Numerische Lineare Algebra

Größe: px
Ab Seite anzeigen:

Download "Numerische Lineare Algebra"

Transkript

1 Numerische Lineare Algebra Vorlesung 11 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 1 / 12

2 Jacobi-Verfahren Ein elementares lineares Iterationsverfahren für ein lineares Gleichungssystem Ax = b ist das Jacobi-Verfahren. Hierbei wird die Diagonale D von A als Approximation von A 1 verwendet. Ein Schritt x l = y z = x l+1 des Verfahrens hat also die Form z = y D 1 Ay + D 1 b mit der Iterationsmatrix Q = E D 1 A. Ausführlicher ist für eine n n-matrix A z j = (b j k j a j,k y k )/a j,j, j = 1,..., n. Ein hinreichendes Kriterium für die Konvergenz des Jacobi-Verfahrens ist, dass die Koeffizientenmatrix A diagonal dominant ist, d.h. a j,j > k j a j,k. Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 2 / 12

3 Beweis Iterationsmatrix diagonale Dominanz = ϱ(q) Q < 1 Q : q j,k = Q = max j { aj,k /a j,j, k j 0, k = j, a j,k / a j,j < 1 k j Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 3 / 12

4 Beispiel lineares Gleichungssystem mit Lösung x = (0, 1, 2) t x = Iterationsmatrix Q = E D 1 A des Jacobi-Verfahrens / / = / p = D 1 b = 1 3 (1, 5, 7)t Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 4 / 12

5 Beispiel Iterationsfolge für Startnäherung x 0 = (0, 0, 0) t x 1 = Qx 0 + p = p = x 2 = 1 3 x 3 = /3 5/3 7/3, 1/3 5/3 7/3 2/9 7/9 16/9 + 1/3 5/3 7/3 + 1/3 5/3 7/3 = 2/9 7/9 16/9 = 2/27 31/27 56/27 Fehler: x 1 2 = 6/3, x 2 2 = 12/9, x 3 2 = 24/27 Reduktionsfaktor 2/3 = ϱ(q), Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 4 / 12

6 Beispiel Diskretisierung der Poisson-Gleichung u xx u yy = f 4u k,l u k 1,l u k+1,l u k,l 1 u k,l+1 = f k,l /n 2, 0 < k, l < n n l u k,l 0 0 n k Schritt u v des Jacobi-Verfahrens (Randwerte 0) v k,l = (u k 1,l + u k+1,l + u k,l 1 + u k,l+1 + f k,l /n 2 )/4, 0 < k, l < n Spektralradius: ϱ = cos(π/n) = (π/n)2 + O(n 4 ) Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 5 / 12

7 Gauß-Seidel-Verfahren Das Gauß-Seidel-Verfahren für ein lineares Gleichungssystem Ax = b entsteht aus dem Jacobi-Verfahren, indem man den Näherungsvektor elementweise neu bestimmt und für die Berechnung der k-ten Komponente der nächsten Näherung bereits die neuen Daten der ersten k 1 Komponenten verwendet. Dies entspricht einer Aufteilung der Matrix A in eine Diagonalmatrix D, eine linke Dreiecksmatrix L und eine rechte Dreiecksmatrix R. Ein Iterationsschritt x l = y z = x l+1 hat somit die Form bzw. nach z aufgelöst, z = D 1 (Lz + Ry) + D 1 b, z = (L + D) 1 Ry + (L + D) 1 b. Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 6 / 12

8 Gauß-Seidel-Verfahren Dabei muss die Iterationsmatrix Q = (L + D) 1 R nicht explizit berechnet werden. Für eine n n Matrix A ist z j = 1 b j a j,k z k a j,k y k, j = 1,..., n. a j,j k<j k>j Bei der sukzessiven Ausführung der Operationen kann auch z = y gesetzt werden. Die Vektorelemente werden dann automatisch in der gewünschten Weise überschrieben. Wie das Jacobi-Verfahren konvergiert auch das Gauß-Seidel-Verfahren für diagonal dominante Matrizen A. Darüber hinaus konvergiert es für symmetrische, positiv definite Matrizen A. Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 6 / 12

9 Beweis Skalarprodukt und Norm, assoziiert mit einer symmetrisch, positiv definiten Matrix A x, y A = x t Ay, x A = x, x A Abschätzung des Spektralradius in der zugehörigen Matrixnorm ϱ(q) Q A = max x 0 ausreichend zu zeigen: Q A < 1 bzw. Qx A x A (Qx) t A(Qx) < x t Ax x t (A Q t AQ)x > 0, x 0 Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 7 / 12

10 Beweis Abkürzungen P = D + L, P t = D + L t Q = (L + D) 1 L t = E P 1 A, Q t = E A(P t ) 1 und A Q t AQ = A ( E A(P t ) 1) A ( E P 1 A ) = A EAE + A(P t ) 1 AE + EAP 1 A A(P t ) 1 AP 1 A = A(P t ) 1 ( P + P t A ) P 1 A = A(P t ) 1 DP 1 A Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 7 / 12

11 Beweis a k,k > 0 = x t (A Q t AQ)x = y t y, y = DP 1 Ax Regularität von D, P und A = y = 0 genau dann wenn x = 0 Positivität von y t y Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 7 / 12

12 Beispiel lineares Gleichungssystem mit Lösung x = (0, 1, 2) t x = ein Schritt x l = y z = x l+1 des Gauß-Seidel-Verfahrens z 1 = 1 3 y z 2 = 5 3 z 1 3 y 3 3 z 3 = 7 3 z 2 3 Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 8 / 12

13 Beispiel x 0 = (0, 0, 0) = y z = ((1 y 2 )/3, (5 z 1 y 3 )/3, (7 z 2 )/3) = x 1, d.h. x 1 = = Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 8 / 12

14 Beispiel x 1 = (1/3, 14/9, 49/27) = y z = ((1 y 2 )/3, (5 z 1 y 3 )/3, (7 z 2 )/3) = x 2, d.h. analog x 2 = = x 3 = ( 90, 2247, 4354) t / Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 8 / 12

15 Beispiel Fehler der Näherungen x 1 2 = 331/27, x 2 2 = 55/243, x 3 2 = 110/2187 ϱ = Reduktionsfaktor 2/9 zwischen der zweiten und dritten Näherung Q = (L + D) 1 R = = / /9 1/3 0 1/27 1/9 1/ Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 8 / 12

16 Beispiel Vergleich des Jacobi- und Gauß-Seidel-Verfahrens ( ) 2 t A = t 1/2 Iterationsmatrix und Spektralradius für das Jacobi-Verfahren ( ) 0 t/2 Q J =, ϱ 2t 0 J = t Iterationsmatrix und Spektralradius für das Gauß-Seidel-Verfahren ( 2 0 Q GS = t 1/2 ) 1 ( 0 t 0 0 ) = ( 0 t/2 0 t 2 ), ϱ GS = t 2 Konvergenz t < 1, ϱ GS = ϱ 2 J schnellere Konvergenz des Gauß-Seidel-Verfahrens Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 9 / 12

17 Beispiel diskrete Poisson-Gleichung mit Gitterweite h 4x k,l x k 1,l x k,l 1 x k+1,l x k,l+1 = b k,l x 0,l = x m,l = x k,0 = x k,m = 0, 0 < k, l < m = 1/h schachbrettartige Aufteilung der Unbekannten vektorisierbare Version der Gauß-Seidel-Iteration Iterationsschritt y z u k,l = (b k,l + y k 1,l + y k,l 1 + y k+1,l + y k,l+1 )/4, k + l gerade, z k,l = (b k,l + u k 1,l + u k,l 1 + u k+1,l + u k,l+1 )/4, k + l ungerade, 0 < k, l < m, Einträge mit Index i, j {0, n} Null Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 10 / 12

18 Relaxation Bei einem Iterationsverfahren kann man versuchen, die Konvergenz durch eine sogenannte Relaxation zu beschleunigen. Dazu wird in der Iterationsvorschrift x l+1 = f (x l ) ein zusätzlicher Parameter ω eingeführt und das neue Folgenglied auf der durch x l und f (x l ) verlaufenden Gerade gewählt: x l+1 = (1 ω)x l + ωf (x l ). Für ω = 1 erhält man das ursprüngliche Iterationsverfahren. Für ω > 1 spricht man von Überrelaxation und für ω < 1 von Unterrelaxation. Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 11 / 12

19 Sukzessive Über-Relaxation Berechnet man beim Gauß-Seidel-Verfahren die einzelnen Komponenten sukzessive, so kann man die Relaxation in jedem Teilschritt anwenden. Das so entstehende Verfahren heißt abgekürzt SOR (successive over-relaxation). Die Iterationsvorschrift hat die Form x l+1 = x l + ωd 1 (b Lx l+1 Dx l Rx l ), wobei A = L + D + R die Aufteilung der Matrix in den linken, diagonalen und rechten Anteil ist. Führt man zwei SOR-Schritte durch, wobei beim ersten Schritt die Komponenten in der Reihenfolge 1, 2,..., n und beim zweiten Schritt in der umgekehrten Reihenfolge berechnet werden, so erhält man das SSOR-Verfahren (symmetric SOR). Dabei ist nur die Behandlung der Reihenfolge der Unbekannten symmetrisch, jedoch die Iterationsmatrix im Allgemeinen nicht. Auch die Konvergenzrate wird dadurch im Allgemeinen nicht besser. Die Symmetrisierung wird in erster Linie bei der Vorkonditionierung des Konjugierten-Gradienten-Verfahrens verwendet. Prof. Dr. Klaus Höllig (IMNG) Numerische Lineare Algebra 12 / 12

38 Iterative Verfahren für lineare Gleichungssysteme

38 Iterative Verfahren für lineare Gleichungssysteme 38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

3. Lineare Gleichungssysteme

3. Lineare Gleichungssysteme 3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische lineare Iterationsverfahren Typeset by FoilTEX 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen

Mehr

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Praktikum im Sommersemester 2012 Programmierpraktikum numerische Algorithmen (P2E1) (Numerische Lösung der Wärmeleitungsgleichung)

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Beispiel: Feder Masse System festes Ende Feder k 1 Masse m 1 k 2 m 2 k 3 m 3 k 4 festes Ende u 0 = 0 Federkraft y 1 Verschiebung u 1 y 2 u 2 y 3 u 3 y 4 u 4 = 0 Grundlagen der

Mehr

Iterative Löser: Einführung

Iterative Löser: Einführung Iterative Löser: Einführung Im vergangenen Semester wurden folgende Löser für LGS betrachtet: LU-Zerlegung (mit und ohne Pivotisierung) QR-Zerlegung (Householder und Givens) Lösung beliebiger, regulärer,

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen PDGL 2. Ordnung

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Wir betrachten das lineare Gleichungssystem Ax = b mit der n n-koeffizientenmatrix A und der rechten Seite b R n. Wir leiten zuerst eine Variante des Gauss-Algorithmus (LR-Zerlegung)

Mehr

7. Iterative Lösung. linearer Gleichungssysteme

7. Iterative Lösung. linearer Gleichungssysteme 7. Iterative Lösung linearer Gleichungssysteme 1 Grundlagen (1) Zur Erinnerung: Gesucht ist die Lösung eines linearen Gleichungssystems a 0,0 x 0 +a 0,1 x 1 + a 0,n 1 x n 1 = b 0 a 1,0 x 0 +a 1,1 x 1 +

Mehr

5.3.5 Abstiegs & Gradientenverfahren

5.3.5 Abstiegs & Gradientenverfahren 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3.5 Abstiegs & Gradientenverfahren Die bisher kennengelernten Iterationsverfahren zur Approximation von linearen Gleichungssystemen haben

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren III.3 GMRES und CG-Verfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung

Mehr

Lineare Iterationsverfahren: Definitionen

Lineare Iterationsverfahren: Definitionen Lineare Iterationsverfahren: Definitionen 1. Ein Lösungsverfahren zur Berechnung von Ax = b heißt iterativ, falls ausgehend von einem Startwert x eine Folge x k von Iterierten bestimmt wird. 2. Ein Iterationsverfahren

Mehr

Beispiellösung Serie 7

Beispiellösung Serie 7 D-MAVT FS 2014 K. Nipp A. Hiltebrand NUMERISCHE MATHEMATIK Beispiellösung Serie 7 1. a) Exakt: 0.005 1 1 1 0.005 1 ( 1 0 200-199 L = 200 1 Rückwärts einsetzen Lz = b : z 1 = 0.5, z 2 = 1 100 = 99 Rx =

Mehr

Algorithmik kontinuierlicher Systeme

Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Iterative Verfahren (2/2) Ziel dieser Vorlesung Wie schnell können wir Gleichungssysteme lösen? O(n 3 ) LR- oder QR-Zerlegung: Immer anwendbar Standardverfahren Aber:

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)

Mehr

A 1 x = b, A 1 R m m, m := (n 1) 2, nh = 1, T I I T I. A 1 = 1 h 2 I T. T R (n 1) (n 1) und I ist die (n 1) (n 1)-Identitätsmatrix.

A 1 x = b, A 1 R m m, m := (n 1) 2, nh = 1, T I I T I. A 1 = 1 h 2 I T. T R (n 1) (n 1) und I ist die (n 1) (n 1)-Identitätsmatrix. KAPITEL 13. Große dünnbesetzte LGS, iterative Löser Erstes Beispielproblem: die diskretisierte Poisson-Gleichung wobei A 1 x = b, A 1 R m m, m := (n 1) 2, nh = 1, A 1 = 1 h 2 T I I T I......... I T I I

Mehr

Klausur zu Grundlagen der Computermathematik

Klausur zu Grundlagen der Computermathematik Prof. Dr. Klaus Höllig 14. Oktober 2010 Klausur zu Grundlagen der Computermathematik en Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. a Die Folge A

Mehr

7. Iterative Lösung. linearer Gleichungssysteme

7. Iterative Lösung. linearer Gleichungssysteme 7. Iterative Lösung linearer Gleichungssysteme 1 Grundlagen und Wiederholung (1) Die Grundlagen decken sich mit dem Stoff, der einen Teil des Kapitels 2 - Numerik ausmacht und bereits in Mathematik behandelt

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 4 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,...,255}, n = 1,...,N, m = 1,...,M. dig. Camera Realisierung

Mehr

Musterlösung. Aufgaben zu Iterative Lösung Linearer Gleichungssysteme. Vordiplomskurs Numerische Methoden Sommer 2008

Musterlösung. Aufgaben zu Iterative Lösung Linearer Gleichungssysteme. Vordiplomskurs Numerische Methoden Sommer 2008 Musterlösung Aufgaben zu Iterative Lösung Linearer Gleichungssysteme Vordiplomskurs Numerische Methoden Sommer 8. Betrachte das Gleichungssystem Ax b mit ( ( 3 A, b. 6 8 a Konvergiert das Jacobi Verfahren

Mehr

Numerik II. Roland Pulch

Numerik II. Roland Pulch Numerik II Roland Pulch Institut für Mathematik und Informatik Mathematisch-Naturwissenschaftliche Fakultät Ernst-Moritz-Arndt-Universität Greifswald Skript zu Iterativer Lösung linearer Gleichungssysteme

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 21 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,,255}, n = 1,,N, m = 1,,M dig Camera Realisierung von B η ist

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Kapitel 3. Iterative Verfahren für LGS. 3.1 Der Banach sche Fixpunktsatz. Definition 3.1:

Kapitel 3. Iterative Verfahren für LGS. 3.1 Der Banach sche Fixpunktsatz. Definition 3.1: Kapitel 3 Iterative Verfahren für LGS 3 Der Banach sche Fixpunktsatz Sei A R n n invertierbar und das LGS A x b gegeben Ein iteratives Verfahren besteht aus einer Berechnungsvorschrift x (j+) F ( x (j))

Mehr

Iterative Methoden zur Lösung von linearen Gleichungssystemen

Iterative Methoden zur Lösung von linearen Gleichungssystemen Iterative Methoden zur Lösung von linearen Gleichungssystemen (13.12.2011) Ziel Können wir wir die zeitabhängige Schrödinger-Gleichung lösen? φ(t) = e iht ψ(0) Typischerweise sind die Matrizen, die das

Mehr

5.1 Iterative Lösung linearer Gleichungssysteme

5.1 Iterative Lösung linearer Gleichungssysteme 5.1 Iterative Lösung linearer Gleichungssysteme à Gegeben: A Œ Ñ n,n regulär, b Œ Ñ n Gesucht: x èè Œ Ñ n : Ax èè = b bzw. Iterationsverfahren: x H0L Œ Ñ n, x Hm+1L := GHx HmL L, m=0,1,..., mit x HmL ô

Mehr

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

Numerische Mathematik für Ingenieure (SoSe 2013)

Numerische Mathematik für Ingenieure (SoSe 2013) Numerische Mathematik für Ingenieure (SoSe 2013) PD Dr(USA) Maria Charina Auszüge aus Vorlesungsfolien von Prof Joachim Stöckler werden verwendet Für die Bereitstellung dieses Materials und der Tex-Files

Mehr

4 Iterative Lösung Linearer Gleichungssysteme 4.1 Fixpunktiteration und Konvergenzsätze.

4 Iterative Lösung Linearer Gleichungssysteme 4.1 Fixpunktiteration und Konvergenzsätze. 4 Iterative Lösung Linearer Gleichungssysteme 4.1 Fixpunktiteration und Konvergenzsätze. Wir betrachten das lineare Gleichungssystem der Form Ax = b; (4.1.1) mit A R n n reguläre Matrix und b R n gegeben,

Mehr

5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme

5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme Als zweite Hauptanwendung des Banachschen Fixpunktsatzes besprechen wir in diesem Kapitel die iterative Lösung linearer Gleichungssysteme. Die

Mehr

Kapitel 3 Lineare Gleichungssysteme

Kapitel 3 Lineare Gleichungssysteme 1. Direkte Verfahren Kapitel 3 Lineare Gleichungssysteme Grundbaustein vieler numerischer Verfahren zur Lösung von partiellen oder gewöhnlicher Differentialgleichungen und von nichtlinearen Optimierungsproblemen

Mehr

D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch. Musterlösung 6. x A 1 b. A 1 b A 1. x A ( A. gestört: x A 1 =

D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch. Musterlösung 6. x A 1 b. A 1 b A 1. x A ( A. gestört: x A 1 = D-ITET, D-MATL Numerische Methoden SS 2006 Prof. R. Jeltsch Musterlösung 6 1. a b exakt: x = c Die Inverse von A lautet x = A 1 b x = A 1 b x A 1 b x A 1 b x A 1 b A x b x κ A b x b 3 1 A 1 = gestört:

Mehr

Symmetrische Gleichungssysteme Das Verfahren konjugierter Gradienten

Symmetrische Gleichungssysteme Das Verfahren konjugierter Gradienten Symmetrische Gleichungssysteme Das Verfahren konjugierter Gradienten 1 / 20 Lineares Gleichungssystem Ax = f, n A[i, j]x j = f i j=1 für i = 1,..., n Voraussetzungen Matrix A sei symmetrisch: A[i, j] =

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen (für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problemstellung Lineare Gleichungssysteme, iterative Verfahren geg.:

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

Konvergenz des Jacobi- und Gauß-Seidel-Verfahrens

Konvergenz des Jacobi- und Gauß-Seidel-Verfahrens Konvergenz des Jacobi- und Gauß-Seidel-Verfahrens Bachelor-Arbeit im -Fach Bachelorstudiengang Mathematik der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt

Mehr

Klausur zu Grundlagen der Computermathematik

Klausur zu Grundlagen der Computermathematik Prof. Dr. Klaus Höllig. März 11 Klausur zu Grundlagen der Computermathematik en Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. a Die Folge A n x/ A n

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Kapitel 6. Iterationsverfahren für lineare Gleichungssysteme

Kapitel 6. Iterationsverfahren für lineare Gleichungssysteme Kapitel 6 Iterationsverfahren für lineare Gleichungssysteme Falls n sehr groß ist und falls die Matrix A dünn besetzt ist (sparse), dann wählt man zur Lösung von Ax = b im Allgemeinen iterative Verfahren.

Mehr

Lösen der Matrizengleichung

Lösen der Matrizengleichung Lösen der Matrizengleichung Oliver Deussen Lösungsverfahren K 1 letztes Kapitel: Berechnung der Formfaktoren F außerdem: B: zu berechnende Strahlung, E: gegebenes Eigenleuchten nun: Wie löst man K B =

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 1 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 8 Institut für Informatik Prof. Dr. Thomas Huckle Michael Rippl Fabio Gratl Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt: Gaußelimination mit Pivotsuche,

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

EINFÜHRUNG IN DIE NUMERISCHE MATHEMATIK II 1. Numerische Lineare Algebra. Prof. Dr. Hans Babovsky. Institut für Mathematik

EINFÜHRUNG IN DIE NUMERISCHE MATHEMATIK II 1. Numerische Lineare Algebra. Prof. Dr. Hans Babovsky. Institut für Mathematik EINFÜHRUNG IN DIE NUMERISCHE MATHEMATIK II 1 Numerische Lineare Algebra Prof. Dr. Hans Babovsky Institut für Mathematik Technische Universität Ilmenau 1 Version vom Sommer 2010 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 6. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. März 2010 Nachträge Gliederung Nachträge it Nachträge Wichtige Begriffe Eine Zusammenfassung der Folien 8 16 der letzten

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Gegeben seien die folgenden geordneten Basen B = (v, v, v, v ) und C = (w, w,

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Iterationsverfahren: Konvergenzanalyse und Anwendungen Ulrich Rüde Lehrstuhl für Systemsimulation Sommersemester 2007 U. Rüde,

Mehr

Kapitel 8. Lineare Gleichungssysteme III: iterative Verfahren

Kapitel 8. Lineare Gleichungssysteme III: iterative Verfahren Kapitel 8. Lineare Gleichungssysteme III: iterative Verfahren Inhalt: 8.1 Fixpunkt-Iteration 8.2 Verfahren der konjugierten Gradienten 8.3 Anwendungsbeispiel Numerische Mathematik I 323 Kap. 8: Lineare

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Iterative Lösung Linearer Gleichungssysteme

Iterative Lösung Linearer Gleichungssysteme Iterative Lösung Linearer Gleichungssysteme E. Olszewski, H. Röck, M. Watzl 1. Jänner 00 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Vorwort C.F.Gauß in einem Brief vom 6.1.18 an Gerling:

Mehr

6. Iterative Verfahren: Nullstellen und Optima. Besser, schneller, höher, weiter!

6. Iterative Verfahren: Nullstellen und Optima. Besser, schneller, höher, weiter! 6. Iterative Verfahren: Nullstellen und Optima Besser, schneller, höher, weiter! Page 1 of 27 6.1. Große, schwach besetzte lineare Gleichungssysteme I Relaxationsverfahren Einführung Numerisch zu lösende

Mehr

Diplom VP Informatik / Numerik 2. September 2002

Diplom VP Informatik / Numerik 2. September 2002 Diplom VP Informatik / Numerik. September 00 Aufgabe Gegeben sei das lineare Gleichungssystem A x = b mit 0 4 0 0 0 0 A = 4 0 0 0 0 0 0 0 0 und b = 4 4 8 5. Punkte a Berechnen Sie die Cholesky Zerlegung

Mehr

Numerische Behandlung von linearen Gleichungssystemen

Numerische Behandlung von linearen Gleichungssystemen Numerische Behandlung von linearen Gleichungssystemen Der Gauÿ'sche Algorithmus Der Gauÿ'sche Algorithmus ist schon besprochen worden. Er eignet sich zwar prinzipiell gut zur Bestimmung der Lösung eines

Mehr

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2

D-MAVT NUMERISCHE MATHEMATIK FS 14 K. Nipp, A. Hiltebrand Lösung vom Test 2 D-MAVT NUMERISCHE MATHEMATIK FS 4 K Nipp, A Hiltebrand Lösung vom Test Sei A ( 3 3 ) a) Bestimmen Sie κ(a), die Kondition von A (in der -Norm): κ(a) b) Berechnen Sie den Spektralradius von A: ρ(a) 4 c)

Mehr

Invertierung von Sparse Matrizen

Invertierung von Sparse Matrizen Kapitel 8 Invertierung von Sparse Matrizen Im letzten Kapitel haben wir gesehen, wie man Sparse-Matrizen in C++ behandelt. Hier wollen wir diskutieren, wie man die Gleichung Ax = b (8.1) für eine vorgegebene

Mehr

EINFÜHRUNG IN DIE NUMERISCHE MATHEMATIK III 1. Numerische Lineare Algebra. Prof. Dr. Hans Babovsky. Institut für Mathematik

EINFÜHRUNG IN DIE NUMERISCHE MATHEMATIK III 1. Numerische Lineare Algebra. Prof. Dr. Hans Babovsky. Institut für Mathematik EINFÜHRUNG IN DIE NUMERISCHE MATHEMATIK III 1 Numerische Lineare Algebra Prof. Dr. Hans Babovsky Institut für Mathematik Technische Universität Ilmenau 1 Version vom Herbst 2017 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Linear Systems and Least Squares

Linear Systems and Least Squares Linear Systems and Least Squares Vortragender: Gelin Jiofack Nguedong Betreuer: Prof. Dr. Joachim Weickert Proseminar: Matrixmethoden in Datenanalyse und Mustererkennung Wintersemester 2015/2016 18. November

Mehr

Lineare Gleichungssysteme, LR-Zerlegung

Lineare Gleichungssysteme, LR-Zerlegung Prof Thomas Richter 2 Juni 27 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomasrichter@ovgude Material zur Vorlesung Algorithmische Mathematik II am 22627 Lineare Gleichungssysteme,

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 1 Newton Verfahren Taylor Approximation 1. Ordnung von Newton Verfahren! 0 Setze 0und berechne Löse lineares Gleichungssystem für : 2

Mehr

Glättung durch iterative Verfahren

Glättung durch iterative Verfahren Numerische Methoden in der Finanzmathematik II Sommersemester 211 Glättung durch iterative Verfahren Vorlesung Numerische Methoden in der Finanzmathematik II Sommersemester 211 Numerische Methoden in der

Mehr

PCG Verfahren. B ist symmetrisch positiv definit. Eine Matrix-Vektor-Multiplikation mit B hat geringen Aufwand

PCG Verfahren. B ist symmetrisch positiv definit. Eine Matrix-Vektor-Multiplikation mit B hat geringen Aufwand PCG Verfahren Zur Verbesserung des Konvergenzverhaltens des CG-Verfahrens, wird in der Praxis oft ein geeigneter Vorkonditionierer konstruiert. Vorraussetzungen an einen Vorkonditionierer B sind: B ist

Mehr

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation ngewandte Strömungssimulation 8. Vorlesung Stefan Hickel Numerische Strömungsberechnung Physikalische Modellierung Mathematische Modellierung Numerische Modellierung Lösung uswertung Parameter und Kennzahlen

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

Prof. Dr. Hans Babovsky. Technische Universität Ilmenau

Prof. Dr. Hans Babovsky. Technische Universität Ilmenau EINFÜHRUNG IN DIE NUMERISCHE MATHEMATIK II 1 Ausgewählte Kapitel Prof. Dr. Hans Babovsky Institut für Mathematik Technische Universität Ilmenau 1 Version von Herbst 2005 2 Inhaltsverzeichnis 6 Lineare

Mehr

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015 Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix

Mehr

Übungsblatt 5 Musterlösung

Übungsblatt 5 Musterlösung MSE Mathe 4 SS Übungsblatt Musterlösung Lösung (Solution) Siehe MATLAB Codes function [x_new, it, rho] = jacobi (A, x_start, b, TOL, it_max) 3 % Set up all the quantities used during iteration 4 % Diagonal

Mehr

Musterlösung Serie 3

Musterlösung Serie 3 D-MAVT FS 0 K.Nipp NUMERISCHE MATHEMATIK Musterlösung Serie 3. a) T = (D + ωl) ( ωr + ( ω)d) A=[3 ; 3 ; 3]; D=diag(diag(A)); L=tril(A)-D; R=triu(A)-D; omega_vec=0.00:0.00:.999; rho=zeros(size(omega_vec));

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechnung von Eigenwerten Neben der Festlegung auf den betragsgrößten Eigenwert hat die Potenzmethode den Nachteil sehr langsamer Konvergenz, falls die Eigenwerte nicht hinreichend separiert sind.

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) =

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) = Lösungen Lineare Algebra für Physiker, Serie 2 Abgabe am 25.10.2007 1. Es seien A K m n, B,C K n p und D K p q gegeben. 9 P (a) Beweisen Sie das Distributivgesetz A(B + C ) = A B + AC. (b) Beweisen Sie

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 7 / 8 Institut für Informatik Univ.-Prof. Dr. Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen Musterlösung 8. Übungsblatt:

Mehr

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 25. Juni + 2.+9. Juli 2009 Grundlagen Definition Ist für A C n,n, Ax = λx

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 55 Studienplanung Bachelor

Mehr

Zweidimensionales sor-verfahren

Zweidimensionales sor-verfahren Zweidimensionales sor-verfahren erstellt von Kittel Matthias Im Rahmen des Mathematischen Praktikums Sommersemester 000 3/30/00 1. Einleitung.. 1. Mathematische Grundlagen... 1.1. Allgemeines. 1.. Stationäre

Mehr

Kapitel 5 Iterative Verfahren für LGS

Kapitel 5 Iterative Verfahren für LGS Kapitel 5 Iterative Verfahren für LGS Einführung Matrixnormen Splitting Verfahren Mehrgitter (Multigrid) Verfahren Gradientenverfahren Vorkonditionierung CG-Verfahren Abbruch von iterativen Verfahren Zusammenfassung

Mehr

Algorithmik kontinuierlicher Systeme

Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Iterative Verfahren (2/2) Ziel dieser Vorlesung Wie schnell können wir Gleichungssysteme lösen? O(n 3 ) LR- oder QR-Zerlegung: Immer anwendbar Komplexität im Allgemeinen

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

= 9 10 k = 10

= 9 10 k = 10 2 Die Reihe für Dezimalzahlen 1 r = r 0 +r 1 10 +r 1 2 100 + = r k 10 k, wobei r k {0,,9} für k N, konvergiert, da r k 10 k 9 10 k für alle k N und ( 1 ) k 9 10 k 9 = 9 = 10 1 1 = 10 10 k=0 k=0 aufgrund

Mehr