6. Schätzung stationärer ARMA-Modelle

Größe: px
Ab Seite anzeigen:

Download "6. Schätzung stationärer ARMA-Modelle"

Transkript

1 6. Schätzung stationärer ARMA-Modelle Problemstellung: Statistische Anpassung eines stationären ARMA(p, q)-prozesses an eine Stichprobe von t = 1,..., T Prozessbeobachtungen Es bezeichne x 1,..., x T die realisierte Stichprobe (Trajektorie, Zeitreihe) der zufälligen Stichprobe X 1,..., X T (Prozessvariablen) (vgl. Kapitel 4) 181

2 6.1 Die Box-Jenkins Methodologie Vorwissen: Jeder datenerzeugende stationäre Prozess kann beliebig genau durch einen ARMA(p, q)-prozess approximiert werden (vgl. Kapitel 3, Folie 42) Zu klärende Aspekte: Wahl der Prozessordnungen p und q Schätzung aller Prozessparameter 182

3 Box-Jenkins Methodologie: (vgl. Box & Jenkins, 1976) 1. Modellidentifikation 2. Parameterschätzung 3. Modelldiagnose 4. Prognose 183

4 1. Modellidentifikation: (I) Überprüfung der Zeitreihe x 1,..., x T auf Stationarität Visuelle Inspektion der Daten Anwendung statistischer Stationaritätstests (vgl. Kapitel 7) Ggf. Datentransformation zur Erreichung der Stationarität 1. Differenzen: x t x t = (1 L)x t = x t x t 1 1. Differenzen der logarithmierten Daten: x t log(x t ) = log(x t ) log(x t 1 ) = log ( xt x t 1 ) 184

5 1. Modellidentifikation: (II) Bestimmung der Ordnungen p und q Berechnung der geschätzten ACF/PACF Visueller Vergleich der geschätzten ACF/PACF mit potenziellen theoretischen ACF/PACF (vgl. Tabelle auf Folie 175; Abb. auf Folien ) Statistische Selektionsverfahren für p und q (vgl. Abschnitt 6.3) 185

6 2. Parameterschätzung: KQ-Schätzung, Maximum-Likelihood Schätzung (vgl. Abschnitt 6.2) 3. Modelldiagnose: Überprüfung, ob Autokorrelation in den Residuen des geschätzten Modells vorliegt (Anwendung des Ljung-Box Tests, vgl. Folie ) Autokorrelationsfreie Residuen Gut spezifiziertes Modell (Analyse der Parametersignifikanzen) Autokorrelierte Residuen Respezifikation des Modells (iteratives Vorgehen) 186

7 4. Prognose: Benutzung der geschätzten Parameterwerte des gut spezifizierten Modells zur Prognose zukünftiger Prozesswerte (kein Gegenstand der VL) 187

8 6.2 Die Schätzung eines ARMA(p, q)-modells Jetzt: Schätzung der Parameter c, φ 1,..., φ p, θ 1,..., θ q und σ 2 eines stationären ARMA(p, q)-prozesses X t = c + φ 1 X t φ p X t p + ɛ t + θ 1 ɛ t θ q ɛ t q Bemerkungen: Es gibt verschiedene Schätztechniken (KQ-, ML-Schätzung; vgl. VL FS) Für einen AR(p)-Prozess gibt es den Yule-Walker-Schätzer (vgl. Neusser, 2006) 188

9 Zunächst: (I) Beispiel einer KQ-Schätzung des AR(p)-Modells X t = c + φ 1 X t φ p X t p + ɛ t Fasse dafür den Prozess als Regressionsmodell auf mit X t als abhängiger Variable X t 1,..., X t p als Regressoren ɛ t als Störterm 189

10 Zunächst: (II) Modell in Martixschreibweise: X p+1 X p+2. X T = 1 X p X p 1 X 1 1 X p+1 X p X X T 1 X T 2 X T p c φ 1 φ 2. φ p + ɛ p+1 ɛ p+2. ɛ T y = Xβ + u KQ-Schätzer β KQ für β = [ c φ 1 φ 2 φ p ] ist β KQ = (X X) 1 Xy 190

11 Zunächst: (III) σ 2 wird mittels der KQ-Residuen û = y X β KQ geschätzt durch (vgl. VL Ökonometrie I) ˆσ 2 = û û T p Probleme: (I) Die bekannten Optimalitätseigenschaften der KQ-Schätzung erfordern diverse Voraussetzungen an das lineare Regressionsmodell (vgl. Vorlesungen Ökonometrie I + II) 191

12 Probleme: (II) Einige dieser Voraussetzungen sind hier verletzt: Die Regressoren sind mit dem Störterm korreliert Abhängigkeit der KQ-Schätzung von den Startwerten X 1,..., X p Dennoch: In AR(p)-Modellen sind die KQ-Schätzer für die Modellparameter konsistent und asymptotisch effizient (vgl. Neusser, 2006, S ) 192

13 Jetzt: Schätzung eines allgemeinen ARMA(p, q)-modells X t = c + φ 1 X t φ p X t p + ɛ t + θ 1 ɛ t θ q ɛ t q Sammle alle Modellparameter im ([p + q + 2] 1) Vektor β = [ c φ 1 φ p θ 1 θ q σ 2 ] Problem: KQ-Methode nicht ohne weiteres anwendbar, da die Regressoren ɛ t, ɛ t 1,..., ɛ t q des MA(q)-Teils nicht direkt beobachtbar sind 193

14 Ausweg: Schätze die Modellparameter mit der (bedingten) Maximum- Likelihood-Methode (vgl. VL Fortgeschrittene Statistik) ML-Methode: (I) Benötigen Verteilungsannahme der Stichprobenvariablen X 1,..., X T Berechnung der gemeinsamen Dichtefunktion f X1,...,X T (x 1,..., x T ) 194

15 ML-Methode: (II) Betrachte die gemeinsame Dichtefunktion als eine Funktion im unbekannten Parametervektor β bzw. L(β) = f X1,...,X T (x 1,..., x T ) L (β) = log[f X1,...,X T (x 1,..., x T )] (Likelihood-Funktion bzw. Log-Likelihood-Funktion) Maximiere L (β) bzgl. β Maximum-Likelihood-Schätzer 195

16 ML-Methode: (III) ML-Schätzer haben günstige statistische Eigenschaften: Konsistenz Asymptotische Normalität Asymptotische Effizienz Robustheit gegenüber Abweichungen von der NV (Quasi-ML-Schätzungen) 196

17 Verteilungsannahme: Betrachte einen Gaußschen ARMA(p, q)-prozess X t = c + φ 1 X t φ p X t p + ɛ t + θ 1 ɛ t θ q ɛ t q mit ɛ t GWR(0, σ 2 ) Log-Likelihood-Funktion: (I) Berechnung der exakten Log-Likelihood-Fkt. unmöglich Stattdessen Berechnung der Log-Likelihood-Funktion unter Berücksichtigung gegebener Startwerte x 0 [ x 0 x 1 x p+1 ], ɛ 0 [ ɛ 0 ɛ 1 ɛ q+1 ] Bedingte Log-Likelihood-Funktion 197

18 Log-Likelihood-Funktion: (II) Die bedingte Log-Likelihood-Funktion ist gegeben durch L (β x 0, ɛ 0 ) = T 2 log(2π) T 2 log(σ2 ) T t=1 ɛ 2 t 2σ 2 Bemerkungen: (I) Die bedingte Log-Likelihood-Funktion L (β x 0, ɛ 0 ) ist eine komplizierte nichtlineare Funktion im Parametervektor β Es existieren keine analytisch geschlossenen Formeln für die bedingten ML-Schätzfunktionen Numerische Optimierung von L (β x 0, ɛ 0 ) 198

19 Bemerkungen: (II) Exakte und bedingte ML-Schätzer haben qualitativ ähnliche Eigenschaften EViews verfügt über derartige numerische Optimierungsverfahren 199

20 6.3 Die Schätzung der Ordnungen p und q Frage: Wie sollen die Ordnungen p und q des anzupassenden ARMA- Modells gewählt werden? 2 Fehlermöglichkeiten: p und q werden zu groß gewählt (Overfitting) p und/oder q werden zu klein gewählt (Underfitting) 200

21 Konsequenzen: Sowohl beim Overfitting als auch beim Underfitting ist der ML-Schätzer i.a. nicht mehr konsistent für die Modellparameter Korrekte Bestimmung der Ordnungen p und q ist zentral Bestimmungsmöglichkeiten: Visuelle Inspektion der empirischen ACF und PACF (Box-Jenkins-Ansatz, in praxi meist schwierig) Automatische Selektionsverfahren 201

22 Idee der Selektionsverfahren: (I) Minimierung eines Informationskriteriums Prinzipielle Konstruktion der Kriterien: Mit steigenden Ordnungen p und q nimmt die Anpassung des ARMA-Modells zu (bzw. nicht ab) Die Anpassung des Modells wird gemessen durch die geschätzte Varianz der Residuen ˆσ 2 p,q Um die Tendenz zum Overfitting zu korrigieren, wird das Anpassungsmaß ˆσ p,q 2 um einen Term ergänzt, der höhere Wahlen von p und q bestraft 202

23 Idee der Selektionsverfahren: (I) Die bekanntesten Informationskriterien lauten: AIC(p, q) = log (ˆσ p,q 2 ) + (p + q) 2 T (Akaike-Informationskriterium) SIC(p, q) = log (ˆσ p,q 2 ) log(t ) + (p + q) T (Schwarz-Informationskriterium) HQIC(p, q) = log (ˆσ p,q 2 ) 2 log[log(t )] + (p + q) T (Hannan-Quinn-Informationskriterium) In praxi werden die Ordnungen p und q so gewählt, dass sie eines der 3 Informationskriterien minimieren 203

24 Bemerkungen: In praxi wird meistens das AIC-Kriterium verwendet, obwohl es tendenziell zum Overfitting führt SIC und HQIC liefern konsistente Schätzungen der Ordnungen p und q 204

25 6.4 Modellierung eines stochastischen Prozesses Jetzt: Anpassung eines ARMA(p, q)-prozesses an eine erhobene Zeitreihe in 4 Schritten 1. Transformationen zur Erreichung der Stationarität: (I) Ökonomische Zeitreihen sind oft nicht stationär (vgl. Kapitel 7) Daten sind in stationäre Zeitreihen zu transformieren 205

26 1. Transformationen zur Erreichung der Stationarität: (II) Mögliche Datentransformation: Übergang zu Differenzen Y t = (1 L) d X t für d = 1, 2,... (Differenzenfilter der Ordnung d) Bereinigung von {X t } um einen deterministischen Trend (vgl. Kapitel 7) Übergang zu logarithmierten Werten bzw. zu Differenzen der logarithmierten Werte Y t = (1 L) log(x t ) = log(x t ) log(x t 1 ) (Wachstumsrate) 206

27 2. Wahl der Ordnungen p und q: Inspektion von ACF und PACF Anwendung von Selektionskriterien (vgl. Abschnitt 6.3) 3. Schätzung des Modells: ML-Schätzung des spezifizierten ARMA(p, q)-modells 207

28 4. Prüfung auf Plausibilität: Sind die Parameterschätungen plausibel? Folgen die Residuen einem Weißen Rauschen? Gibt es Strukturbrüche Ggf. Respezifikation des Modells und erneute Anpassung Beispiel: Deutsches BIP zwischen 1970:Q1 und 2007:Q4 208

29 120 BIP (preisbereinigt, Quartalsdaten) Zeit.08 BIP Wachstumsrate

30 Schritt 1: Daten weisen offensichtlich einen steigenden Trend auf ein Saisonmuster auf Übergang zu saisonalen Differenzen in Logarithmen X t = (1 L 4 ) log(bip t ) = log(bip t ) log(bip t 4 ) (Wachstumsrate gegenüber Vorjahresquartal) 210

31 Schritt 2: Visuelle Inspektion von ACF und PACF (vgl. Abbildung auf Folie 212) ACF langsam monoton abklingend AR-Modell PACF hat signifikante Werte bis h = 4 AR(4)-Modell 211

32 1.0 Geschätzte ACF h Geschätzte PACF h

33 Schritt 2 (Fortsetzung): Selektionskriterien: AIC-Werte für alternative ARMA(p, q)-modelle p / q q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 p = p = p = p = p = p = ARMA(4, 3)-Modell 213

34 SIC-Werte für alternative ARMA(p, q)-modelle p / q q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 p = p = p = p = p = p = ARMA(1, 3)-Modell 214

35 Schritt 3: (I) Schätzung des AR(4)-Modells Dependent Variable: BIP_WACHSTUM Method: Least Squares Date: 22/05/08 Time: 16:10 Sample (adjusted): 1972Q1 2007Q4 Included observations: 144 after adjustments Convergence achieved after 3 iterations Variable Coefficient Std. Error t-statistic Prob. C AR(1) AR(2) AR(3) AR(4) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Inverted AR Roots i i i i 215

36 Schritt 3: (II) Hauptergebnisse: Parameter φ 2 und φ 3 nicht signifikant Varianz der Residuen: ˆσ 2 = ( ) 2 =

37 Schritt 3: (III) Schätzung des ARMA(1, 3)-Modells Dependent Variable: BIP_WACHSTUM Method: Least Squares Date: 21/05/08 Time: 23:14 Sample (adjusted): 1971Q2 2007Q4 Included observations: 147 after adjustments Convergence achieved after 10 iterations Backcast: 1970Q3 1971Q1 Variable Coefficient Std. Error t-statistic Prob. C AR(1) MA(1) MA(2) MA(3) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Inverted AR Roots -.10 Inverted MA Roots i i

38 Schritt 3: (IV) Hauptergebnisse: Parameter φ 1 nicht signifikant Varianz der Residuen: ˆσ 2 = ( ) 2 = Bessere Anpassung als AR(4)-Modell 218

39 Schritt 4: (ARMA(1, 3)-Modell) (I) Parameterwerte plausibel Eigenschaften des geschätzten ARMA(1, 3)-Modells (I) (vgl. Abbildung 18, Folie 221) Kehrwert der Nullstelle des AR-Polynoms innerhalb des Einheitskreises AR-Nullstelle außerhalb des Einheitskreises Geschätztes ARMA(1, 3)-Modell ist stationär 219

40 Schritt 4: (II) Eigenschaften des geschätzten ARMA(1, 3)-Modells (II) (vgl. Abbildung 18, Folie 221) Kehrwert der Nullstellen des MA-Polynoms innerhalb des Einheitskreises MA-Nullstellen außerhalb des Einheitskreises Geschätztes ARMA(1, 3)-Modell ist invertierbar 220

41 Kehrwerte der Nullstellen der AR/MA Polynome AR-Nullstellen MA-Nullstellen Inverse Roots of AR/MA Polynomial(s) Specification: BIP_WACHSTUM C AR(1) MA(1) MA(2) MA(3) Date: 21/05/08 Time: 23:59 Sample: 1970Q1 2007Q4 Included observations: 147 AR Root(s) Modulus Cycle No root lies outside the unit circle. ARMA model is stationary. MA Root(s) Modulus Cycle ± i No root lies outside the unit circle. ARMA model is invertible.

42 Schritt 4: (II) Residualanalyse (I) 1.0 Geschätzte ACF der Residuen h 222

43 Schritt 4: (III) Residualanalyse (II) Keine signifikanten Autokorrelationen bis zum Lag h = 30 Ljung-Box-Test auf Autokorrelation in den Residuen: (vgl. Folien ) Lag Q-Statistik p-wert

44 Schritt 4: (IV) Schlussfolgerung: Residuen folgen annähernd einem Weißen Rauschen Korrelation in den Daten wird vom ARMA(1, 3)-Modell gut erfasst 224

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme)

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) 8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) Annahme B4: Die Störgrößen u i sind normalverteilt, d.h. u i N(0, σ 2 ) Beispiel: [I] Neoklassisches Solow-Wachstumsmodell Annahme einer

Mehr

6. Statistische Schätzung von ARIMA Modellen

6. Statistische Schätzung von ARIMA Modellen 6. Statistische Schätzung von ARIMA Modellen Vorschau: ARIMA Modelle Modellidentifikation verschiedene Schätzverfahren Modelldiagnostik Fallstudien Zeitreihenanalyse 1 6.1 ARIMA Modelle Bisher: ARMA(p,q)-Modelle:

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift

Mehr

3. Das einfache lineare Regressionsmodell

3. Das einfache lineare Regressionsmodell 3. Das einfache lineare Regressionsmodell Ökonometrie: (I) Anwendung statistischer Methoden in der empirischen Forschung in den Wirtschaftswissenschaften Konfrontation ökonomischer Theorien mit Fakten

Mehr

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC

Mehr

2 Anwendungen und Probleme

2 Anwendungen und Probleme Universität Ulm 89069 Ulm Germany Prof. Dr. Werner Smolny Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Institutsdirektor 2 Anwendungen

Mehr

III. Prognosen - Teil 1

III. Prognosen - Teil 1 Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Klaus Gründler Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester

Mehr

4. Das multiple lineare Regressionsmodell

4. Das multiple lineare Regressionsmodell 4. Das multiple lineare Regressionsmodell Bisher: 1 endogene Variable y wurde zurückgeführt auf 1 exogene Variable x (einfaches lineares Regressionsmodell) Jetzt: Endogenes y wird regressiert auf mehrere

Mehr

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser 1 / 28 Kointegration Kapitel 19 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 28 Inhalt I(d), Trends, Beispiele Spurious Regression Kointegration, common trends Fehlerkorrektur-Modell Test

Mehr

Prognosen. Prognosen sind schwierig, besonders wenn sie die Zukunft betreffen. Auch ein Weiser hat nicht immer recht Prognosefehler sind hoch

Prognosen. Prognosen sind schwierig, besonders wenn sie die Zukunft betreffen. Auch ein Weiser hat nicht immer recht Prognosefehler sind hoch Universität Ulm 8969 Ulm Germany Dipl.-WiWi Sabrina Böck Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Wintersemester 8/9 Prognosen

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Beispiel für Varianzanalyse in multipler Regression mit zwei erklärenden Variablen

Beispiel für Varianzanalyse in multipler Regression mit zwei erklärenden Variablen 4. Multiple Regression Ökonometrie I - Peter Stalder 1 Beispiel für Varianzanalyse in multipler Regression mit zwei erklärenden Variablen Hypothese: Die Inflation hängt positiv von der Inflation im Vorjahr

Mehr

IV. Prognosen - Teil 2

IV. Prognosen - Teil 2 Universität Ulm 89069 Ulm Germany B.Sc. Daniele Sabella Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2014 Übung

Mehr

Finanzmarkttheorie I. Performancemessung in EViews Übungsunterlage. Prof. Dr. Heinz Zimmermann WWZ Uni Basel Frühling 2015

Finanzmarkttheorie I. Performancemessung in EViews Übungsunterlage. Prof. Dr. Heinz Zimmermann WWZ Uni Basel Frühling 2015 Prof. Dr. Heinz Zimmermann WWZ Uni Basel Frühling 2015 Finanzmarkttheorie I Performancemessung in EViews Übungsunterlage Die vorliegende Unterlage liefert eine kurze Einführung in die Schätzung linearer

Mehr

Einführung zum Seminar Empirische Wirtschaftsforschung WS 2006/2007

Einführung zum Seminar Empirische Wirtschaftsforschung WS 2006/2007 UNIVERSITÄT DOCENDO CURANDO ULM SCIENDO Universität Ulm Abteilung Wirtschaftspolitik Ludwig-Erhard-Stiftungsprofessur Prof. Dr. Werner Smolny Dipl.-WiWi Kai Kohler Dipl.-WiWi Michael Alpert 1 Einleitung

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

Dynamische Modelle. 1 Ökonomische Relevanz. 2 Ökonometrische Modelle. a) Statisches Modell und Differenzenbildung

Dynamische Modelle. 1 Ökonomische Relevanz. 2 Ökonometrische Modelle. a) Statisches Modell und Differenzenbildung Universität Ulm 89069 Ulm Germany Prof. Dr. Werner Smolny Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Institutsdirektor Sommersemester

Mehr

Ergänzung der Aufgabe "Mindestlöhne" zu einer multiplen Regression

Ergänzung der Aufgabe Mindestlöhne zu einer multiplen Regression Prof. Dr. Peter von der Lippe ( Übungsblatt E) Ergänzung der Aufgabe "Mindestlöhne" zu einer multiplen Regression Das Beispiel "Mindestlöhne" zur einfachen multiplen Regression ergab die folgenden Parameter

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Angewandte Ökonometrie Übung. Endogenität, VAR, Stationarität und Fehlerkorrekturmodell

Angewandte Ökonometrie Übung. Endogenität, VAR, Stationarität und Fehlerkorrekturmodell Angewandte Ökonometrie Übung 3 Endogenität, VAR, Stationarität und Fehlerkorrekturmodell Zeitreihenmodelle Zeitreihenmodelle Endogenität Instrumentvariablenschätzung Schätzung eines VARs Tests auf Anzahl

Mehr

Übung 1 - Konjunkturprognosen

Übung 1 - Konjunkturprognosen Universität Ulm 89069 Ulm Germany Dipl.-Math. oec. Daniel Siepe Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Wintersemester 2010/2011

Mehr

Kapitel 3. Inferenz bei OLS-Schätzung I (small sample, unter GM1,..., GM6)

Kapitel 3. Inferenz bei OLS-Schätzung I (small sample, unter GM1,..., GM6) 8 SMALL SAMPLE INFERENZ DER OLS-SCHÄTZUNG Damit wir die Verteilung von t (und anderen Teststatistiken) exakt angeben können, benötigen wir Verteilungsannahmen über die Störterme; Kapitel 3 Inferenz bei

Mehr

acf(y) pacf(y) Series y Series y Index ACF Lag Partial ACF Lag

acf(y) pacf(y) Series y Series y Index ACF Lag Partial ACF Lag Aufgabe 47: Parameterschätzung und Modellwahl im ARMA-Modell (Software) Analysieren Sie die in der Datei aufgabe47.txt gegebene Zeitreihe (y t ), t = 1,..., 100. Nehmen Sie an, dass diese Realisation eines

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

Eine zeitreihenanalytische Untersuchung der Industrieproduktion in Deutschland

Eine zeitreihenanalytische Untersuchung der Industrieproduktion in Deutschland Eine zeitreihenanalytische Untersuchung der Industrieproduktion in Deutschland Klaus Neusser 2. Dezember 2010 Zusammenfassung Ziel dieses Beitrags ist es, den fortgeschrittenen Studierenden eine Einführung

Mehr

Zeitreihenanalyse mit EViews Klassische Zeitreihenanalyse. 4.1 Empirisches Autokorrelogramm. 4.2 Exponentielle Glättungsverfahren

Zeitreihenanalyse mit EViews Klassische Zeitreihenanalyse. 4.1 Empirisches Autokorrelogramm. 4.2 Exponentielle Glättungsverfahren Zeitreihenanalyse mit EViews 4.1 Unterlagen für LVen des Instituts für Angewandte Statistic (IFAS) Johannes Kepler Universität Linz Stand: 28. April 2005, Redaktion: Wagner 4 Klassische Zeitreihenanalyse

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Tests einzelner linearer Hypothesen I

Tests einzelner linearer Hypothesen I 4 Multiple lineare Regression Tests einzelner linearer Hypothesen 4.5 Tests einzelner linearer Hypothesen I Neben Tests für einzelne Regressionsparameter sind auch Tests (und Konfidenzintervalle) für Linearkombinationen

Mehr

Hauptseminar zum Thema:

Hauptseminar zum Thema: Fakultät Informatik Institut für angewandte Informatik Professur Technische Informationssysteme Hauptseminar zum Thema: Vergleich ARCH- und GARCH- Modelle bei der Analyse von Zeitreihen mit veränderlichen

Mehr

Analyse von Zeitreihen mit EViews

Analyse von Zeitreihen mit EViews Prof. Dr. Peter von der Lippe, Uni DUE Campus Duisburg Download G Analyse von Zeitreihen mit EViews Diese Übung zeigt anhand einer (nur einer!!) Zeitreihe, wie man wichtige Methoden der Zeitreihenanalyse

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg

Übungsklausur Lineare Modelle. Prof. Dr. H. Toutenburg Übungsklausur Lineare le Prof. Dr. H. Toutenburg Aufgabe Ein lineares Regressionsmodell mit der abhängigen Variablen Körpergröße und der unabhängigen Variablen Geschlecht wurde einmal mit der dummykodierten

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

4 Modellierung und Prognose mit ARMA, ARIMA und SA- RIMA Modellen

4 Modellierung und Prognose mit ARMA, ARIMA und SA- RIMA Modellen 4 Modellierung und Prognose mit ARMA, ARIMA und SA- RIMA Modellen Ein Problem von großer praktischer Bedeutung ist natürlich die Schätzung der unbekannten Parameter eines ARM A(p, q) Prozesses (mit Mittelwert

Mehr

Eine Einführung in R: Das Lineare Modell

Eine Einführung in R: Das Lineare Modell Eine Einführung in R: Das Lineare Modell Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig 6. Januar 2009 Bernd Klaus, Verena Zuber

Mehr

Übung zur Empirischen Wirtschaftsforschung. VI. Die Taylor Regel. 6.2 Die Taylor Regel. 6.3 Die Taylor Regel für die US-Geldpolitik

Übung zur Empirischen Wirtschaftsforschung. VI. Die Taylor Regel. 6.2 Die Taylor Regel. 6.3 Die Taylor Regel für die US-Geldpolitik Universität Ulm 89069 Ulm Germany Dipl.-Math. oec. Daniel Siepe Benedikt Blattner Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur

Mehr

Die Cobb-Douglas-Produktionsfunktion

Die Cobb-Douglas-Produktionsfunktion Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Wintersemester 2010/11

Mehr

Übungsblatt 7: Schätzung eines Mietspiegels

Übungsblatt 7: Schätzung eines Mietspiegels Prof. Bernd Fitzenberger, Ph.D. Ute Leuschner Stefanie Schäfer Übung zur Veranstaltung Empirische Wirtschaftsforschung Albert-Ludwigs-Universität Freiburg Wintersemester 2010/11 Übungsblatt 7: Schätzung

Mehr

Übung zur Empirischen Wirtschaftsforschung VIII. Einkommensfunktion

Übung zur Empirischen Wirtschaftsforschung VIII. Einkommensfunktion Universität Ulm 89069 Ulm Germany B.Sc. Daniele Sabella Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2014 Übung

Mehr

IV. Prognosen - Teil 2

IV. Prognosen - Teil 2 Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Klaus Gründler Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester

Mehr

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen

Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen 4 Multiple lineare Regression Tests auf Heteroskedastie 4.11 Breusch-Pagan-Test I auf Heteroskedastie in den Störgrößen Ein weiterer Test auf Heteroskedastie in den Störgrößen ist der Breusch-Pagan-Test.

Mehr

Mehr Ärzte = höhere Lebenserwartung?

Mehr Ärzte = höhere Lebenserwartung? Prof. Dr. Peter von der Lippe Dr. Katrin Nihalani Mehr Ärzte = höhere Lebenserwartung? Ein Beispiel für einfache Regression und Scheinkorrelation 1. Datensatz und einfache Regression Der hier vorgestellten

Mehr

Tutorium Wirtschaftsprognosen und Geldpolitik. Die Taylor Regel. 2 Die Taylor Regel. 3 Die Taylor Regel für die US-Geldpolitik. 4 Strukturbruchtest

Tutorium Wirtschaftsprognosen und Geldpolitik. Die Taylor Regel. 2 Die Taylor Regel. 3 Die Taylor Regel für die US-Geldpolitik. 4 Strukturbruchtest Universität Ulm 89069 Ulm Germany Michael Elbert Alexander Rieber Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Wintersemester 011/01

Mehr

Statistische Eigenschaften der OLS-Schätzer, Residuen,

Statistische Eigenschaften der OLS-Schätzer, Residuen, Statistische Eigenschaften der OLS-Schätzer, Residuen, Bestimmtheitsmaß Stichwörter: Interpretation des OLS-Schätzers Momente des OLS-Schätzers Gauss-Markov Theorem Residuen Schätzung von σ 2 Bestimmtheitsmaß

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

2.3 Nichtlineare Regressionsfunktion

2.3 Nichtlineare Regressionsfunktion Nichtlineare Regressionsfunktion Bisher: lineares Regressionsmodell o Steigung d. Regressionsgerade ist konstant o Effekt einer Änderung von X auf Y hängt nicht vom Niveau von X oder von anderen Regressoren

Mehr

5. Statistische Schätztheorie

5. Statistische Schätztheorie 5. Statistische Schätztheorie Problem: Sei X eine Zufallsvariable (oder X ein Zufallsvektor), die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X (oder

Mehr

Statistische Methoden in der Wirtschaftsund Sozialgeographie

Statistische Methoden in der Wirtschaftsund Sozialgeographie Statistische Methoden in der Wirtschaftsund Sozialgeographie Ort: Zeit: Multimediapool Rechenzentrum Mittwoch 10.15-11-45 Uhr Material: http://www.geomodellierung.de Thema: Beschreibung und Analyse Wirtschafts-

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Lineare Modelle in R: Klassische lineare Regression

Lineare Modelle in R: Klassische lineare Regression Lineare Modelle in R: Klassische lineare Regression Achim Zeileis 2009-02-20 1 Das Modell Das klassische lineare Regressionsmodell versucht den Zusammenhang zwischen einer abhängigen Variablen (oder Responsevariablen)

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 31. Mai 2011 4. Methode der kleinsten Quadrate Geschichte: Von Legendre, Gauß und Laplace zu Beginn des 19. Jahrhunderts eingeführt. Die Methode der

Mehr

Kapitel 10. Heteroskedastie (statische Form) 10.2 Tests auf Heteroskedastie Probleme der OLS-Schätzg. bei Heteroskedastie

Kapitel 10. Heteroskedastie (statische Form) 10.2 Tests auf Heteroskedastie Probleme der OLS-Schätzg. bei Heteroskedastie HETEROSKEDASTIE (STATISCHE FORM). Tests auf Heteroskedastie Kapitel Heteroskedastie (statische Form). Probleme der OLS-Schätzg. bei Heteroskedastie Heteroskedastie, also die Verletzung der GM-Annahme var(u

Mehr

5. Zeitreihenanalyse und Prognoseverfahren

5. Zeitreihenanalyse und Prognoseverfahren 5. Zeitreihenanalyse und Prognoseverfahren Stichwörter: Trend, Saisonalität, Noise, additives Modell, multiplikatives Modell, Trendfunktion, Autokorrelationsfunktion, Korrelogramm, Prognosehorizont, Prognoseintervall,

Mehr

3.3 Methoden zur Evaluierung von Schätzern

3.3 Methoden zur Evaluierung von Schätzern 3.3 Methoden zur Evaluierung von Schätzern Bis jetzt haben wir nur glaubwürdige Techniken zur Konstruktion von Punktschätzern besprochen. Falls unterschiedliche Schätzer für einen Parameter resultieren,

Mehr

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen

Analyse von Querschnittsdaten. Spezifikation der unabhängigen Variablen Analyse von Querschnittsdaten Spezifikation der unabhängigen Variablen Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Annahmen gegeben? kategoriale Variablen Datum 3.0.004 0.0.004

Mehr

Das klassische Regressionsmodell: Ein Beispiel

Das klassische Regressionsmodell: Ein Beispiel 1 / 43 Das klassische Regressionsmodell: Ein Beispiel Kapitel 2 Ökonometrie I Michael Hauser 2 / 43 Inhalt Ein Beispiel für das klassische, bivariate Regressionsmodell: Okun s Gesetz Das bivariate, lineare

Mehr

Lineare Regression II

Lineare Regression II Lineare Regression II Varianzanalyse als multiple Regession auf Designvariablen Das lineare Regressionsmodell setzt implizit voraus, dass nicht nur die abhängige, sondern auch die erklärenden Variablen

Mehr

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell:

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell: Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen LV-Leiterin: Univ.Prof.Dr. Sylvia Frühwirth-Schnatter 1 Wahr oder falsch? 1. Das folgende Modell ist ein GARCH(1,1)-Modell: Y

Mehr

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler

Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Von Professor Dr. Gert Heinrich 3., durchgesehene Auflage R.Oldenbourg Verlag München Wien T Inhaltsverzeichnis

Mehr

ein stationärer Prozeß (AR(0)). Etwas allgemeiner nimmt man an, daß die d-te Differenz ARMA(p, q) ist, also ist die Differenz

ein stationärer Prozeß (AR(0)). Etwas allgemeiner nimmt man an, daß die d-te Differenz ARMA(p, q) ist, also ist die Differenz Kapitel 4 Nichtstationäre Zeitreihen 4.1 ARIMA-Modelle Die bisher diskutierten ARMA-Modelle sind bei bei geeigneter Wahl der Parameter stationär, d.h. wenn alle Wurzeln der Gleichung φ(λ 1 )=0betragsmäßig

Mehr

Clusteranalyse: Gauß sche Mischmodelle

Clusteranalyse: Gauß sche Mischmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Kurzeinführung in EViews

Kurzeinführung in EViews Empirische Methoden (MA) SS 2011 Übungsblatt 1 Willi Mutschler willi.mutschler@uni-muenster.de Kurzeinführung in EViews 1. Starten Sie EViews und laden Sie das workfile Konsum.wf1 (workfiles sind das von

Mehr

VI. Die Taylor Regel

VI. Die Taylor Regel Universität Ulm 89069 Ulm Germany Filiz Bestepe, M.Sc. Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 016 Übung zur

Mehr

VI. Die Taylor Regel

VI. Die Taylor Regel Universität Ulm 89069 Ulm Germany Dipl.-Kfm. Philipp Buss B.A. Alexander Rieber Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Lineare Regression mit einem Regressor: Einführung

Lineare Regression mit einem Regressor: Einführung Lineare Regression mit einem Regressor: Einführung Quantifizierung des linearen Zusammenhangs von zwei Variablen Beispiel Zusammenhang Klassengröße und Testergebnis o Wie verändern sich Testergebnisse,

Mehr

Regressionsanalyse in R

Regressionsanalyse in R Regressionsanalyse in R Session 6 1 Einfache Regression Lineare Regression ist eines der nützlichsten Werkzeuge in der Statistik. Regressionsanalyse erlaubt es Zusammenhänge zwischen Parametern zu schätzen

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Kapitel 2. OLS-Schätzung. 2.1 Methode der kleinsten Quadrate 12 OLS METHODE DER KLEINSTEN QUADRATE (ALGEGRA)

Kapitel 2. OLS-Schätzung. 2.1 Methode der kleinsten Quadrate 12 OLS METHODE DER KLEINSTEN QUADRATE (ALGEGRA) 2 OLS METHODE DER KLEINSTEN QUADRATE (ALGEGRA) Kapitel 2 OLS-Schätzung 2. Methode der kleinsten Quadrate Einleitung OLS aus Sicht der linearen Algebra Die Methode der kleinsten Quadrate (OLS Ordinary least

Mehr

Ergänzungsmaterial zur Vorlesung. Statistik 2. Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen

Ergänzungsmaterial zur Vorlesung. Statistik 2. Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen Institut für Stochastik WS 2007/2008 Universität Karlsruhe JProf. Dr. H. Holzmann Dipl.-Math. oec. D. Engel Ergänzungsmaterial zur Vorlesung Statistik 2 Modelldiagnostik, Ausreißer, einflussreiche Beobachtungen

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Korrelation und Regression

Korrelation und Regression FB 1 W. Ludwig-Mayerhofer und 1 und FB 1 W. Ludwig-Mayerhofer und 2 Mit s- und sanalyse werden Zusammenhänge zwischen zwei metrischen Variablen analysiert. Wenn man nur einen Zusammenhang quantifizieren

Mehr

4 Binäre Regressionsmodelle, Folien 2

4 Binäre Regressionsmodelle, Folien 2 4 Binäre Regressionsmodelle, Folien 2 Ludwig Bothmann (basierend auf Unterlagen von Nora Fenske) Statistik III für Nebenfachstudierende WS 2014/2015 4.5 Hypothesentests Lineare Hypothesen Betrachtet werden

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Kap. 12: Regression mit Zeitreihendaten und Prognosemodelle

Kap. 12: Regression mit Zeitreihendaten und Prognosemodelle Kap. 12: Regression mit Zeitreihendaten und Prognosemodelle Motivation Grundbegriffe Autoregressionen (AR-Modelle) Dynamische Regressionsmodelle (ADL-Modelle) Nichstationarität Ausblick 12.1 Motivation

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

1 Einleitung. 1.1 Was ist Ökonometrie und warum sollte man etwas darüber lernen?

1 Einleitung. 1.1 Was ist Ökonometrie und warum sollte man etwas darüber lernen? 1 Einleitung 1.1 Was ist Ökonometrie und warum sollte man etwas darüber lernen? Idee der Ökonometrie: Mithilfe von Daten und statistischen Methoden Zusammenhänge zwischen verschiedenen Größen messen. Lehrstuhl

Mehr

Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle

Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle Gemischte Modelle zur Schätzung geoadditiver Regressionsmodelle Thomas Kneib & Ludwig Fahrmeir Institut für Statistik, Ludwig-Maximilians-Universität München 1. Regressionsmodelle für geoadditive Daten

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

SAS Forecast Server. Copyright 2005, SAS Institute Inc. All rights reserved.

SAS Forecast Server. Copyright 2005, SAS Institute Inc. All rights reserved. SAS Forecast Server Eine neue Lösung für automatisierte Prognosen bei großen Datenmengen Stefan Ahrens Competence Center Analytic Intelligence SAS Deutschland Copyright 2005, SAS Institute Inc. All rights

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage

Statistik. Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz. Der Weg zur Datenanalyse. Springer. Zweite, verbesserte Auflage Ludwig Fahrmeir Rita Künstler Iris Pigeot Gerhard Tutz Statistik Der Weg zur Datenanalyse Zweite, verbesserte Auflage Mit 165 Abbildungen und 34 Tabellen Springer Inhaltsverzeichnis Vorwort v 1 Einführung

Mehr

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2

SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 Inhalt SBWL Tourismusanalyse und Freizeitmarketing, Vertiefungskurs 2 1. Teil: Zerlegungsmodelle und naive Prognosemethoden für Zeitreihen Regina Tüchler Einleitung 1. Einführung in das Modellieren von

Mehr

Auswahl von Schätzfunktionen

Auswahl von Schätzfunktionen Auswahl von Schätzfunktionen Worum geht es in diesem Modul? Überblick zur Punktschätzung Vorüberlegung zur Effizienz Vergleich unserer Schätzer für My unter Normalverteilung Relative Effizienz Einführung

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Interne und externe Modellvalidität

Interne und externe Modellvalidität Interne und externe Modellvalidität Interne Modellvalidität ist gegeben, o wenn statistische Inferenz bzgl. der untersuchten Grundgesamtheit zulässig ist o KQ-Schätzer der Modellparameter u. Varianzschätzer

Mehr

3. Einführung in die Zeitreihenanalyse

3. Einführung in die Zeitreihenanalyse 3. Einführung in die Zeitreihenanalyse Dr. Johann Burgstaller Finance Department, JKU Linz (Dieser Foliensatz wurde zuletzt aktualisiert am 25. Dezember 2007.) Dr. Johann Burgstaller IK Empirische Kapitalmarktforschung

Mehr

4 Statistik der Extremwertverteilungen

4 Statistik der Extremwertverteilungen In diesem Kapitel beschäftigen wir uns mit statistischen Anwendungen der Extremwerttheorie. Wir werden zwei verschiedene Zugänge zur Modellierung von Extremwerten betrachten. Der erste Zugang basiert auf

Mehr

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1

Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Probeklausur Zeitreihenökonometrie (Sommersemester 2014) 1 Aufgabe 1: Betrachtet wird folgendes Modell zur Erklärung des Managergehalts salary durch den Umsatz sales, die Eigenkapitalrendite roe und die

Mehr

Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen

Vorbereitung auf 3. Übungsblatt (Präsenzübungen) - Lösungen Prof Dr Rainer Dahlhaus Statistik 1 Wintersemester 2016/2017 Vorbereitung auf Übungsblatt (Präsenzübungen) - Lösungen Aufgabe P9 (Prognosen und Konfidenzellipsoide in der linearen Regression) Wir rekapitulieren

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr