Formale Logik - SoSe 2012
|
|
|
- Katharina Kerner
- vor 8 Jahren
- Abrufe
Transkript
1 2.44 % Formale Logik - SoSe 2012 Versuch einer Zusammenfassung Malvin Gattinger
2 4.88 % Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit Aussagenlogik PropLog Wahrheitstabellen Semantische Bäume Prädikatenlogik PredLog Gegenmodelle
3 7.32 % Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit Aussagenlogik PropLog Wahrheitstabellen Semantische Bäume Prädikatenlogik PredLog Gegenmodelle
4 9.76 % Logik ist die Wissenschaft von den Gesetzen des Wahrseins und des Fürwahrhaltens. Logik beschreibt eine ideale Form des Denkens und Schließens. Logik beschäftigt sich nicht damit wie wir tatsächlich denken.
5 12.2 % Logik ist die Wissenschaft von den Gesetzen des Wahrseins und des Fürwahrhaltens. Logik beschreibt eine ideale Form des Denkens und Schließens. Logik beschäftigt sich nicht damit wie wir tatsächlich denken.
6 Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit Aussagenlogik PropLog Wahrheitstabellen Semantische Bäume Prädikatenlogik PredLog Gegenmodelle %
7 17.07 % Aussagesätze können wahr oder falsch sein. Wahrheit ist eine Eigenschaft von Aussagesätzen. Es gibt genau zwei Wahrheitswerte: Wahr, Falsch.
8 Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit Aussagenlogik PropLog Wahrheitstabellen Semantische Bäume Prädikatenlogik PredLog Gegenmodelle %
9 21.95 % Ein Argument ist eine Liste von Sätzen, von denen einer als Konklusion ausgewiesen ist. Die anderen Sätze heißen Prämissen. Ein Argument ist gültig genau dann, wenn es rational ist unter der Annahme, dass die Prämissen wahr sind, auch die Konklusion für wahr zu halten. Ein Argument ist schlüssig genau dann, wenn es gültig ist und seine Prämissen wahr sind.
10 24.39 % Argumente können auch mal überhaupt keine Prämissen haben! Ein solches Argument das nur aus einer Konklusion besteht ist gültig wenn diese eine Tautologie ist. Damit ist es auch schlüssig, denn alle (=keine) seine Prämissen sind wahr. Solche Argumente heißen auch Theoreme.
11 26.83 % Argumente können auch mal überhaupt keine Prämissen haben! Ein solches Argument das nur aus einer Konklusion besteht ist gültig wenn diese eine Tautologie ist. Damit ist es auch schlüssig, denn alle (=keine) seine Prämissen sind wahr. Solche Argumente heißen auch Theoreme. Beispiel: p (q p)
12 29.27 % Also was wahr nochmal gültig?
13 31.71 %
14 34.15 %
15 Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit Aussagenlogik PropLog Wahrheitstabellen Semantische Bäume Prädikatenlogik PredLog Gegenmodelle %
16 39.02 % PropLog verwendet folgende Zeichen: 1. p, q, r,... für Elementarsätze 2. Junktoren: Negation Konjunktion Disjunktion nicht und oder Konditional Bikonditional wenndann genau dann wenn Beispiel-Satz: Wenn Franz Erdbeer- oder Schokoladen-Eis isst, dann geht er nicht spazieren. p : Franz isst Erdbeer-Eis. q : Franz isst Schokoladen-Eis. r : Franz geht spazieren. (p q) r
17 Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit Aussagenlogik PropLog Wahrheitstabellen Semantische Bäume Prädikatenlogik PredLog Gegenmodelle %
18 43.9 % Beispiel-Aufgabe: Prüfen Sie mit Hilfe einer Wahrheitstabelle ob der folgende Satz logisch wahr ist. ((p q) q) p p q p q q (p q) q p ((p q) q) p W W W F F F W W F F W F F W F W W F F W W F F W W W W W
19 Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit Aussagenlogik PropLog Wahrheitstabellen Semantische Bäume Prädikatenlogik PredLog Gegenmodelle %
20 48.78 % Mit einem semantischen Baum lässt sich (nur!) die Frage beantworten: Ist dieser Satz eine Kontradiktion? SEMANTISCHE Bäume, denn die Grundfrage für alle 9 Regeln ist: Was heißt es, dass dieser Satz wahr ist?
21 51.22 %
22 53.66 % Beispiel-Aufgabe: Prüfen Sie mit Hilfe eines semantischen Baums ob der folgende Satz logisch wahr ist. ( p q) (q p) a) 1. (( p q) (q p)) (A) 2. p q (1) 3. (q p) (1) 4. q (3) 5. p (3) 6. p 7. q (2) X X Die Floskel zum auswendig lernen lautet: Der negierte Satz liefert ausschließlich Widersprüche, d.h er ist eine Kontradiktion. Der ursprüngliche, nicht-negierte Satz ist also eine Tautologie.
23 56.1 % Beispiel-Aufgabe: Prüfen Sie mit Hilfe eines semantischen Baums ob der folgende Satz logisch wahr ist. 1. (( p q) (q r) ( p r)) (A) 2. ( p q) (q r) (1) 3. ( p r) (1) 4. p q (2) 5. q r (2) 6. p (3) 7. r (3) 8.p 9.q (4) X 10. q 11. r (5) X? Der Baum bleibt offen, der negierte Satz ist also keine Kontradiktion. Der ursprüngliche, nicht-negierte Satz ist also keine Tautologie.
24 Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit Aussagenlogik PropLog Wahrheitstabellen Semantische Bäume Prädikatenlogik PredLog Gegenmodelle %
25 60.98 % 10 einfache Schlussregeln: I E I E A I E I I RAA Lesen! Lernen! Anwenden! Verstehen!
26 Beispiel-Aufgabe: Beweisen Sie das folgende Argument: % p q, p r (q r) 1 (1) p q A 2 (2) p r A?????????? 1, 2 (??) (q r)?
27 Falls es mal nicht klappt %
28 68.29 %
29 70.73 % Beispiel-Aufgabe: Beweisen Sie das folgende Argument: p q, p r (q r) 1 (1) p q A 2 (2) p r A 3 (3) q r A 3 (4) q 3 E 4 (5) r 3 E 6 (6) p A 1, 6 (7) q 1, 6 E 1, 3 (8) p 4, 7RAA(6) 9 (9) p A 2, 9 (10) r 2, 9 E 2, 3 (11) p 4, 10RAA(9) 1, 2 (12) (q r) 8, 11RAA(3)
30 Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit Aussagenlogik PropLog Wahrheitstabellen Semantische Bäume Prädikatenlogik PredLog Gegenmodelle %
31 75.61 % PredLog verwendet folgendes Vokabular: Alles was es in PropLog schon gab Prädikate: F, G, H 3... Individuenkonstanten: a, b,... Existenz und Allquantor:, Individuenvariablen: x, y,... Das Identitätszeichen: =
32 Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit Aussagenlogik PropLog Wahrheitstabellen Semantische Bäume Prädikatenlogik PredLog Gegenmodelle %
33 80.49 % 6 weitere Regeln zur Einführung und Beseitigung der 3 neuen Zeichen: I I = I E E = E
34 82.93 % Beispiel-Aufgabe: Beweisen Sie folgende beiden Satzfolgen: x(px q) xpx q
35 85.37 % : 1 (1) x(px q) A 2 (2) xpx A 3 (3) Pa A 1 (4) Pa q 1 E 1, 3 (5) q 3, 4 E 1, 2 (6) q 2, 5 E(3) 1 (7) xpx q 6 I(2)
36 87.8 % : 1 (1) xpx q A 2 (2) Pa A 2 (3) xpx 2 I 1, 2 (4) q 1, 3 E 1 (5) Pa q 5 I(2) 1 (6) x(px q) 5 I
37 90.24 %
38 Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit Aussagenlogik PropLog Wahrheitstabellen Semantische Bäume Prädikatenlogik PredLog Gegenmodelle %
39 95.12 % Im Kalkül können Argumente nur bewiesen, aber nicht widerlegt werden! Die Tatsache, dass wir keinen Beweis finden zeigt nicht dass das Argument ungültig ist. In diesem Fall konstruieren wir ein Gegenmodell indem wir eine mögliche / denkbare Welt erfinden. Eine Interpretation (Modell) besteht immer aus: Universum Extensionen für Prädikate Wahrheitswerten für Elementarsätze
40 97.56 %
41 100 %
Formale Methoden II. Gerhard Jäger. SS 2005 Universität Bielefeld. Teil 3, 12. Mai Formale Methoden II p.1/23
Formale Methoden II SS 2005 Universität Bielefeld Teil 3, 12. Mai 2005 Gerhard Jäger Formale Methoden II p.1/23 Logische Folgerung Definition 6 (Folgerung) Eine Formel ϕ folgt logisch aus einer Menge von
Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik
Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Grundbegriffe der Aussagenlogik 1 Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen
Mathematische und logische Grundlagen der Linguistik. Mathematische und logische Grundlagen der Linguistik. Karl Heinz Wagner. Hier Titel eingeben 1
Grundbegriffe der Aussagenlogik 1 Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen
Godehard Link COLLEGIUM LOGICUM. Logische Grundlagen der Philosophie und der Wissenschaften. Band 1. mentis PADERBORN
Godehard Link COLLEGIUM LOGICUM Logische Grundlagen der Philosophie und der Wissenschaften Band 1 mentis PADERBORN Inhaltsverzeichnis Vorwort xiii Einleitung 1 0.1 Historisches zum Verhältnis von Logik
Collegium Logicum - Logische Grundlagen der Philosophie und der Wissenschaften Link
Collegium Logicum - Logische Grundlagen der Philosophie und der Wissenschaften Band 1 von Godehard Link 1. Auflage Collegium Logicum - Logische Grundlagen der Philosophie und der Wissenschaften Link schnell
Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30
Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion
Rhetorik und Argumentationstheorie.
Rhetorik und Argumentationstheorie 2 [[email protected]] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom
Formale Grundlagen (Nachträge)
Inhaltsverzeichnis 1 Aussagenlogik: Funktionale Vollständigkeit................... 1 Bit-Arithmetik mit logischen Operationen.................... 3 Prädikatenlogik: Eine ganz kurze Einführung..................
Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken
Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation
Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik
Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Aussagen Begriff Aussage: Ausdruck, welcher entweder wahr oder falsch ist e Die RWTH Aachen hat
1 Aussagenlogischer Kalkül
1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln
Logische Grundlagen des Mathematikunterrichts
Logische Grundlagen des Mathematikunterrichts Referat zum Hauptseminar Mathematik und Unterricht 10.11.2010 Robert Blenk Holger Götzky Einleitende Fragen Was muss man beweisen? Woraus besteht ein Beweis?
Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie
Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf
Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier
Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier [email protected] 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre
Grundlagen der Logik
Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl
Deduktion in der Aussagenlogik. Semantische Folgerungsbeziehung. Zusammenhang zwischen semantischer und syntaktischer Folgerung
Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches Was folgt logisch aus dieser Theorie? Deduktion: aus
Atomare Sätze Prädikat der Stelligkeit n mit n Individuenkonstanten Reihenfolge der Individuenkonstanten ist entscheidend
Vokabelliste Logik (bis einschließlich Kapitel 12) Vorbemerkung: Die folgenden Erläuterungen sind nicht sauber formatiert, sollten aber selbsterklärend sein. Blaue Begriffe fallen unter den optionalen
Deduktion in der Aussagenlogik
Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus
Sprache, Beweis und Logik
Jon Barwise John Etchemendy Band Sprache, Beweis und Logik Aussagen- und Prädikatenlogik In Zusammenarbeit mit Gerald Allwein Dave BarkeT-Plummer Albert Liu Übersetzt und für das Deutsche bearbeitet von
Sprache, Beweis und Logik
Jon Barwise John Etchemendy Sprache, Beweis und Logik Aussagen- und Prädikatenlogik In Zusammenarbeit mit GeraTd Allwein Dave BarkeT-Plummer Albert Liu Übersetzt und für das Deutsche bearbeitet von Joachim
b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente
II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der
Formale Logik. 4. Sitzung. Die Logik der Sprache AL. Die Logik der Sprache AL. Die Logik der Sprache AL
ormale Logik 4. Sitzung Prof. Dr. Ansgar Beckermann Sommersemester 2005 Erinnerung Ein Satz ist genau dann logisch wahr, wenn er unabhängig davon, was die in ihm vorkommenden deskriptiven Zeichen bedeuten
Motivation und Geschichte. Geschichte der Logik Logik und Informatik
Motivation und Geschichte Geschichte der Logik Logik und Informatik Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 2.1 Motivation und Geschichte Geschichte der Logik 13 Aufgaben der Logik
Tableaux-Beweise in der Aussagenlogik
Tableaux-Beweise in der Aussagenlogik Wie kann man auf syntaktische Weise eine Belegung mit Wahrheitswerten finden, die einen gegebenen Ausdruck wahr oder falsch macht? Die Frage schliesst Beweise durch
De Morgan sche Regeln
De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,
Allgemeingültige Aussagen
Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt
Wissen und Gesellschaft I Einführung in die analytische Wissenschaftstheorie. Prof. Dr. Jörg Rössel
Wissen und Gesellschaft I Einführung in die analytische Wissenschaftstheorie Prof. Dr. Jörg Rössel Ablaufplan 1. Einleitung: Was ist Wissenschaft(stheorie) überhaupt? 2. Was sind wissenschaftliche Theorien?
SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER
SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER FORMALE SPRACHEN Wie jede natürliche Sprache, hat auch auch jede formale Sprache Syntax/Grammatik Semantik GRAMMATIK / SYNTAX Die Grammatik / Syntax einer formalen
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume
6. AUSSAGENLOGIK: TABLEAUS
6. AUSSAGENLOGIK: TABLEAUS 6.1 Motivation 6.2 Wahrheitstafeln, Wahrheitsbedingungen und Tableauregeln 6.3 Tableaus und wahrheitsfunktionale Konsistenz 6.4 Das Tableauverfahren 6.5 Terminologie und Definitionen
11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks!
Kapitel 3 Logik Verständnisfragen Sachfragen 1. Was ist eine logische Aussage? 2. Wie ist die Konjunktion und die Disjunktion definiert? 3. Beschreiben Sie das Exklusive Oder, die Implikation und die Äquivalenz!
Mathematik 1 für Wirtschaftsinformatik
für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 3 Aussagenlogik
Musterlösung Übungszettel 8 (Probeklausur 1)
Sommersemester 2005 Seite 1 von 5 Musterlösung Übungszettel 8 (Probeklausur 1) (1) Zeigen Sie mit Hilfe der Wahrheitstafelmethode, dass a) der Satz (p q) (q p) (p q) eine Tautologie ist (5 Punkte); p q
Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.
2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.
Grundlagen der Theoretischen Informatik
FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski
ÜBUNG ZUM GRUNDKURS LOGIK WS 2015/16 GÜNTHER EDER
ÜBUNG ZUM GRUNDKURS LOGIK WS 2015/16 GÜNTHER EDER WIEDERHOLUNG: SPRACHE DER PL Die Sprache der PL enthält (1) Einfache Individuenterme: Individuenkonstanten (a, b, c, ) und Individuenvariablen (x, y, z,
12 Wahrheitsbäume zur Beurteilung der logischen Wahrheit von Sätzen der Sprache AL
12 Wahrheitsbäume zur Beurteilung der logischen Wahrheit von Sätzen der Sprache L Eine zweite Methode Das Wahrheitsbaumverfahren Dieses Verfahren beruht auf der Methode des indirekten Beweises. Wahrheitsbäume
Seminar Übergänge. Einstieg: Kartenaufgabe. Gliederung
Einstieg: Kartenaufgabe Gegeben sind vier Karten. Jede Karte hat auf der einen Seite einen Buchstaben und auf der anderen Seite eine Zahl. Seminar Übergänge Thema: Logische Probleme Thomas Hellwig, Thomas
Semantik 4: Baumkalküle
Semantik 4: Baumkalküle Robert Zangenfeind, Hinrich Schütze Center for Information and Language Processing, LMU Munich 2018-05-25 Zangenfeind & Schütze (LMU Munich): Baumkalküle 1 / 33 Beurteilung natürlichsprachiger
Einführung in die mathematische Logik
Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen
Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14
Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine
Logik für Informatiker Logic for computer scientists
Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 23 Die Logik der Booleschen Junktoren Till Mossakowski Logik 2/ 23 Aussagenlogische
1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.
Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik
Aussagenlogik: Lexikon, Syntax und Semantik
Einführung in die Logik - 2 Aussagenlogik: Lexikon, Syntax und Semantik Wiederholung: Was ist Logik? Logik : Die Lehre» vom formal korrekten Schließen» von den Wahrheitsbedingungen von Sätzen Unter welchen
Dallmann, H. & Elster, K.H. (1991). Einführung in die höhere Mathematik, Band I. Jena: Fischer. (Kapitel 1, pp )
Logik Literatur: Dallmann, H. & Elster, K.H. (1991). Einführung in die höhere Mathematik, Band I. Jena: Fischer. (Kapitel 1, pp. 17-30) Quine, W.V.O. (1964 / 1995). Grundzüge der Logik. Frankfurt a.m.:
Erinnerung 1. Erinnerung 2
Erinnerung 1 Ein Argument ist eine Folge von Aussagesätzen, mit der der Anspruch verbunden ist, dass ein Teil dieser Sätze (die Prämissen) einen Satz der Folge (die Konklusion) in dem Sinne stützen, dass
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht
2.6 Natürliches Schließen in AL
2.6 Natürliches Schließen in AL Bisher wurde bei der Überprüfung der Gültigkeit von Schlüssen oder Schlussschemata insofern ein semantisches Herangehen verfolgt, als wir auf die Bewertung von Formeln mit
Logik Vorlesung 8: Modelle und Äquivalenz
Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere
14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln
14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln Erinnerung Man kann die logischen Eigenschaften von Sätzen der Sprache AL in dem Maße zur Beurteilung der logischen
Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17
Vorlesung Mathematik I für Wirtschaftswissenschaftler Universität Leipzig, WS 16/17 Prof. Dr. Bernd Kirchheim Mathematisches Institut [email protected] 1 / 19 Dies ist der Foliensatz zur Vorlesung
Logik. Aufgaben in: Barwise, Etchemendy. The language of first-order logic. CSLI, ) S. 119 A3 2) S. 131 A15 3) S. 143 A28
Logik Aufgaben in: Barwise, Etchemendy. The language of first-order logic. CSLI, 1992. 1) S. 119 A3 2) S. 131 A15 3) S. 143 A28 Gliederung: Aufgabe 1) S. 2 Aufgabe 2) S. 5 Aufgabe 3) S. 7 1 Aufgabe 1)
1 Argument und Logik
Seminar: 1/5 1 Argument und Logik Aussagesatz (1): Ein Aussagesatz ist ein Satz im Indikativ, der entweder wahr oder falsch ist. Problem der Indexikalität: Sätze im Indikaitv, die indexikalische Ausdrücke
Was bisher geschah Modellierung in Logiken: klassische Prädikatenlogik FOL(Σ, X) Spezialfall klassische Aussagenlogik AL(P)
Was bisher geschah Modellierung in Logiken: klassische Prädikatenlogik FOL(Σ, X) Spezialfall klassische Aussagenlogik AL(P) Syntax Semantik Signatur, Variablen Terme (induktive Definition, Baumform) Atome
Mathematische Grundlagen der Computerlinguistik I
1. Übungsblatt (Mengenlehre) I. Gegeben seien die Mengen: A = {a,b,c,2,3}, B = {a,b}, C = {c, 2}, D = {a,b,c}, E = {a,b,{c}}, F =, G = {{a,b}, {c,2}} Beantworte folgende Fragen mit wahr oder falsch (1-12),
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws13/14
Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25
Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.
Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen
Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen
Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2
Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html
Musterlösung. (1) Zeigen Sie mit Hilfe der Wahrheitstafelmethode, dass a) der Satz in AL (p q) ( p q) (p q) eine Kontradiktion ist (7 Punkte);
Sommersemester 2005 Seite 1 von 5 Musterlösung (1) Zeigen Sie mit Hilfe der Wahrheitstafelmethode, dass a) der Satz in AL (p q) ( p q) (p q) eine Kontradiktion ist (7 Punkte); p q (p q) ( p q) (p q) W
Klassische Aussagenlogik
Eine Einführung in die Logik Schon seit Jahrhunderten beschäftigen sich Menschen mit Logik. Die alten Griechen und nach ihnen mittelalterliche Gelehrte versuchten, Listen mit Regeln zu entwickeln, welche
Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht
Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion
Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus:
Karlhorst Meyer Formallogik Die Umgangssprache ist für mathematische Bedürfnisse nicht exakt genug. Zwei Beispiele: In Folge können u. U. Beweise, die in Umgangssprache geschrieben werden, nicht vollständig,
Motivation und Geschichte. Geschichte der Logik Logik und Informatik
Motivation und Geschichte Geschichte der Logik Logik und Informatik Logik für Informatiker, M. Lange, IFI/LMU: Motivation und Geschichte Geschichte der Logik 12 Aufgaben der Logik Logik (aus Griechischem)
Tutorium Logik und Beweisführung. Prof. Dr. Mark Groves WS 2018/19
Tutorium Logik und Beweisführung Prof. Dr. Mark Groves WS 2018/19 16. Oktober 2018 Aussagen Eine Aussage ist ein sprachliches Gebilde, das entweder wahr (T) oder falsch (F) ist. Beispiele Saarbrücken ist
3. Grundlegende Begriffe von Logiken - Aussagenlogik
3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,
Logik Vorlesung 2: Semantik der Aussagenlogik
Logik Vorlesung 2: Semantik der Aussagenlogik Andreas Maletti 24. Oktober 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen
Summen- und Produktzeichen
Summen- und Produktzeichen Ein großer Vorteil der sehr formalen mathematischen Sprache ist es, komplizierte Zusammenhänge einfach und klar ausdrücken zu können. Gerade auch diese Eigenschaft der Mathematik
Theorie der Informatik
Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 Motivation Aufgabe von letzter Vorlesungsstunde Worin besteht das Geheimnis Ihres langen Lebens?
Brückenkurs Mathematik 2015
Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass
Logik (Prof. Dr. Wagner FB AI)
Logik (Prof. Dr. Wagner FB AI) LERNZIELE: Über die Kenntnis und das Verständnis der gegebenen Definitionen hinaus verfolgt dieser Teil der Lehrveranstaltung die folgenden Lernziele: Bei gegebenen sprachlichen
Identität. Dr. Uwe Scheffler. Januar [Technische Universität Dresden]
Identität Dr. Uwe Scheffler [Technische Universität Dresden] Januar 2012 Freges Problem 1. Der Morgenstern ist der Morgenstern. 2. Der Morgenstern ist der Abendstern. 1. ist tautologisch. 2. ist nur in
Logic in a Nutshell. Christian Liguda
Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung
Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser
Informatik A Prof. Dr. Norbert Fuhr [email protected] auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische
Zur Semantik der Junktorenlogik
Zur Semantik der Junktorenlogik Elementare Logik I Michael Matzer Inhaltsverzeichnis 1 Präliminarien 2 2 Tautologien, Kontradiktionen und kontingente Sätze von J 2 2.1 Tautologien von J................................
Alphabet der Prädikatenlogik
Relationen und Alphabet der Das Alphabet der besteht aus Individuenvariablen Dafür verwenden wir kleine Buchstaben vom Ende des deutschen Alphabets, auch indiziert, z. B. x, y, z, x 1, y 2,.... Individuenkonstanten
2. die megarisch-stoische Logik
2. die megarisch-stoische Logik 2.1 das Schicksal der stoischen Logik Von den herausragenden megarisch-stoischen Logikern ist ein einziger Stoiker, nämlich Chrysippos, während 2 oder 3 Megariker sind:
1 Aussagenlogik. 1.1 Aussagen. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage) Aussage = Behauptung Beispiele: Es regnet.
Grundlagen der Mathematik für Informatiker 1 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl. 3 < 8 x < 15 (hängt von x ab, keine Aussage)
Tilman Bauer. 4. September 2007
Universität Münster 4. September 2007 und Sätze nlogik von Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 [email protected] Zimmer 504, Einsteinstr. 62 (Hochhaus)
Die Unzulänglichkeit der formalen Logik
Joachim Stiller Die Unzulänglichkeit der formalen Logik Alle Rechte vorbehalten Die Unzulänglichkeit der formalen Logik Ich möchte gerne zeigen, dass die ersten drei Bereiche der formalen Logik, die Syllogistik,
2.2.4 Logische Äquivalenz
2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden
Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15
Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund [email protected] http://ls1-www.cs.tu-.de Übersicht
Mathematische Grundlagen I Logik und Algebra
Logik und Algebra Dr. Tim Haga 21. Oktober 2016 1 Aussagenlogik Erste Begriffe Logische Operatoren Disjunktive und Konjunktive Normalformen Logisches Schließen Dr. Tim Haga 1 / 21 Präliminarien Letzte
Jeder Aussage p kann ein Wahrheitswert W(p) {0, 1} zugeordnet werden. Beispiele: W(Es regnet.) =? (je nach Lage der Dinge) W(Die Straße ist naß.) =?
Grundlagen der Mathematik für Informatiker 1 Grundlagen der Mathematik für Informatiker 2 1 Aussagenlogik 1.1 Aussagen Aussage = Behauptung Beispiele: Es regnet. Die Straße ist naß. 15 ist eine Primzahl.
Prämisse 1 Alle A sind B. Prämisse 2 Alle B sind C Konklusion Alle A sind C.
3 Prädikatenlogik Warum brauchen wir nach dem Abschluss der Aussagenlogik überhaupt noch eine Fortführung der formalen Logik? Beispiel eines korrekten logischen Schlusses zu betrachten: Prämisse 1 Alle
Grundkurs Mathematik I
Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 3 Was Hänschen nicht lernt, lernt Hans nimmermehr Volksmund Was Hänschen nicht lernt, lernt Hans nimmermehr hat heute keine
Paradoxien der Replikation
Joachim Stiller Paradoxien der Replikation Alle Rechte vorbehalten Paradoxien Die Paradoxien (Wiki) Hier einmal Auszüge aus dem Wiki-Artikel zum Begriff Paradoxon Ein Paradox(on) (auch Paradoxie, Plural
