 } Zahl > 4 F = { 5, 6 } Definition: Zwei Ereignisse A und B heißen disjunkt (unvereinbar), falls A B = Ø. Beispiel (Einmaliges Würfeln): C und D sind disjunkt. E und F sind disjunkt. 9. Elementare Wahrscheinlichkeitsrechnung
4 Beispiel (Einmaliges Würfeln): verbal mengentheoretisch gerade Zahl A = { 2, 4, 6 } ungerade Zahl B = { 1, 3, 5 } Primzahl C = { 1, 2, 3, 5 } keine Primzahl D = { 4, 6 } Zahl 2 E = { 1, 2 } Zahl > 4 F = { 5, 6 } Definition: Die Menge A aller Elemente in Ω, die nicht in A liegen, heißt Komplementärereignis zu A. Beispiel (Einmaliges Würfeln): B ist Komplementärereignis zu A. C ist Komplementärereignis zu D. E und F sind zwar disjunkt, aber keine Komplementärereignisse. 9. Elementare Wahrscheinlichkeitsrechnung
5 Beispiel (Zweimaliges Würfeln): Ω = { (1, 1), (1, 2), (1, 3),, (1, 6), (2, 1), (2, 2), M, (6, 6)} Ω = { 1, 2, 3, 4, 5, 6 } { 1, 2, 3, 4, 5, 6 } : Kartesisches Produkt (von Mengen) Ω = 6 6 = 36. Satz: Wird ein Zufallsexperiment mit k Elementarereignissen n-mal wiederholt, dann hat das zusammengesetzte Zufallsexperiment n k Elementarereignisse. Beispiel (Dreimaliges Würfeln): Ω = {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} Ω = 6 3 = Elementare Wahrscheinlichkeitsrechnung
6 II. Wahrscheinlichkeiten von Ereignissen Beispiel (Zweimaliges Würfeln): Ereignisse: A : Beide Zahlen sind gleich B : Keine Sechs C : Nur ungerade Zahlen D : Augensumme ist 7 E : Beide Zahlen 3 Gesucht: A), B), C), D), E) ( P für Probability = Wahrscheinlichkeit) Definition: Falls alle Elementarereignisse gleich wahrscheinlich sind, spricht man von einem Laplace-Experiment. Satz: Bei einem Laplace-Experiment gilt für die Wahrscheinlichkeit eines Ereignisses A P (A) = A. Ω 9. Elementare Wahrscheinlichkeitsrechnung
7 Beispiel (Zweimaliges Würfeln): Ereignisse: A : Beide Zahlen sind gleich B : Keine Sechs C : Nur ungerade Zahlen D : Augensumme ist 7 E : Beide Zahlen 3 Zweimaliges Würfeln Ω = 2 6 = 36 A = { (1,1), (2,2), (3,3), (4,4), (5,5), (6,6) } 6 1 A = 6 A) = = 36 6 B = {1, 2, 3, 4, 5} q {1, 2, 3, 4, 5} 25 B = 25 B) = 36 C = {1, 3, 5} q {1, 3, 5} 9 C = 9 C) = = 36 D = { (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) } 6 1 P ( D ) = = 36 6 E = {3, 4, 5, 6} q {3, 4, 5, 6} 16 4 P ( E ) = = Elementare Wahrscheinlichkeitsrechnung
8 Satz: Rechenregeln für Wahrscheinlichkeiten Ω) = 1 Ø) = 0 A) = 1 A) A B) = A) + B) A B) Sind A und B disjunkt ( A B = Ø ), dann gilt: A B) = A) + B) A B C) = A) + B) + C) A B) A C) B C) + A B C) A) = A B) + A B) Beispiel (Zweimaliges Würfeln): Es war: Gesucht: A : Beide Zahlen sind gleich C : Nur ungerade Zahlen (i) beide Zahlen verschieden) 1 5 P ( A ) = 1 A) = 1 = 6 6 (ii) beide Zahlen gleich oder nur ungerade Zahlen) A C) = A) + C) A C) = + = = Elementare Wahrscheinlichkeitsrechnung
9 Beispiel (Zweimaliges Würfeln): Es war: B : Keine Sechs D : Augensumme ist 7 E : Beide Zahlen 3 Gesucht: (iii) Keine Sechs oder Augensumme ist 7 oder beide Zahlen 3) B D = { (2,5), (5,2), (3,4), (4,3) } B E = { 3, 4, 5} {3, 4, 5} D E = { (3,4), (4,3) } B D E = { (3,4), (4,3) } B D E) = B) + D) + E) B D) B E) D E) + B D E) = = = Elementare Wahrscheinlichkeitsrechnung
10 Situation ( ): Ein Unternehmen hat 520 Beschäftigte, davon sind 208 weiblich. 286 der Beschäftigten fahren nicht mit dem Auto zur Arbeit, davon 156 weiblich. Sie gehen über den Flur des Firmengebäudes und hören hinter der nächsten Ecke Schritte. (Es ist Kernarbeitszeit, d.h. alle Beschäftigten sind anwesend, und die Wahrscheinlichkeit, um diese Ecke zu kommen, ist für jeden Beschäftigten gleich Laplace-Firma) Gesucht: Wahrscheinlichkeit, in der Firma einem männlichen PKW-Fahrer zu begegnen. Bezeichnung der Ereignisse: W : Weibliche Angestellte A : Autofahrer/-in 9. Elementare Wahrscheinlichkeitsrechnung
11 Lösung zur Situation ( ): Bezeichnung der Ereignisse: W : Weibliche Angestellte A : Autofahrer/-in Bekannt: P ( W) = = 0,4 P ( A) = = 0, P ( W A) = = 0,3 520 Gesucht: W A) W ) = 1 W) = 1 0,4 = 0,6 A) = W A) + W A) 0,55 = 0,3 + W A) P ( W A) = 0,25 W ) = W A) + W A) 0,6 = W A) + 0,25 P ( W A) = 0,35 9. Elementare Wahrscheinlichkeitsrechnung
12 Noch einfachere Lösung zur Situation ( ): W W A W A) W A) A ) A W A) W A) A ) W ) W ) 1 W W A 0,1 0,35 0,45 A 0,3 0,25 0,55 0,4 0, Elementare Wahrscheinlichkeitsrechnung
9. Elementare Wahrscheinlichkeitsrechnung
9. Elementare Wahrscheinlichkeitsrechnung Beispiel (Einmaliges Würfeln): verbal mengentheoretisch I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1,,, 6 des Experiments werden
Kapitel 2 Wahrscheinlichkeitsrechnung
Motivation bisher: Beschreibung von Datensätzen = beobachteten Merkmalsausprägungen Frage: Sind Schlußfolgerungen aus diesen Beobachtungen möglich? Antwort: Ja, aber diese gelten nur mit einer bestimmten
Kapitel 5 Stochastische Unabhängigkeit
Kapitel 5 Stochastische Unabhängigkeit Vorlesung Wahrscheinlichkeitsrechnung I vom SoSe 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 5.1 Das Konzept der stochastischen Unabhängigkeit. 1 Herleitung anhand
Zusammenfassung Stochastik
Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl
Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren
Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG - LÖSUNGEN. Zweimaliges Werfen eines Würfels mit Berücksichtigung der Reihenfolge a. Ergebnismenge (Ereignisraum)
15 Wahrscheinlichkeitsrechnung und Statistik
5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben
Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen
Rumpfskript Elementare Wahrscheinlichkeitsrechnung Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern
Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren
Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG. - LÖSUNGEN. Werfen eines idealen Würfels a. Sei A das Ereignis, eine zu würfeln A { } Das Ereignis, keine
Teil II. Wahrscheinlichkeitsrechnung
Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse
Teil II. Wahrscheinlichkeitsrechnung. Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2015) Folie 129
Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2015) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse
Teil II. Wahrscheinlichkeitsrechnung. Inhaltsverzeichnis (Ausschnitt) Zufallsexperimente (Zufallsvorgänge) Ergebnisse
5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) Teil II Wahrscheinlichkeitsrechnung 5 Zufallsexperimente Ergebnisse Ereignisse Wahrscheinlichkeiten Deskriptive Statistik und Wahrscheinlichkeitsrechnung
Stochastik 02 Wiederholung & Vierfeldertafel
23. August 2018 Grundlagen der Statistik (bis Klasse 10) Grundlagen der Stochastik (bis Klasse 10) Zufallsgrößen und Verteilungen Beurteilende Statistik (Testen von Hypothesen) Bernoulli-Experimente Ziele
Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen
Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/
htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017
htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT htw saar 2 Gliederung 25.01. Bedingte Wahrscheinlichkeit: Motivation und Definition Multiplikationssatz Stochastische Unabhängigkeit:
2.2 Ereignisse und deren Wahrscheinlichkeit
2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,
Einführung in die Wahrscheinlichkeitsrechnung
Einführung in die Wahrscheinlichkeitsrechnung. In einer Urne befinden sich 3 schwarze und weiße Kugel. Wir entnehmen der Urne eine Kugel, notieren die Farbe und legen die Kugel in die Urne zurück. Dieses
Stochastik Grundlagen
Grundlegende Begriffe: Zufallsexperiment: Ein Experiment, das beliebig oft wiederholt werden kann. Die möglichen Ergebnisse sind bekannt, nicht jedoch nicht, welches Ergebnis ein einzelnes Experiment hat.
Satz 16 (Multiplikationssatz)
Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.
Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt?
In diesem Kapitel werden wir den egriff Wahrscheinlichkeit und die Grundlagen der Wahrscheinlichkeitsrechnung kennenlernen, um z.. folgende Fragestellungen zu beantworten. Wie hoch ist das Risiko, dass
Dr. H. Grunert Einführung in die Wahrscheinlichkeitsrechnung Vorlesungscharts. Vorlesung 1. Grundbegriffe der Wahrscheinlichkeitsrechnung
Vorlesungscharts Vorlesung 1 Grundbegriffe der Wahrscheinlichkeitsrechnung Zufallsvorgänge und Zufallsereignisse Definitionen der Wahrscheinlichkeit Seite 1 von 11 Chart 1: Vorgänge deterministisch zufällig
Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen
Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,
Einführung in die Wahrscheinlichkeitsrechnung
Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze
Satz 18 (Satz von der totalen Wahrscheinlichkeit)
Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte
1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6
Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen
Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung
Interaktives Skriptum: Elementare Wahrscheinlichkeitsrechnung 1. Grundbegriffe Würfeln, Werfen einer Münze, Messen der Lebensdauer einer Glühbirne Ausfall/Ausgang: Würfeln: Augenzahlen 1, 2, 3, 4, 5, 6
Sachrechnen/Größen WS 14/15-
Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der
Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)
Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung
Vorkurs Mathematik. Christoph Hindermann. Wahrscheinlichkeitstheorie
Kapitel 4 Christoph Hindermann Vorkurs Mathematik 1 4.0 Motivation Wenn 100 Münzen geworfen werden, wie ist dann die Wahrscheinlichkeit, dass genau 50 davon Kopf zeigen? Angenommen, es befinden sich 300
Ereignis E: ist ein oder sind mehrere Ergebnisse zusammen genommen. Bsp. E = {2; 4; 6}
Laplace-Experimente Begriffsklärung am Beispiel eines Laplace-Würfel mit Augenzahlen (AZ) 1-6: Ergebnis: ist jeder Ausgang eines Zufallsexperimentes heißt ein Ergebnis ω dieses Zufallsexperimentes. Die
4. Die Laplacesche Gleichverteilung
Universität Basel Wirtschaftswissenschaftliches Zentrum Grundlagen der Stochastik Dr. Thomas Zehrt Inhalt: 1. Die Ereignismenge 2. Die Wahrscheinlichkeitsverteilung 3. Eigenschaften einer Wahrscheinlichkeitsverteilung
Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung
lausthal Begriffe Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany [email protected] Definition: Unter einem Zufallsexperiment versteht man einen,
Kapitel N. Wahrscheinlichkeitsrechnung
Kapitel N Wahrscheinlichkeitsrechnung Inhalt dieses Kapitels N000 1 Diskrete Wahrscheinlichkeitsräume 2 Bedingte Wahrscheinlichkeit und Unabhängigkeit 1 Produktexperimente 2 Kombinatorik und Urnenmodelle
Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente
Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Der Wahrscheinlichkeitsbegriff - fit für das Abitur
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Der Wahrscheinlichkeitsbegriff - fit für das Abitur Das komplette Material finden Sie hier: School-Scout.de Wiederholung: Zufallsexperiment,
Wahrscheinlichkeitsrechnung und Statistik
1. Vorlesung - 7.10.2016 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich werde mit Sicherheit gewinnen! Ist das wirklich unmöglich?
Informatik II Grundbegriffe der Wahrscheinlichkeitsrechnung
lausthal Informatik II rundbegriffe der Wahrscheinlichkeitsrechnung. Zachmann lausthal University, ermany [email protected] Begriffe Definition: Unter einem Zufallsexperiment versteht man einen,
3. Grundbegriffe der Wahrscheinlichkeitstheorie
03. JULI 2006: BLATT 17 3. Grundbegriffe der Wahrscheinlichkeitstheorie (v.a. nach Manning/Schütze: 40ff und Fahrmeir /Künstler/Pigeot/Tutz: 171ff) Übersicht Um entscheiden zu können, ob eine statistische
Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit
Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Dozentin: Wiebke Petersen 8. Foliensatz Wiebke Petersen math. Grundlagen 1 Motivation Bsp.: In vielen Bereichen der CL kommt Wahrscheinlichkeitstheorie
1 Elementare Wahrscheinlichkeitstheorie
1 Elementare Wahrscheinlichkeitstheorie 1.1 Zufallsexperiment Definition 1.1. Ein Zufallsexperiment ist ein Vorgang, der im Prinzip beliebig oft unter identischen Randbedingungen wiederholt werden kann.
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Einführung in die Stochastik. Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Einführung in die Stochastik Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Wiederholung Kapitel 1: Der
Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING)
Vorlesung 03.01.09 Stochastik Gründe für die Behandlung von stochastischen Problemen (nach KÜTTING) Der Mathematikunterricht der Schule hat die Aufgabe, eine Grundbildung zu vermitteln, die auf ein mathematisches
Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung Grundbegriffe: Experiment: ein Vorgang, den man unter gleichen Voraussatzungen beliebig oft wiederholen kann. Ergebnis ω : Ausgang eines Experiments Ergebnismenge Ω : Menge
Kapitel I Diskrete Wahrscheinlichkeitsräume
Kapitel I Diskrete Wahrscheinlichkeitsräume 1. Grundlagen Definition 1 1 Ein diskreter Wahrscheinlichkeitsraum ist durch eine Ergebnismenge Ω = {ω 1, ω 2,...} von Elementarereignissen gegeben. 2 Jedem
Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007
. Grundlagen der Wahrscheinlichkeitstheorie. Zufallsereignisse, Ereignisraum und Ereignismenge Zufallsexperiment: nach einer bestimmten Vorschrift ausgeführter, unter gleichen edingungen beliebig oft wiederholbarer
Wahrscheinlichkeitsrechnung [probability]
Wahrscheinlichkeitsrechnung [probability] Hinweis: Die Wahrscheinlichkeitsrechnung ist nicht Gegenstand dieser Vorlesung. Es werden lediglich einige Begriffsbildungen bereitgestellt und an Beispielen erläutert,
Wahrscheinlichkeitsrechnung und Statistik
1. und 2. Vorlesung - 2017 Im Alltag... Laut den meteorologischen Vorhersagen wird es morgen regnen. Ob ich riskiere und die Wette verlieren werde? Ich werde mit Sicherheit gewinnen! Ist das wirklich unmöglich?
1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments.
Übungsmaterial 1 1 Zufallsexperimente 1.1 Ergebnisräume einfacher Zufallsexperimente Damit ein Experiment ein Zufallsexperiment ist, müssen folgende Eigenschaften erfüllt sein: 1) Das Experiment lässt
Stochastik - Kapitel 2
" k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit
Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.
R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern
Kapitel 5. Kapitel 5 Wahrscheinlichkeit
Wahrscheinlichkeit Inhalt 5.1 5.1 Grundbegriffe Ω, Ω, X, X,...... 5.2 5.2 Wahrscheinlichkeitsräume (Ω, (Ω, P) P) 5.3 5.3 Das Das Laplace-Modell P(A) P(A) = A / Ω 5.4 5.4 Erwartungswert E(X) E(X) Literatur:
K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 7. Übung SS 16: Woche vom
Übungsaufgaben 7. Übung SS 16: Woche vom 23. 5. 27. 5.. 2016 Stochastik I: Klassische Wkt.-Berechnung Aufgaben: s. pdf auf der homepage von Dr. Vanselow http://www.math.tu-dresden.de/ vanselow/... (SS16).html
2. Zufallsvorgänge und Wahrscheinlichkeiten
2. Zufallsvorgänge und Wahrscheinlichkeiten Ziel des Kapitels: Einführung elementarer Begriffe der Wahrscheinlichkeitsrechnung (definitorisch) Ziel der Wahrscheinlichkeitsrechnung: Modellierung von zufälligen
1. Grundlagen. R. Albers, M. Yannik Skript zur Vorlesung Stochastik (Elementarmathematik)
1. Grundlagen 1.1 Zufallsexperimente, Ergebnisse Grundlage für alle Betrachtungen zur Wahrscheinlichkeitsrechnung sind Zufallsexperimente. Ein Zufallsexperiment ist ein Vorgang, der - mehrere mögliche
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.
Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment
Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)
Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge
Lösungsskizzen zur Präsenzübung 03
Lösungsskizzen zur Präsenzübung 03 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 2015/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 16. November 2015 von:
Unabhängigkeit KAPITEL 4
KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht
Wichtige Definitionen und Aussagen
Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge
Bei 10 dieser Würfe wurde gleichzeitig eine 1 gewürfelt. Bei 25 dieser Würfe wurde gleichzeitig eine Augenzahl größer als 2 gewürfelt.
3 Wahrscheinlichkeiten 1 Kapitel 3: Wahrscheinlichkeiten A: Beispiele Beispiel 1: Ein Experiment besteht aus dem gleichzeitigen Werfen einer Münze und eines Würfels. Nach 100 Wiederholungen dieses Experiments
Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression
Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen
Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management
Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA : Table of Contents 1 Statistik: Einführung 2 Deskriptive Statistik 3 Wahrscheinlichkeitstheorie
Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.
Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 21.02.2014 Holger Wuschke B.Sc. Glücksspiel auf der Buchmesse Leipzig, 2013 Organisatorisches 1. Begriffe in der Stochastik (1)
1 Grundbegriffe der Wahrscheinlichkeitsrechnung
4 1 Grundbegriffe der Wahrscheinlichkeitsrechnung 1.1 Grundlegende Begriffe Der Begriff wahrscheinlich wird im Alltag in verschiedenen Situationen verwendet, hat dabei auch unterschiedliche Bedeutung.
Population und Stichprobe: Wahrscheinlichkeitstheorie
Population und Stichprobe: Wahrscheinlichkeitstheorie SS 2001 4. Sitzung vom 15.05.2001 Wahrscheinlichkeitstheorie in den Sozialwissenschaften: Stichprobenziehung: Aussagen über Stichprobenzusammensetzung
2 Ereignisse. Für Ereignisse A und B kann durch Bildung des Durchschnitts (engl.: intersection) A B := {ω Ω : ω A oder ω B}
5 2 Ereignisse ei einem stochastischen Vorgang interessiert oft nur, ob dessen Ergebnis zu einer gewissen Menge von Ergebnissen gehört. So kommt es zu eginn des Spiels Mensch-ärgere- Dich-nicht! nicht
Zusammengesetzte Ereignisse
Zusammengesetzte Ereignisse Die Frage nach dem Ausgang eines Zufallsexperiments kann aus einzelnen Teilfragen zusammengesetzt sein, die mit und bzw. oder verknüpft sind. Natürlich kann man auch nach der
Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME
Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassung vom 12. Januar 2001 121 WAHRSCHEINLICHKEITS-RÄUME Stichproben-Raum. 9.1 9.1 Stichproben-Raum. Die bisher behandelten Beispiele von Naturvorgängen oder Experimenten
Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,
V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein
Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte
Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum
Elemente der Stochastik (SoSe 2016) 3. Übungsblatt
Dr. M. Weimar 18.04.016 Elemente der Stochastik (SoSe 016) 3. Übungsblatt Aufgabe 1 (1++=5 Punkte) Das nachfolgende Glücksrad wird einmal gedreht. Ferner bezeichne P eine Abbildung mit den Eigenschaften
Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis
Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal
Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik
Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten Zufallsvorgang: Geschehen
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Binomialverteilung und deren Anwendung
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die Binomialverteilung und deren Anwendung Das komplette Material finden Sie hier: School-Scout.de Wiederholung: Zufallsexperiment,
STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik. Mögliche Ergebnisse, auch Elementarereignisse bezeichnet
Kapitel 10 Zufall und Wahrscheinlichkeit 10.1. Grundbegriffe Wahrscheinlichkeitsrechnung Zufallsvorgang Klein-Omega ω Groß-Omega Ω Stellt Modelle bereit, die es erlauben zufallsabhängige Prozesse abzuschätzen
6: Diskrete Wahrscheinlichkeit
Stefan Lucks Diskrete Strukturen (WS 2009/10) 219 6: Diskrete Wahrscheinlichkeit 6: Diskrete Wahrscheinlichkeit Stefan Lucks Diskrete Strukturen (WS 2009/10) 220 Wahrscheinlichkeitsrechnung Eines der wichtigsten
Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:
Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln
1 Grundlagen Wahrscheinlichkeitsrechung
1 Grundlagen Wahrscheinlichkeitsrechung 1.1 Grundbegriffe Alle möglichen Ereignisse eines Zufallsexperiments fassen wir in einer Ereignismenge Ω zusammen. Ereignisse sind Teilmengen von Ω. Umfasst das
Definition: Ein endlicher Ergebnisraum ist eine nichtleere Menge, deren. wird als Ereignis, jede einelementige Teilmenge als Elementarereignis
Stochastische Prozesse: Grundlegende Begriffe bei zufälligen Prozessen In diesem Abschnitt beschäftigen wir uns mit den grundlegenden Begriffen und Definitionen von Zufallsexperimenten, also Prozessen,
Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)
Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management
Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten Zufallsvorgang: Geschehen mit ungewissem
Wahrscheinlichkeitsrechnung Einführung
Wahrscheinlichkeitsrechnung Einführung 1. In einer Urne befinden sich 3 schwarze und 1 weiße Kugel. Wir entnehmen der Urne eine Kugel, notieren die Farbe und legen die Kugel in die Urne zurück. Dieses
Teil 2: Wahrscheinlichkeitsrechnung - Theoretischer Kalkül
Teil 2: Wahrscheinlichkeitsrechnung - Theoretischer Kalkül 6 Einführung in die Wahrscheinlichkeitsrechnung 272 6 Einführung in die Wahrscheinlichkeitsrechnung 6.1 Wichtige Grundbegriffe und Regeln 6.1.1
Venndiagramm, Grundmenge und leere Menge
Venndiagramm, Grundmenge und leere Menge In späteren Kapitel wird manchmal auf die Mengenlehre Bezug genommen. Deshalb sollen hier die wichtigsten Grundlagen und Definitionen dieser Disziplin kurz zusammengefasst
Mathematische und statistische Methoden II
Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike
Stochastische Unabhängigkeit. 01. Dezember 2014
Stochastische Unabhängigkeit 0. Dezember 204 Der Begriff der Unabhängigkeit Großbritannien, im November 999. Die Anwältin Sally Clark wird wegen Mordes an ihren Kindern angeklagt. Clark geriet unter Verdacht
