6. Statistische Schätzung von ARIMA Modellen

Größe: px
Ab Seite anzeigen:

Download "6. Statistische Schätzung von ARIMA Modellen"

Transkript

1 6. Statistische Schätzung von ARIMA Modellen Vorschau: ARIMA Modelle Modellidentifikation verschiedene Schätzverfahren Modelldiagnostik Fallstudien Zeitreihenanalyse 1

2 6.1 ARIMA Modelle Bisher: ARMA(p,q)-Modelle: φ(b)y t = θ(b)z t Jetzt: ARIMA(p, d, q)-modelle: Autoregressive Integrated Moving Average Prozess: φ(b)(1 B) d Y t = θ(b)z t wobei die charakteristischen Polynome φ(.) und θ(.) nur Lösungen ausserhalb des Einheitskreises besitzen. d-te Differenz ist stationärer ARMA(p,q)-Prozess. Zeitreihenanalyse 2

3 Beispiel: ARIMA(1,1,0) 5 Realisationen mit α = 0.7: x Zeitreihenanalyse 3

4 Anpassung von ARIMA-Modellen 1. Identifikation der Ordnung 2. Schätzung der Modellparameter 3. Diagnostische Checks des angepassten Modells Zeitreihenanalyse 4

5 6.2 Identifikation Visuelle Checks auf Stationarität Geht das Korrelogramm rasch gegen Null? evtl. Differenzenbildung Inspektion von Autokorrelations- und partieller Autokorrelationsfunktion Suche nach characteristischen cut-offs. Vergleich der AIC-Werte für realistische Modelle AIC = 2l(ˆθ ML ) + 2 Anzahl der Parameter z.b. Funktion ar() Zeitreihenanalyse 5

6 Das partielle Autokorrelogramm Schätze sequentiell AR(p)-Modelle, der letzte Koeffizient α p ist der p-te partielle Autokorrelationskoeffizient. Idee: AR(p)-Prozess hat characteristischen cut-off der partiellen Autokorrelationen Berechnung über empirische Yule-Walker-Gleichungen: p r k = ˆα l,p r k l : k = 1, 2,..., p l=1 wobei ˆα l,p die Schätzung des l-ten Koeffizienten α l unter Annahme eines AR(p)-Prozesses ist. Zeitreihenanalyse 6

7 Das partielle Autokorrelogramm II Die Yule-Walker-Gleichungen p r k = ˆα l,p r k l : k = 1, 2,..., p l=1 lassen sich in Matrixschreibweise kompakt darstellen: r = R ˆα wobei r = (r 1,..., r p ), R = (r i j ) (Dimension p p) und ˆα = ˆα 1,p,..., ˆα p,p. Es folgt: ˆα = R 1 r partieller Autokorrelationskoeffizient a p = ˆα p,p Zeitreihenanalyse 7

8 Das partielle Autokorrelogramm III Funktion pacf() Unter H 0 : AR(p)-Prozess sind die partiellen Autokorrelationen a k für k > p asymptotisch N(0, 1/n)-verteilt Konfidenzintervalle Suche nach characteristischen cut-off der partiellen Autokorrelationen nach lag p für AR(p)-Prozess Zeitreihenanalyse 8

9 6.3 Schätzung von ARIMA-Modellen Betrachte leicht verallgemeinertes Modell Y t µ = p α i (Y t i µ) + Z t + q β j Z t j i=1 j=1 mit p + q + 2 unbekannten Parametern µ = E(Y t ), σ 2 = V ar(z t ), α 1,..., α p und β 1,..., β q. naive Ansätze KQ-Methode ML-Methode unter Annahme von Normalverteilung Zeitreihenanalyse 9

10 Beispiel: AR(1)-Prozess; naiver Schätzansatz Y t µ = α(y t 1 µ) + Z t mit Z t N(0, σ 2 ) Schätzung der Parameter durch ˆµ = ȳ ˆα = r 1 ˆσ 2 = n ( ((y t ˆµ) ˆα(y t 1 ˆµ)) 2 )/(n 1) t=2 Zeitreihenanalyse 10

11 Beispiel: AR(1)-Prozess; KQ-Methode Schätze µ und α durch Minimierung der Summe der quadrierten Residuen n S(µ, α) = ((y t µ) α(y t 1 µ)) 2 Beachte: t=2 Summe beginnt mit t = 2, da für t = 1 die notwendige Information y 0 nicht vorliegt. Implizit wird das Residuum für t = 1 also gleich Null gesetzt bedingte KQ-Methode Zeitreihenanalyse 11

12 Beispiel: AR(1)-Prozess; KQ-Schätzer ˆµ = ˆα = ( n 1 t=2 ) y t ˆα (y n ˆαy 1 ) /(n 1) n (y t ˆµ)(y t 1 ˆµ)/ t=2 n (y t 1 ˆµ) 2 t=2 woraus sich in Analogie zum linearen Modell ein Schätzer für σ 2 konstruieren läßt: ˆσ 2 = ( n ((y t ˆµ) ˆα(y t 1 ˆµ)) 2 )/(n 3) t=2 Ähnlich wie die naiven Schätzer! Zeitreihenanalyse 12

13 Beispiel: AR(1)-Prozess; ML-Ansatz p(y 1,..., y n ) = p(y 1 ) n p(y t y t 1 ) t=2 }{{} bed. Likelihood L c Damit folgt unter Normalverteilungsannahme für die bedingte Log-Likelihood L c = n 1 2 log σ 2 1 2σ 2 n ((y t µ) α(y t 1 µ)) 2 } t=2 {{} S(µ,α) Man erhält also für ˆµ und ˆα die KQ-Schätzer! Zeitreihenanalyse 13

14 Beispiel: AR(1)-Prozess; ML-Schätzer II Für ˆσ 2 erhält man im bed. ML-Ansatz n ˆσ 2 = ( ((y t ˆµ) ˆα(y t 1 ˆµ)) 2 )/(n 1) t=2 Bei einem vollen ML-Ansatz muss auch noch der Beitrag von y 1 zur Likelihood berücksichtigt werden. Bei Annahme von Stationarität gilt: y 1 N(µ, σ 2 /(1 α 2 )), daher ist der Beitrag von y 1 zur Log-Likelihood gleich 1 2 log σ log(1 α2 ) (1 α 2 )(y 1 µ) 2 /(2σ 2 ) Zeitreihenanalyse 14

15 Beispiel: AR(1)-Prozess; ML-Schätzer III Die Gesamt-Likelihood ergibt sich also zu L c = n 2 log σ log(1 α2 ) ( 1 2σ 2 (1 α 2 )(y 1 µ) 2 + ) n ((y t µ) α(y t 1 µ)) 2 t=2 numerische Methoden zur Maximierung Zeitreihenanalyse 15

16 Beispiel: Hormon-Daten, Annahme eines AR(1)-Prozesses Methode ˆα ˆµ ˆσ 2 KQ (s.e.) (0.1186) (0.1567) ML (s.e.) (0.1161) (0.1466) Diese Schätzungen sind zu vergleichen mit den naiven Schätzern r 1 = , ȳ = 2.4 und ˆσ 2 = Zeitreihenanalyse 16

17 Die allgemeine Likelihood bei ARMA(p,q)-Prozessen basiert auf Log-likelihood der multivariaten Normalverteilung N(µ, Σ) mit µ = µ1 und Σ = σ 2 V (α, β) = σ 2 V : L = 1 2 log Σ 1 2 (y µ)t Σ 1 (y µ) = 1 2 {n log σ2 + log V + (y µ) T V 1 (y µ)/σ 2 } Die Form von V (α, β) ist durch die Wahl des ARMA-Modells bestimmt, z.b. beim AR(1): V = 1 1 α 2(α i j ) i,j Zeitreihenanalyse 17

18 Profile Likelihood Eine reduzierte Form der Likelihood ergibt sich durch profiling : Berechne für festes α and β ˆµ(α, β) = ( 1 T V 1 (α, β)y ) / ( 1 T V 1 (α, β)1 ) ˆσ 2 (α, β) = n 1 (y ˆµ(α, β)1) T V 1 (α, β) (y ˆµ(α, β)1) die ML-Schätzer bzgl. L und setze die Schätzer dann in obige Likelihood ein. Die sich ergebene Profile-Log-Likelihood ( reduced log likelihood ) hängt dann nur noch von α und β ab und hat die Form L 0 (α, β) = 1 2 ( n log σ 2 (α, β) + log V (α, β) ) Zeitreihenanalyse 18

19 Diagnostische Checks: Berechnung von Residuen Generelles Vorgehen: Die Residuen erhält man durch Auflösen der geschätzten Modellgleichung nach den Variablen Z 1,..., Z n. Am einfachsten bei AR(p)-Prozessen: p z t = (y t ˆµ) ˆα j (y t j ˆµ) j=1 t = p + 1,..., n mit Modifikationen für t = 1,..., p Zeitreihenanalyse 19

20 Rekursive Berechnung bei MA(q)-Prozessen z 1 = (y 1 ˆµ) z 2 = (y 2 ˆµ) + ˆβ 1 z 1. z t = q (y t ˆµ) + ˆβ j z t j j=1 t = q , n Zeitreihenanalyse 20

21 Residuen bei ARMA(p,q)-Prozessen z t = (y t ˆµ) p ˆα i (y t i ˆµ) q ˆβ j z t j, i=1 j=1 t = p , n mit Modifikationen für t <= p. Die Residuen sollten nun approximativ weisses Rauschen sein. Berechnung von Korrelogramm, kumulativem Periodogramm, und entsprechenden Tests Funktion tsdiag() Zeitreihenanalyse 21

22 Beispiel Hormon-Daten, AR(1)-Modell Standardized Residuals Time ACF of Residuals ACF Lag p values for Ljung Box statistic p value lag Zeitreihenanalyse 22

23 Weitere Residualchecks trial overfitting: Annahme ein ARMA(p, q)-modell ist korrekt identifiziert. Erhöhen der Ordnung des MA- bzw AR- Teils um jeweils eine Einheit ergibt eine Verbesserung der maximierten Log-Likelihood, die (mal dem Faktor 2) χ 2 1- verteilt sein sollte ( LQ-Test). spectral checking: Vergleich des theoretischen Spektrums des identifizierten ARMA(p, q)-modells mit dem empirisch geschätzten Spektrum. Zeitreihenanalyse 23

24 Fallstudien Hormon-Daten, dritte Zeitreihe Luchszeitreihe data(lynx) Zeitreihenanalyse 24

Stochastische Prozesse und Box-Jenkins Technik

Stochastische Prozesse und Box-Jenkins Technik Stochastische Prozesse und Box-Jenkins Technik Stichwörter: AR-, MA- und ARMA-Prozeß weißes Rauschen random walk Autokorrelations-Funktion Stationarität Invertierbarkeit Korrelogramm Box-Jenkins Technik

Mehr

FORMELSAMMLUNG. Analyse longitudinaler Daten und Zeitreihen WS 2003/04

FORMELSAMMLUNG. Analyse longitudinaler Daten und Zeitreihen WS 2003/04 FORMELSAMMLUNG Analyse longitudinaler Daten und Zeitreihen WS 2003/04 Inhaltsverzeichnis 1 Zeitreihenanalyse 3 1.1 Grundlagen................................ 3 1.1.1 Notation..............................

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift

Mehr

acf(y) pacf(y) Series y Series y Index ACF Lag Partial ACF Lag

acf(y) pacf(y) Series y Series y Index ACF Lag Partial ACF Lag Aufgabe 47: Parameterschätzung und Modellwahl im ARMA-Modell (Software) Analysieren Sie die in der Datei aufgabe47.txt gegebene Zeitreihe (y t ), t = 1,..., 100. Nehmen Sie an, dass diese Realisation eines

Mehr

7. Stochastische Prozesse und Zeitreihenmodelle

7. Stochastische Prozesse und Zeitreihenmodelle 7. Stochastische Prozesse und Zeitreihenmodelle Regelmäßigkeiten in der Entwicklung einer Zeitreihe, um auf zukünftige Entwicklung zu schließen Verwendung zu Prognosezwecken Univariate Zeitreihenanalyse

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

Varianzkomponentenschätzung

Varianzkomponentenschätzung Qualitas AG Varianzkomponentenschätzung Peter von Rohr Qualitas AG Peter von Rohr Folien ZL I+II LFW C11 October 29, 2015 2 / 23 Multiple Lineare Regression Annahmen Modell y = Xb + e Varianz der Fehler

Mehr

6. Schätzung stationärer ARMA-Modelle

6. Schätzung stationärer ARMA-Modelle 6. Schätzung stationärer ARMA-Modelle Problemstellung: Statistische Anpassung eines stationären ARMA(p, q)-prozesses an eine Stichprobe von t = 1,..., T Prozessbeobachtungen Es bezeichne x 1,..., x T die

Mehr

Kompaktskript zur Vorlesung Prognoseverfahren

Kompaktskript zur Vorlesung Prognoseverfahren Kompaktskript zur Vorlesung Prognoseverfahren Friedrich-Schiller-Universität Jena Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Wirtschafts- und Sozialstatistik Prof. Dr. P. Kischka Sommersemester

Mehr

1 Beispiel zur Methode der kleinsten Quadrate

1 Beispiel zur Methode der kleinsten Quadrate 1 Beispiel zur Methode der kleinsten Quadrate 1.1 Daten des Beispiels t x y x*y x 2 ŷ ˆɛ ˆɛ 2 1 1 3 3 1 2 1 1 2 2 3 6 4 3.5-0.5 0.25 3 3 4 12 9 5-1 1 4 4 6 24 16 6.5-0.5 0.25 5 5 9 45 25 8 1 1 Σ 15 25

Mehr

10 ARIMA-Modelle für nicht-stationäre Zeitreihen

10 ARIMA-Modelle für nicht-stationäre Zeitreihen 10 ARIMA-Modelle für nicht-stationäre Zeitreihen In diesem Abschnitt untersuchen wir einige praktische Aspekte bei der Wahl eines geeigneten Modells für eine beobachtete Zeitreihe X 1,...,X n. Falls die

Mehr

5 Allgemeine Verfahren zum Testen von Hypothesen

5 Allgemeine Verfahren zum Testen von Hypothesen 5 Allgemeine Verfahren zum Testen von Hypothesen 5.1 Likelihood Schätzung für multivariate Daten Statistisches Modell: Einfache Zufallsstichprobe X 1,..., X n (unabhängige Wiederholungen von X IR d ).

Mehr

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2.

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2. Seminar Finanzmathematik - Begrüßung - Motivation - Inhaltsangabe 3. Zusammen - fassung Zeitreihenanalyse Andreas Dienst SS 2006 Zeitreihen: Definition und Motivation - Begrüßung - Motivation - Inhaltsangabe

Mehr

Modul: Zeitreihenanalyse und Anwendungen in der empirischen Kapitalmarktforschung. Leseprobe

Modul: Zeitreihenanalyse und Anwendungen in der empirischen Kapitalmarktforschung. Leseprobe Prof. Dr. Hermann Singer Modul: 32681 Zeitreihenanalyse und Anwendungen in der empirischen Kapitalmarktforschung Kurs: 00889 Version vom 10/2004 Überarbeitet am 10/2015 Leseprobe Inhaltsverzeichnis 1 Überblick

Mehr

Modul Zeitreihenanalyse und Anwendungen in der empirischen Kapitalmarktforschung

Modul Zeitreihenanalyse und Anwendungen in der empirischen Kapitalmarktforschung Prof. Dr. Hermann Singer Modul 32681 Zeitreihenanalyse und Anwendungen in der empirischen Kapitalmarktforschung Kurs 00889 Version vom 10/2004 Überarbeitet am 10/2015 Leseprobe Fakultät für Wirtschaftswissenschaft

Mehr

Regressionsmodelle mit Anwendungen in der Versicherungs- und Finanzwirtschaft Probeklausur Wintersemester 2017/

Regressionsmodelle mit Anwendungen in der Versicherungs- und Finanzwirtschaft Probeklausur Wintersemester 2017/ Regressionsmodelle mit Anwendungen in der Versicherungs- und Finanzwirtschaft Probeklausur Wintersemester 2017/2018 06.12.2018 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:...................................................................

Mehr

x t2 y t = 160, y = 8, y y = 3400 t=1

x t2 y t = 160, y = 8, y y = 3400 t=1 Aufgabe 1 (25 Punkte) 1. Eine Online Druckerei möchte die Abhängigkeit des Absatzes gedruckter Fotos vom Preis untersuchen. Dazu verwendet die Firma das folgende lineare Regressionsmodell: wobei y t =

Mehr

Kapitel 9. ARMA Modelle. Stationäre und nicht-stationäre Prozesse: White noise und random walk. ARMA: Autoregressive moving average Modelle

Kapitel 9. ARMA Modelle. Stationäre und nicht-stationäre Prozesse: White noise und random walk. ARMA: Autoregressive moving average Modelle Kapitel 9 ARMA Modelle Josef Leydold c 2006 Mathematische Methoden IX ARMA Modelle 1 / 65 Lernziele Stationäre und nicht-stationäre Prozesse: White noise und random walk ARMA: Autoregressive moving average

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Teil XIII. Multiple lineare Regression. Woche 11: Multiple lineare Regression. Zusammenfassung Einfache lineare Regression.

Teil XIII. Multiple lineare Regression. Woche 11: Multiple lineare Regression. Zusammenfassung Einfache lineare Regression. Woche 11: Multiple lineare Regression Patric Müller Teil XIII Multiple lineare Regression ETHZ WBL 17/19, 10.07.017 Wahrscheinlichkeit und Statistik Patric Müller WBL

Mehr

ein stationärer Prozeß (AR(0)). Etwas allgemeiner nimmt man an, daß die d-te Differenz ARMA(p, q) ist, also ist die Differenz

ein stationärer Prozeß (AR(0)). Etwas allgemeiner nimmt man an, daß die d-te Differenz ARMA(p, q) ist, also ist die Differenz Kapitel 4 Nichtstationäre Zeitreihen 4.1 ARIMA-Modelle Die bisher diskutierten ARMA-Modelle sind bei bei geeigneter Wahl der Parameter stationär, d.h. wenn alle Wurzeln der Gleichung φ(λ 1 )=0betragsmäßig

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Teekonsum in den USA (in 1000 Tonnen), Nimmt den Wert 1 an für alle Perioden, Durchschnittlicher Preis des Tees in Periode t (in Tausend $/Tonne).

Teekonsum in den USA (in 1000 Tonnen), Nimmt den Wert 1 an für alle Perioden, Durchschnittlicher Preis des Tees in Periode t (in Tausend $/Tonne). Aufgabe 1 (5 Punkte) Gegeben sei ein lineares Regressionsmodell in der Form. Dabei ist y t = x t1 β 1 + x t β + e t, t = 1,..., 10 (1) y t : x t1 : x t : Teekonsum in den USA (in 1000 Tonnen), Nimmt den

Mehr

Strukturgleichungsmodellierung

Strukturgleichungsmodellierung Strukturgleichungsmodellierung FoV Methodenlehre FSU-Jena Dipl.-Psych. Norman Rose Parameterschätzung, Modelltest & Fit Indizes bei SEM Forschungsorientierte Vertiefung - Methodenlehre Dipl.-Psych. Norman

Mehr

1 Gemischte Lineare Modelle

1 Gemischte Lineare Modelle 1 Gemischte Lineare Modelle Wir betrachten zunächst einige allgemeine Aussagen für Gemischte Lineare Modelle, ohne zu tief in die mathematisch-statistische Theorie vorzustoßen. Danach betrachten wir zunächst

Mehr

Zeitreihenanalyse in den Wirtschafts Wissenschaften

Zeitreihenanalyse in den Wirtschafts Wissenschaften Klaus Neusser Zeitreihenanalyse in den Wirtschafts Wissenschaften 2., aktualisierte Auflage STUDIUM VIEWEG+ TEUBNER Abbildungsverzeichnis Tabellenverzeichnis Zeichenerklärung XI XIII XV I Univariate Zeitreihenanalyse

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

5. Zeitreihenanalyse und Prognoseverfahren

5. Zeitreihenanalyse und Prognoseverfahren 5. Zeitreihenanalyse und Prognoseverfahren Stichwörter: Trend, Saisonalität, Noise, additives Modell, multiplikatives Modell, Trendfunktion, Autokorrelationsfunktion, Korrelogramm, Prognosehorizont, Prognoseintervall,

Mehr

Vorlesung: Lineare Modelle

Vorlesung: Lineare Modelle Vorlesung: Lineare Modelle Prof Dr Helmut Küchenhoff Institut für Statistik, LMU München SoSe 2014 5 Metrische Einflußgrößen: Polynomiale Regression, Trigonometrische Polynome, Regressionssplines, Transformationen

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Zeitreihenanalyse Peter Frentrup Humboldt-Universität zu Berlin 19. Dezember 2017 (Humboldt-Universität zu Berlin) Zeitreihenanalyse 19. Dezember 2017 1 / 13 Übersicht 1 Zeitreihen

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3.

ML-Schätzung. Likelihood Quotienten-Test. Zusammenhang Reparametrisierung und Modell unter linearer Restriktion. Es gilt: β = Bγ + d (3. Reparametrisierung des Modells Gegeben sei das Modell (2.1) mit (2.5) unter der linearen Restriktion Aβ = c mit A R a p, rg(a) = a, c R a. Wir betrachten die lineare Restriktion als Gleichungssystem. Die

Mehr

Dynamische Systeme und Zeitreihenanalyse // Autoregressive moving average Modelle 12 p.2/??

Dynamische Systeme und Zeitreihenanalyse // Autoregressive moving average Modelle 12 p.2/?? Dynamische Systeme und Zeitreihenanalyse Autoregressive moving average Modelle Kapitel 12 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Autoregressive moving

Mehr

Übungsblatt 4. Autokovarianz, Autokorrelation Invertierbarkeit und Kausalität

Übungsblatt 4. Autokovarianz, Autokorrelation Invertierbarkeit und Kausalität Empirische Methoden (MA) SS 2011 Übungsblatt 4 Willi Mutschler willi.mutschler@uni-muenster.de Autokovarianz, Autokorrelation Invertierbarkeit und Kausalität 1. Sei Z t W N(0, σ 2 ). Bestimmen Sie den

Mehr

1.1 Notation. Der Index t indiziert dabei den Zeitpunkt, an dem die (metrische) Beobachtung y t gemacht wurde

1.1 Notation. Der Index t indiziert dabei den Zeitpunkt, an dem die (metrische) Beobachtung y t gemacht wurde 1.1 Notation Eine Zeitreihe bezeichnen wir durch {y t, t = 1,..., n} Der Index t indiziert dabei den Zeitpunkt, an dem die (metrische) Beobachtung y t gemacht wurde Die Beobachtungen sind unter Umständen

Mehr

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II. Prof. Dr.

Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen. Statistik II. Prof. Dr. Statistik II Fakultät Verkehrswissenschaften Friedrich List Professur für Ökonometrie und Statistik, insb. im Verkehrswesen Statistik II 2. Parameterschätzung: 2.1 Grundbegriffe; 2.2 Maximum-Likelihood-Methode;

Mehr

Ausgewählte Probleme der Ökonometrie

Ausgewählte Probleme der Ökonometrie Ausgewählte Probleme der Ökonometrie Bernd Süßmuth IEW Institute für Empirische Wirtschaftsforschung Universität Leipzig November 28, 2011 Bernd Süßmuth (Universität Leipzig) APÖ November 28, 2011 1 /

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

Statistik II. Version A. 1. Klausur Sommersemester 2011 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik II. Version A. 1. Klausur Sommersemester 2011 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik II Version A 1. Klausur Sommersemester 2011 Hamburg, 27.07.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................

Mehr

D-CHAB Frühlingssemester 2017 T =

D-CHAB Frühlingssemester 2017 T = D-CHAB Frühlingssemester 17 Grundlagen der Mathematik II Dr Marcel Dettling Lösung 13 1) Die relevanten Parameter sind n = 3, x = 1867, σ x = und µ = 18 (a) Die Teststatistik T = X µ Σ x / n ist nach Annahme

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

Stochastik Praktikum Parametrische Schätztheorie

Stochastik Praktikum Parametrische Schätztheorie Stochastik Praktikum Parametrische Schätztheorie Thorsten Dickhaus Humboldt-Universität zu Berlin 05.10.2010 Prolog Momentenmethode X : Ω 1 Ω Zufallsgröße, die Experiment beschreibt. Ein statistisches

Mehr

Einführung in die Induktive Statistik: Regressionsanalyse

Einführung in die Induktive Statistik: Regressionsanalyse Einführung in die Induktive Statistik: Regressionsanalyse Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Regressionsanalyse Ziel: Analyse

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Stochastik Praktikum Lineare Modelle

Stochastik Praktikum Lineare Modelle Stochastik Praktikum Lineare Modelle Thorsten Dickhaus Humboldt-Universität zu Berlin 06.10.2010 Übersicht 1 Einfache lineare Regression 2 Multiple lineare Regression 3 Varianzanalyse 4 Verallgemeinerte

Mehr

3. Das einfache lineare Regressionsmodell

3. Das einfache lineare Regressionsmodell 3. Das einfache lineare Regressionsmodell Ökonometrie: (I) Anwendung statistischer Methoden in der empirischen Forschung in den Wirtschaftswissenschaften Konfrontation ökonomischer Theorien mit Fakten

Mehr

5 Multivariate stationäre Modelle

5 Multivariate stationäre Modelle 5 Multivariate stationäre Modelle 5.1 Autoregressive distributed lag (ADL) 5.1.1 Das Modell und dessen Schätzung Im vorangehenden Kapitel führten wir mit der endogenen verzögerten Variablen, y t 1, als

Mehr

Stochastik Praktikum Zeitreihenanalyse

Stochastik Praktikum Zeitreihenanalyse Stochastik Praktikum analyse Humboldt-Universität zu Berlin 14.10.2010 Übersicht 1 in R 2 Trend und lineare Filter 3 Saisonale Analyse mit LOESS 4 Spektralanalyse 5 ARIMA Modelle Übersicht 1 in R 2 Trend

Mehr

Vorlesung 13a. Schätzen von Parametern. Teil 2

Vorlesung 13a. Schätzen von Parametern. Teil 2 Vorlesung 13a Schätzen von Parametern Teil 2 Unser Logo der ersten Stunde: X P ϑ (X da) = ρ ϑ (da), ϑ Θ S Ein Logo der Statistik: X Θ S P ϑ (X da) = ρ ϑ (da), ϑ Θ Ein Logo der Statistik: X Θ t S P ϑ (X

Mehr

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen.

y t = 30, 2. Benutzen Sie die Beobachtungen bis einschließlich 2002, um den Koeffizientenvektor β mit der KQ-Methode zu schätzen. Aufgabe 1 (25 Punkte Zur Schätzung des Werbe-Effekts in einem Getränke-Unternehmen wird das folgende lineare Modell aufgestellt: Dabei ist y t = β 1 + x t2 β 2 + e t. y t : x t2 : Umsatz aus Getränkeverkauf

Mehr

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer

John Komlos Bernd Süssmuth. Empirische Ökonomie. Eine Einführung in Methoden und Anwendungen. 4y Springer John Komlos Bernd Süssmuth Empirische Ökonomie Eine Einführung in Methoden und Anwendungen 4y Springer 1 Einführung 1 1.1 Ökonometrie 1 2 Vorüberlegungen und Grundbegriffe 7 2.1 Statistik als Grundlage

Mehr

LS-Schätzer. SSE(β) = (y µ) t (y µ) = y t y 2β t X t y + β t X t Xβ. Minimiere SSE(β) bzgl. β: Minimum definiert durch

LS-Schätzer. SSE(β) = (y µ) t (y µ) = y t y 2β t X t y + β t X t Xβ. Minimiere SSE(β) bzgl. β: Minimum definiert durch LS-Schätzer Sei µ = Xβ mit rg(x) = p und β = (β 1,..., β p ) t SSE(β) = (y µ) t (y µ) Minimiere SSE(β) bzgl. β: = y t y 2β t X t y + β t X t Xβ β SSE(β) = 2Xt y + 2X t Xβ. Minimum definiert durch X t X

Mehr

1 Einführung Ökonometrie... 1

1 Einführung Ökonometrie... 1 Inhalt 1 Einführung... 1 1.1 Ökonometrie... 1 2 Vorüberlegungen und Grundbegriffe... 7 2.1 Statistik als Grundlage der Empirischen Ökonomie... 7 2.2 Abgrenzung und Parallelen zu den Naturwissenschaften...

Mehr

Beispiel: Multiples Modell/Omitted Variable Bias I

Beispiel: Multiples Modell/Omitted Variable Bias I 4 Multiple lineare Regression Konfidenzintervalle und Tests 4.3 Beispiel: Multiples Modell/Omitted Variable Bias I Beispieldatensatz mit Daten zur Lohnhöhe (y i ), zu den Ausbildungsjahren über den Hauptschulabschluss

Mehr

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme)

8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) 8. Keine Normalverteilung der Störgrößen (Verletzung der B4-Annahme) Annahme B4: Die Störgrößen u i sind normalverteilt, d.h. u i N(0, σ 2 ) Beispiel: [I] Neoklassisches Solow-Wachstumsmodell Annahme einer

Mehr

Hauptseminar Technische Informationssysteme

Hauptseminar Technische Informationssysteme Hauptseminar Technische Informationssysteme Thema: Vergleich verschiedener Prognosestrategien von Tobias Fochtmann Betreuer: Dr. Ribbecke 24.01.2008 Gliederung I. Einleitung II. Prognose allgemein und

Mehr

Dynamische Systeme und Zeitreihenanalyse // Zustandsraummodelle und Kalman Filter 15 p.2/??

Dynamische Systeme und Zeitreihenanalyse // Zustandsraummodelle und Kalman Filter 15 p.2/?? Dynamische Systeme und Zeitreihenanalyse Zustandsraummodelle und Kalman Filter Kapitel 15 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Zustandsraummodelle

Mehr

6.2 Lineare Regression

6.2 Lineare Regression 6.2 Lineare Regression Einfache lineare Regression (vgl. Kap. 4.7) Y i = θ 0 + θ 1 X i + ǫ i ǫ i (0, σ 2 ) ˆθ 1 ˆθ 0 = S XY S 2 X = 1 ( Yi n ˆθ ) 1 Xi als Lösung der Minimumaufgabe n (Y i θ 1 X 1 θ 0 )

Mehr

Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik

Demokurs. Modul Vertiefung der Wirtschaftsmathematik Vertiefung der Statistik Demokurs Modul 3741 Vertiefung der Wirtschaftsmathematik und Statistik Kurs 41 Vertiefung der Statistik 15. Juli 010 Seite: 14 KAPITEL 4. ZUSAMMENHANGSANALYSE gegeben, wobei die Stichproben(ko)varianzen

Mehr

Vorlesung 12a. Schätzen von Parametern. Teil 2

Vorlesung 12a. Schätzen von Parametern. Teil 2 Vorlesung 12a Schätzen von Parametern Teil 2 1 Unser Logo der ersten Stunde: X P ϑ (X da) = ρ ϑ (da), ϑ Θ S 2 Ein Logo der Statistik: Θ ˆϑ t X S P ϑ (X da) = ρ ϑ (da), ϑ Θ Θ... Parameterraum S... Beobachtungsraum

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 36 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula =

Mehr

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen)

Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) 3 Einfache lineare Regression Einfache lineare Modelle mit R 3.6 Einfache lineare Modelle mit Statistik-Software R Beispiel (Ausgaben in Abhängigkeit vom Einkommen) > summary(lm(y~x)) Call: lm(formula

Mehr

2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme)

2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme) 2. Fehlerhafte Auswahl der exogenen Variablen (Verletzung der A1-Annahme) Annahme A1: Im multiplen Regressionsmodell fehlen keine relevanten exogenen Variablen und die benutzten exogenen Variablen x 1,

Mehr

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk

Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC. Referenten: Linda Gräfe & Konstantin Falk Schätzverfahren ML vs. REML & Modellbeurteilung mittels Devianz, AIC und BIC Referenten: Linda Gräfe & Konstantin Falk 1 Agenda Schätzverfahren ML REML Beispiel in SPSS Modellbeurteilung Devianz AIC BIC

Mehr

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller

Teil XII. Einfache Lineare Regression. Woche 10: Lineare Regression. Lernziele. Zusammenfassung. Patric Müller Woche 10: Lineare Regression Patric Müller Teil XII Einfache Lineare Regression ETHZ WBL 17/19, 03.07.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Wahrscheinlichkeit

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung. 5 Hypothesentests.

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung. 5 Hypothesentests. 0 Einführung 1 Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung 5 Hypothesentests 6 Regression Lineare Regressionsmodelle Deskriptive Statistik:

Mehr

Universität Freiburg Schweiz Université de Fribourg Suisse Seminar für Statistik Séminaire de Statistique. Prof. Dr. Klaus Neusser

Universität Freiburg Schweiz Université de Fribourg Suisse Seminar für Statistik Séminaire de Statistique. Prof. Dr. Klaus Neusser Universität Freiburg Schweiz Université de Fribourg Suisse Seminar für Statistik Séminaire de Statistique Prof. Dr. Klaus Neusser Wirtschafts- und Sozialwissenschaftliche Fakultät Schriftliches Examen

Mehr

7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien

7.1 Korrelationsanalyse. Statistik. Kovarianz. Pearson-Korrelation. Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Statistik 7.1 Korrelationsanalyse Institut für angewandte Statistik & EDV Universität für Bodenkultur Wien Sommersemester 2012 7 Regressions- und Korrelationsanalyse Kovarianz Pearson-Korrelation Der (lineare)

Mehr

Poisson Regression & Verallgemeinerte lineare Modelle

Poisson Regression & Verallgemeinerte lineare Modelle Poisson Regression & Verallgemeinerte lineare Modelle 20.11.2017 Motivation Ausgangslage Wir haben Anzahldaten (count data) Y i, cf. Vorlesung zu kategoriellen Variablen. Zu jeder Beobachtung Y i haben

Mehr

Zusammenfassung 11. Sara dos Reis.

Zusammenfassung 11. Sara dos Reis. Zusammenfassung 11 Sara dos Reis sdosreis@student.ethz.ch Diese Zusammenfassungen wollen nicht ein Ersatz des Skriptes oder der Slides sein, sie sind nur eine Sammlung von Hinweise zur Theorie, die benötigt

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte

Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte Hochschule RheinMain WS 2018/19 Prof. Dr. D. Lehmann Probe-Klausur zur Vorlesung Ökonometrie Theorie-Teil: Aufgaben 1-3: 30 Punkte Programmier-Teil: Aufgaben 4-9: 60 Punkte (die eigentliche Klausur wird

Mehr

Lineare Regression. Kapitel Regressionsgerade

Lineare Regression. Kapitel Regressionsgerade Kapitel 5 Lineare Regression 5 Regressionsgerade Eine reelle Zielgröße y hänge von einer reellen Einflussgröße x ab: y = yx) ; zb: Verkauf y eines Produkts in Stückzahl] hängt vom Preis in e] ab Das Modell

Mehr

Übung 1: Mathematische und statistische Grundlagen

Übung 1: Mathematische und statistische Grundlagen Lehrstuhl für BWL, insb. Mathematik und Statistik Übung 1: Mathematische und statistische Grundlagen Berechnen Sie die Schiefe und Kurtosis folgender Zufallsvariablen: a) X besitzt die Dichte { 2x für

Mehr

Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!

Statistik Klausur Sommersemester 2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Statistik 2 1. Klausur Sommersemester 2013 Hamburg, 26.07.2013 A BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Zeitreihenanalyse. 1 Einleitung. 2 Autoregressive Prozesse, lineare Differenzengleichungen

Zeitreihenanalyse. 1 Einleitung. 2 Autoregressive Prozesse, lineare Differenzengleichungen Zeitreihenanalyse Enno MAMMEN Department of Economics, University of Mannheim L7, 3-5, 68131 Mannheim, Germany E mail: emammen@rumms.uni-mannheim.de February 22, 2006 1 Einleitung Klassisches Komponentenmodell,

Mehr

Dynamische Modelle: Schätzen und Modellwahl

Dynamische Modelle: Schätzen und Modellwahl 1 / 23 Dynamische Modelle: Schätzen und Modellwahl Kapitel 18 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 23 Inhalt Dynamische Modelle und autokorrelierte Fehler Tests auf Autokorrelation

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

3 Trend- und Saisonkomponenten

3 Trend- und Saisonkomponenten 3 Trend- und Saisonkomponenten Schritte bei der Analyse von Zeitreihendaten : Plot ; Identifikation von Strukturbrüchen, Ausreißern etc. ; Modellansatz, z.b. klassisches Komponentenmodell X t = m t + s

Mehr

Hauptseminar zum Thema:

Hauptseminar zum Thema: Fakultät Informatik Institut für angewandte Informatik Professur Technische Informationssysteme Hauptseminar zum Thema: Vergleich ARCH- und GARCH- Modelle bei der Analyse von Zeitreihen mit veränderlichen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

3 Trend- und Saisonkomponenten

3 Trend- und Saisonkomponenten 3 Trend- und Saisonkomponenten Schritte bei der Analyse von Zeitreihendaten : Plot ; Identifikation von Strukturbrüchen, Ausreißern etc. ; Modellansatz, z.b. klassisches Komponentenmodell X t = m t + s

Mehr

Eine zeitreihenanalytische Untersuchung der Industrieproduktion in Deutschland

Eine zeitreihenanalytische Untersuchung der Industrieproduktion in Deutschland Eine zeitreihenanalytische Untersuchung der Industrieproduktion in Deutschland Klaus Neusser 2. Dezember 2010 Zusammenfassung Ziel dieses Beitrags ist es, den fortgeschrittenen Studierenden eine Einführung

Mehr

Schriftliche Prüfung (2 Stunden)

Schriftliche Prüfung (2 Stunden) Prof. Peter Bühlmann Mathematik IV: Statistik Sommer 2013 Schriftliche Prüfung (2 Stunden) Bemerkungen: Alle schriftlichen Hilfsmittel und ein Taschenrechner sind erlaubt. Mobiltelefone sind auszuschalten!

Mehr

(G)LM. 24. November 2009

(G)LM. 24. November 2009 (G)LM 24 November 29 Dies ist eine kurze Zusammenfassung der Grundlagen von linearen Modellen, sowie aufbauend darauf von generalisierten linearen Modellen Sie dient lediglich zum Einstieg und zur knappen

Mehr

Das empirische VaR bzw. CVaR

Das empirische VaR bzw. CVaR Das empirische VaR bzw. CVaR Sei x 1, x 2,..., x n eine Stichprobe der unabhängigen identischverteilten ZV X 1, X 2,..., X n mit Verteilungsfunktion F (Notation: Die ZV X 1, X 2,..., X n sind i.i.d. Empirische

Mehr

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser

Kointegration. Kapitel 19. Angewandte Ökonometrie / Ökonometrie III Michael Hauser 1 / 28 Kointegration Kapitel 19 Angewandte Ökonometrie / Ökonometrie III Michael Hauser 2 / 28 Inhalt I(d), Trends, Beispiele Spurious Regression Kointegration, common trends Fehlerkorrektur-Modell Test

Mehr

Ökonometrische Modelle

Ökonometrische Modelle Ökonometrische Modelle Stichwörter: Dynamische Modelle Lagstrukturen Koyck sche Lagstruktur Zeitreihenmodelle Mehrgleichungsmodelle Strukturform reduzierte Form o1-13.tex/0 Lüdeke-Modell für die BRD C

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

2 Stationarität. Strikte Stationarität

2 Stationarität. Strikte Stationarität 2 Stationarität. Strikte Stationarität Die in 1 benutzten Begriffe sind noch zu präzisieren : Definition 2.1. a) Ein stochastischer Prozess {X t } t T heißt strikt stationär, falls für je endlich viele

Mehr

Einführung in Bootstrap

Einführung in Bootstrap Kapitel 5 Einführung in Bootstrap Literatur zum Thema: - Efron B, Tibshirani RJ: An Introduction to the Bootstrap (1993) - Hall P: The Bootstrap and Edgeworth Expansion (1992) - Davison AC: Recent Developments

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

2 Anwendungen und Probleme

2 Anwendungen und Probleme Prof. Dr. Werner Smolny Sommersemester 2005 Abteilung Wirtschaftspolitik Helmholtzstr. 20, Raum E 05 Tel. 0731 50 24261 UNIVERSITÄT DOCENDO CURANDO ULM SCIENDO Fakultät für Mathematik und Wirtschaftswissenschaften

Mehr