Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Größe: px
Ab Seite anzeigen:

Download "Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme"

Transkript

1 Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1 / 74

2 Mehrgitterverfahren SOR-Verfahren Abbildung: Spektralradius in Abhängigkeit vom Relaxationsparameter Andreas Meister (Universität Kassel) Begleitmaterial Numerik 2 / 74

3 Mehrgitterverfahren SOR-Verfahren SOR-Gauß-Seidel-Verfahren m x m,1 x m,2 ε m := x m A 1 b ε m/ε m e e e e e e e e e e e e e e e-02 Andreas Meister (Universität Kassel) Begleitmaterial Numerik 3 / 74

4 Mehrgitterverfahren Modellproblem Abbildung: Eigenwertverteilung des Jacobi-Verfahrens (ω = 1 2 ) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 4 / 74

5 Mehrgitterverfahren Modellproblem Abbildung: Eigenwertverteilung des Jacobi-Relaxationsverfahrens Andreas Meister (Universität Kassel) Begleitmaterial Numerik 5 / 74

6 Mehrgitterverfahren Modellproblem Abbildung: Dämpfung der Fourier-Moden beim gedämpften Jacobi-Verfahren Andreas Meister (Universität Kassel) Begleitmaterial Numerik 6 / 74

7 Mehrgitterverfahren Modellproblem Abbildung: Entwicklung des Fehlers beim gedämpften Jacobi-Verfahren Andreas Meister (Universität Kassel) Begleitmaterial Numerik 7 / 74

8 Mehrgitterverfahren Modellproblem Abbildung: Wirkung der Injektion (Mitte) und der linearen Restriktion (rechts) auf die Moden (links) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 8 / 74

9 Mehrgitterverfahren Modellproblem Abbildung: Wirkung der Injektion (Mitte) und der linearen Restriktion (rechts) auf die Moden (links) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 9 / 74

10 Mehrgitterverfahren Modellproblem Abbildung: Wirkung der Injektion (Mitte) und der linearen Restriktion (rechts) auf die Moden (links) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 10 / 74

11 Mehrgitterverfahren Modellproblem Abbildung: Wirkung der Injektion (Mitte) und der linearen Restriktion (rechts) auf die Moden (links) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 11 / 74

12 Mehrgitterverfahren Modellproblem Abbildung: Wirkung der Injektion (Mitte) und der linearen Restriktion (rechts) auf die Moden (links) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 12 / 74

13 Mehrgitterverfahren Modellproblem Abbildung: Darstellung der skalierten Mode ẽ 3,1 (links), der skalierten Mode ẽ 2,1 unter der linearen Prolongation (mittig), sowie der Differenz f = ẽ 3,1 P 3 2ẽ2,1 (rechts) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 13 / 74

14 Mehrgitterverfahren Definition 1.8: (Buch Definition 4.50) Sei u l j eine Näherungslösung der Gleichung A l u l = f l, dann heißt die Methode = φ GGK l (u l j, f l) mit φ GGK l u l,neu j Grobgitterkorrekturverfahren. ( u l j, f l) = u l j P l l 1 A 1 l 1 Rl 1 l (A l u l j f l) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 14 / 74

15 Mehrgitterverfahren Lemma 1.9: (Buch Lemma 4.51) Die Grobgitterkorrekturmethode φ GGK l Iterationsverfahren mit stellt ein lineares konsistentes M GGK l = I P l l 1 A 1 l 1 Rl 1 l A l und dar. N GGK l = P l l 1 A 1 l 1 Rl 1 l Andreas Meister (Universität Kassel) Begleitmaterial Numerik 15 / 74

16 Mehrgitterverfahren Modellproblem Abbildung: Darstellung der Fourier-Moden e 3,l, l = 1, 4 (links) sowie die Bilder der zugehörigen Grobgitterkorrektur gemäß Ψ GGK l (rechts) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 16 / 74

17 Mehrgitterverfahren Modellproblem Abbildung: Darstellung der Fourier-Moden e 3,l, l = 8, 12 (links) sowie die Bilder der zugehörigen Grobgitterkorrektur gemäß Ψ GGK l (rechts) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 17 / 74

18 Mehrgitterverfahren Modellproblem Abbildung: Darstellung der Fourier-Mode e 3,l, l = 15 (links) sowie das Bild der zugehörigen Grobgitterkorrektur gemäß Ψ GGK l (rechts) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 18 / 74

19 Mehrgitterverfahren Lemma 1.13: (Buch Lemma 4.55) Sind φ, ψ zwei lineare Iterationsverfahren mit den Iterationsmatrizen M φ und M ψ, dann gilt: 1 Sind φ und ψ konsistent, dann ist auch die Produktiteration φ ψ konsistent. 2 Die Iterationsmatrix der Produktiteration φ ψ hat die Form M φ ψ = M φ M ψ. 3 Die beiden Produktiterationen φ ψ und ψ φ besitzen die gleichen Konvergenzeigenschaften im Sinne von ρ(m φ ψ ) = ρ(m ψ φ ). Andreas Meister (Universität Kassel) Begleitmaterial Numerik 19 / 74

20 Mehrgitterverfahren Satz 1.14: (Buch Satz 4.56) Sei φ l ein konsistentes Iterationsverfahren mit Iterationsmatrix M l, dann ist das Zweigitteriterationsverfahren φ ZGM(ν 1,ν 2 ) l konsistent mit der Iterationsmatrix ( ) M ZGM(ν 1,ν 2 ) l = M ν 2 l I P l l 1 A 1 l 1 Rl 1 l A l M ν 1 l. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 20 / 74

21 Algorithmus - Zweigitterverfahren φ ZGM(ν 1,ν 2 ) l Nassi-Diagramm (Buch Seite 116) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 21 / 74

22 Zweigitterverfahren Modellproblem Abbildung: Entwicklung des Fehlers beim Zweigitterverfahren auf Ω 3 mit zwei Glättungsschritten und einer anschließenden Grobgitterkorrektur Andreas Meister (Universität Kassel) Begleitmaterial Numerik 22 / 74

23 Algorithmus - Mehrgitterverfahren φ MGM(ν 1,ν 2 ) l Nassi-Diagramm (Buch Seite 117) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 23 / 74

24 Mehrgitterverfahren V-Zyklus γ = 1, l = 3 (Buch Seite 138) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 24 / 74

25 Mehrgitterverfahren W-Zyklus γ = 2, l = 3 (Buch Seite 138) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 25 / 74

26 Mehrgitterverfahren Modellproblem Abbildung: Entwicklung der Lösung (links) und des Fehlers (rechts) beim Mehrgitterverfahren mit linearer Restriktion und Prolongation mittels V-Zyklus (oben) und W-Zyklus (unten) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 26 / 74

27 Mehrgitterverfahren Rechenzeitvergleich Rechenzeitvergleich Gitter Anzahl der Mehrgitterverfahren Klassisches Unbekannten Jacobi-Verfahren Ω % 117 % Ω % 838 % Ω % 9255 % Ω % % Andreas Meister (Universität Kassel) Begleitmaterial Numerik 27 / 74

28 Vollständiges Mehrgitterverfahren V-Zyklus γ = 2, l = 2 (Buch Seite 119) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 28 / 74

29 Mehrgitterverfahren Modellproblem Abbildung: Entwicklung der Lösung (links) und des Fehlers (rechts) beim vollständigen Mehrgitterverfahren mit linearer Restriktion und Prolongation mittels V-Zyklus (oben) und W-Zyklus (unten) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 29 / 74

30 Projektionsmethoden Definition 2.1: (Buch Definition 4.58) Eine Projektionsmethode zur Lösung der Gleichung (2.1) ist ein Verfahren zur Berechnung von Näherungslösungen x m x 0 + K m unter Berücksichtigung der Bedingung (b Ax m ) L m, wobei x 0 R n beliebig ist und K m sowie L m m-dimensionale Unterräume des R n repräsentieren. Gilt K m = L m, so sprechen wir von einer orthogonalen Projektionsmethode. Für K m L m liegt sprechen wir von einer schiefen Projektionsmethode. Der Vektor r m = b Ax m heißt Residuenvektor. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 30 / 74

31 Krylov-Unterraum-Verfahren Definition 2.2: (Buch Definition 4.60) Eine Krylov-Unterraum-Methode ist eine Projektionsmethode, bei der K m den Krylov-Unterraum } K m = K m (A, r 0 ) = span {r 0, Ar 0,..., A m 1 r 0 mit r 0 = b Ax 0 darstellt. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 31 / 74

32 Projektionsverfahren Verfahren des steilsten Abstiegs (Buch Seite 149) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 32 / 74

33 Projektionsverfahren Beispiel 2.6: (Buch Seite 152) Abbildung: Konvergenzverlauf Andreas Meister (Universität Kassel) Begleitmaterial Numerik 33 / 74

34 Projektionsverfahren Beispiel 2.6: (Buch Seite 152) Abbildung: Höhenlinien zu F (x) = 1 2 (Ax, x) (b, x) = x x 2 2 Andreas Meister (Universität Kassel) Begleitmaterial Numerik 34 / 74

35 Projektionsverfahren Verfahren der konjugierten Richtungen (Buch Seite 156) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 35 / 74

36 Projektionsverfahren Zusammenhänge (Buch Seite 157) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 36 / 74

37 Projektionsverfahren Vorläufiges CG-Verfahren (Buch Seite 157) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 37 / 74

38 Projektionsmethoden Satz 2.14: (Buch Satz 4.75) Vorausgesetzt, das vorläufige CG-Verfahren bricht nicht vor der Berechnung von p k für k > 0 ab, dann gilt (a) p m ist konjugiert zu allen p j mit 0 j < m k, (b) U m+1 := span {p 0,..., p m } = span {r 0,..., r m } mit dim U m+1 = m + 1 für m = 0,..., k 1, (c) r m U m für m = 1,..., k, (d) x k = A 1 b r k = 0 p k = 0, (e) U m+1 = span { r 0,..., A m r 0 } für m = 0,..., k 1, (f) r m ist konjugiert zu allen p j mit 0 j < m 1 < k 1. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 38 / 74

39 Projektionsverfahren CG-Verfahren (Buch Seite 160) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 39 / 74

40 Projektionsverfahren Beispiel 2.15(a): (Buch Beispiel 4.76) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 40 / 74

41 Projektionsverfahren Beispiel 2.15: (Buch Beispiel 4.77) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 41 / 74

42 Projektionsmethoden Satz 2.17: (Buch Satz 4.78) Seien A R n n symmetrisch, positiv definit und {x m } m N0 die durch das Verfahren der konjugierten Gradienten erzeugte Folge von Näherungslösungen. Dann erfüllt der zu x m korrespondierende Fehlervektor e m = x m A 1 b die Ungleichung e m A 2 ( cond2 (A) 1 cond2 (A) + 1) m e 0 A. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 42 / 74

43 Krylov-Unterraum-Verfahren Arnoldi-Algorithmus (Buch Seite 166) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 43 / 74

44 Krylov-Unterraum-Verfahren Satz 2.18: (Buch Satz 4.79) Vorausgesetzt, der Arnoldi-Algorithmus bricht nicht vor der Berechnung von v m 0 ab, dann stellt V j = {v 1,..., v j } eine Orthonormalbasis des j-ten Krylov-Unterraums K j für j = 1,..., m dar. Satz 2.19: (Buch Satz 4.80) Vorausgesetzt, der Arnoldi-Algorithmus bricht nicht vor der Berechnung von v m 0 ab, dann erhalten wir unter Verwendung von V m = (v 1... v m ) R n m mit H m := V T mav m R m m eine obere Hessenbergmatrix, für die { hij aus dem Arnoldi-Algorithmus für i j + 1, (H m ) ij = 0 für i > j + 1 gilt. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 44 / 74

45 Krylov-Unterraum-Verfahren Satz 2.20: (Buch Satz 4.81) Vorausgesetzt, der Arnoldi-Algorithmus bricht nicht vor der Berechnung von v m+1 ab, dann gilt wobei H m R (m+1) m durch ( H m = gegeben ist. AV m = V m+1 H m, H m h m+1,m ) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 45 / 74

46 Krylov-Unterraum-Verfahren FOM (Buch Seite 168) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 46 / 74

47 Krylov-Unterraum-Verfahren Restarted FOM (Buch Seite 169) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 47 / 74

48 Krylov-Unterraum-Verfahren Lemma 2.23: (Buch Lemma 4.88) Es sei vorausgesetzt, dass der Arnoldi-Algorithmus nicht vor der Berechnung von v m+1 abbricht und die Matrizen G i+1,i R (m+1) (m+1) für i = 1,..., m durch G i+1,i := c i s i s i c i gegeben sind, wobei c i und s i gemäß c i := a b und s i := a2 + b 2 a2 + b 2 Andreas Meister (Universität Kassel) Begleitmaterial Numerik 48 / 74

49 Krylov-Unterraum-Verfahren Lemma 2.23: (Buch Lemma 4.88) mit a := ( G i,i 1... G 3,2 G 2,1 H m )i,i und b := ( G i,i 1... G 3,2 G 2,1 H m )i+1,i definiert sind. Dann stellt Q m := G m+1,m... G 2,1 eine orthogonale Matrix dar, für die Q m H m = R m mit r r 1m ( ) R m = Rm. =: R (m+1) m r mm gilt und R m regulär ist. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 49 / 74

50 Krylov-Unterraum-Verfahren GMRES (Buch Seite 186) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 50 / 74

51 Krylov-Unterraum-Verfahren Satz 2.24: (Buch Satz 4.89) Seien A R n n eine reguläre Matrix sowie h j+1,j und w j durch den Arnoldi-Algorithmus gegeben und gelte j < n. Dann sind die folgenden Aussagen äquivalent: 1 Für die Folge der Krylov-Unterräume gilt K 1 K 2... K j = K j+1 = Das GMRES-Verfahren liefert im j-ten Schritt die exakte Lösung. 3 w j = 0 R n. 4 h j+1,j = 0. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 51 / 74

52 Krylov-Unterraum-Verfahren Restarted GMRES (Buch Seite 190) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 52 / 74

53 Krylov-Unterraum-Verfahren Satz 2.25: (Buch Satz 4.90) Sei A R n n positiv definit und r m der im GMRES-Verfahren ermittelte m-te Residuenvektor, dann konvergiert das GMRES-Verfahren, und es gilt ( ) λ 2 A T m +A 2 min 2 r m 2 1 ) r 0 2. λ max (A T A Korollar 2.26: (Buch Korollar 4.91) Sei A R n n positiv definit und symmetrisch. Zudem sei r m der im GMRES-Verfahren ermittelte m-te Residuenvektor, dann konvergiert das GMRES-Verfahren und es gilt ( ) cond 2 m 2 r m 2 (A) 1 2 cond 2 2 (A) r 0 2. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 53 / 74

54 Krylov-Unterraum-Verfahren Satz 2.27: (Buch Satz 4.92) Sei A R n n positiv definit, dann konvergiert das GMRES(m)-Verfahren für m 1. Satz 2.28: (Buch Satz 4.93) Sei A R n n regulär und symmetrisch, dann konvergiert das GMRES(m)-Verfahren für m 2. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 54 / 74

55 Krylov-Unterraum-Verfahren Lanczos-Algorithmus (Buch Seite 171) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 55 / 74

56 Krylov-Unterraum-Verfahren D-Lanczos-Verfahren (Buch Seite 173) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 56 / 74

57 Krylov-Unterraum-Verfahren Definition 2.29: (Buch Definition 4.82) Seien v 1,..., v m, w 1,..., w m R n, dann heißen die beiden Mengen {v 1,..., v m } und {w 1,..., w m } bi-orthogonal, wenn ( v i, w j ) 2 = δ ijc ij mit c ij R\{0} für i, j = 1,..., m gilt. Im Fall c ii = 1 für i = 1,..., m heißen die Mengen bi-orthonormal. Lemma 2.30: (Buch Lemma 4.83) Seien die Mengen {v 1,..., v m } und {w 1,..., w m } bi-orthogonal, dann gilt dim span {v 1,..., v m } = m = dim span {w 1,..., w m } Andreas Meister (Universität Kassel) Begleitmaterial Numerik 57 / 74

58 Krylov-Unterraum-Verfahren Bi-Lanczos-Algorithmus (Buch Seite 175) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 58 / 74

59 Krylov-Unterraum-Verfahren Satz 2.31: (Buch Satz 4.84) Vorausgesetzt, der Bi-Lanczos-Algorithmus bricht nicht vor der Berechnung von w m 0 ab, dann stellen V j = { } v 1,..., v j und W j = { } w 1,..., w j eine Basis des Krylov-Unterraums Kj beziehungsweise Kj T für j = 1,..., m dar. Zudem erfüllen die Basisvektoren die Bi-Orthogonalitätsbedingung mit c ii = 1 für i = 1,..., m. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 59 / 74

60 Krylov-Unterraum-Verfahren Satz 2.32: (Buch Satz 4.85) Vorausgesetzt, der Bi-Lanczos-Algorithmus bricht nicht vor der Berechnung von w m 0 ab, dann seien V m = (v 1... v m ) R n m und W m = (w 1... w m ) R n m die aus den ermittelten Basisvektoren des K m und K T m gebildeten Matrizen. Desweiteren seien h ij die im Algorithmus auftretenden skalaren Größen, dann gelten die Gleichungen T m = W T mav m AV m = V m T m + h m+1,m v m+1 e T m A T W m = W m T T m + h m,m+1 w m+1 e T m mit e m = (0,..., 0, 1) T R m sowie der durch { hij für j 1 i j + 1, (T m ) ij := 0 sonst gegebenen Tridiagonalmatrix T m R m m und die Matrizen V m und W m besitzen maximalen Rang. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 60 / 74

61 Krylov-Unterraum-Verfahren Satz 2.33: (Buch Satz 4.94) Vorausgesetzt, der Bi-Lanczos-Algorithmus bricht nicht vor der Berechnung von v m 0 ab, und die in Satz 2.32 definierte Tridiagonalmatrix T m ist regulär, dann stellt x m = x 0 + V m T 1 m ( r 0 2 e 1 ) x 0 + K m mit e 1 = (1, 0,..., 0) T R m die eindeutig bestimmte Lösung der auf der Petrov-Galerkin-Bedingung b Ax m K T m basierenden Krylov-Unterraum-Methode dar. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 61 / 74

62 Krylov-Unterraum-Verfahren BiCG-Verfahren (Buch Seite 198) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 62 / 74

63 Krylov-Unterraum-Verfahren Lemma 2.34: (Buch Lemma 4.95) Vorausgesetzt, der BiCG-Algorithmus bricht nicht vor der Berechnung von p m ab, dann gilt für j = 0,..., m r j = p j = j+1 j+1 γ i v i, r j = γi w i, i=1 i=1 j+1 j+1 λ i v i, p j = λ i w i i=1 i=1 mit γ j+1, γj+1, λ j+1, λ j+1 0 und den aus dem Bi-Lanczos-Algorithmus resultierenden bi-orthonormalen Vektoren v 1,..., v j+1 und w 1,..., w j+1. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 63 / 74

64 Krylov-Unterraum-Verfahren Lemma 2.35: (Buch Lemma 4.96) Vorausgesetzt, der BiCG-Algorithmus bricht nicht vor der Berechnung von p m+1 ab, dann gilt ( r j, r ) i = 0 für i j m + 1, 2 ( Apj, p ) i = 0 für i j m + 1. Satz 2.36: (Buch Satz 4.97) 2 Unter der Voraussetzung, daß der BiCG-Algorithmus nicht vor der Berechnung von r m abbricht, stellt x m die Lösung des Problems mit x x 0 + K m dar. b Ax K T m Andreas Meister (Universität Kassel) Begleitmaterial Numerik 64 / 74

65 Krylov-Unterraum-Verfahren CGS-Verfahren (Buch Seite 204) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 65 / 74

66 Krylov-Unterraum-Verfahren BiCGSTAB-Verfahren (Buch Seite 208) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 66 / 74

67 Krylov-Unterraum-Verfahren Konvergenzverläufe (Buch Seite 223) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 67 / 74

68 Präkonditionierung Definition 3.2: (Buch Definition 5.9) Sei durch x j+1 = Mx j + Nb eine Splitting-Methode zur Lösung von Ax = b mit einer regulären Matrix N gegeben, dann heißt P = N der zur Splitting-Methode assoziierte Präkonditionierer. Splitting-Methode Jacobi-Verfahren Gauß-Seidel-Verf. SOR-Verfahren Symm. G.-S.-Verf. SSOR-Verfahren Assoziierter Präkonditionierer P Jac = D 1 P GS = (D + L) 1 P GS (ω) = ω (D + ωl) 1 P SGS = (D + R) 1 D (D + L) 1 P SGS (ω) = ω(2 ω) (D + ωr) 1 D (D + ωl) 1 Andreas Meister (Universität Kassel) Begleitmaterial Numerik 68 / 74

69 Präkonditionierung Definition 3.3: (Buch Definition 5.10) Jede Menge M {(i, j) i, j {1,..., n}} heißt Matrixmuster im Raum R n n. Zu gegebenem Matrixmuster M heißt M S (j) := {i (i, j) M} das zu M gehörige j-te Spaltenmuster und M Z (j) := {i (j, i) M} das zu M gehörige j-te Zeilenmuster. Zu gegebener Matrix A R n n bezeichnet M A := { (i, j) a ij 0 } die Besetzungsstruktur von A. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 69 / 74

70 Präkonditionierung Definition 3.4: (Buch Definition 5.11) Sei A R n n. Die Zerlegung A = LU + F ( ) existiere unter den Bedingungen 1 u ii = 1 für i = 1,..., n, 2 l ij = u ij = 0, falls (i, j) M A, 3 (LU) ij = a ij, falls (i, j) M A, und es seien L = (l ij ) i,j=1,...,n und U = (u ij ) i,j=1,...,n eine reguläre linke untere beziehungsweise rechte obere Dreiecksmatrix, dann heißt ( ) unvollständige LU-Zerlegung (incomplete LU, ILU) der Matrix A zum Muster M A. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 70 / 74

71 Präkonditionierung Unvollständige LU-Zerlegung (Buch Seite 217) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 71 / 74

72 Präkonditionierung Definition 3.5: (Buch Definition 5.12) Es sei A = LU + F eine unvollständige LU-Zerlegung der Matrix A, dann ist P := U 1 L 1 der zugehörige ILU-Präkonditionierer. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 72 / 74

73 Präkonditionierung Definition 3.6: (Buch Definition 5.13) Sei A R n n symmetrisch und positiv definit. Die Zerlegung A = LL T + F ( ) existiere unter den Bedingungen 1 l ij = 0, falls (i, j) M A, 2 (LL T ) ij = a ij, falls (i, j) M A, und es sei L = (l ij ) i,j=1,...,n eine reguläre linke untere Dreiecksmatrix, dann heißt ( ) unvollständige Cholesky-Zerlegung (incomplete Cholesky, IC) der Matrix A zum Muster M A. Andreas Meister (Universität Kassel) Begleitmaterial Numerik 73 / 74

74 Präkonditionierung Unvollständige Cholesky-Zerlegung (Buch Seite 219) Andreas Meister (Universität Kassel) Begleitmaterial Numerik 74 / 74

3. Lineare Gleichungssysteme

3. Lineare Gleichungssysteme 3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

7. Iterative Lösung. linearer Gleichungssysteme

7. Iterative Lösung. linearer Gleichungssysteme 7. Iterative Lösung linearer Gleichungssysteme 1 Grundlagen (1) Zur Erinnerung: Gesucht ist die Lösung eines linearen Gleichungssystems a 0,0 x 0 +a 0,1 x 1 + a 0,n 1 x n 1 = b 0 a 1,0 x 0 +a 1,1 x 1 +

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 21 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,,255}, n = 1,,N, m = 1,,M dig Camera Realisierung von B η ist

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,...,255}, n = 1,...,N, m = 1,...,M. dig. Camera Realisierung

Mehr

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Praktikum im Sommersemester 2012 Programmierpraktikum numerische Algorithmen (P2E1) (Numerische Lösung der Wärmeleitungsgleichung)

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 11 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig

Mehr

Numerische Mathematik für Ingenieure (SoSe 2013)

Numerische Mathematik für Ingenieure (SoSe 2013) Numerische Mathematik für Ingenieure (SoSe 2013) PD Dr(USA) Maria Charina Auszüge aus Vorlesungsfolien von Prof Joachim Stöckler werden verwendet Für die Bereitstellung dieses Materials und der Tex-Files

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Lineare Iterationsverfahren: Definitionen

Lineare Iterationsverfahren: Definitionen Lineare Iterationsverfahren: Definitionen 1. Ein Lösungsverfahren zur Berechnung von Ax = b heißt iterativ, falls ausgehend von einem Startwert x eine Folge x k von Iterierten bestimmt wird. 2. Ein Iterationsverfahren

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Wir betrachten das lineare Gleichungssystem Ax = b mit der n n-koeffizientenmatrix A und der rechten Seite b R n. Wir leiten zuerst eine Variante des Gauss-Algorithmus (LR-Zerlegung)

Mehr

38 Iterative Verfahren für lineare Gleichungssysteme

38 Iterative Verfahren für lineare Gleichungssysteme 38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Beispiel: Feder Masse System festes Ende Feder k 1 Masse m 1 k 2 m 2 k 3 m 3 k 4 festes Ende u 0 = 0 Federkraft y 1 Verschiebung u 1 y 2 u 2 y 3 u 3 y 4 u 4 = 0 Grundlagen der

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

Numerische Mathematik für Ingenieure und Physiker

Numerische Mathematik für Ingenieure und Physiker Willi Törnig Peter Spellucci Numerische Mathematik für Ingenieure und Physiker Band 1: Numerische Methoden der Algebra Zweite, überarbeitete und ergänzte Auflage Mit 15 Abbildungen > Springer-Verlag Berlin

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Iterative Verfahren zur Lösung von Linearen Gleichungssystemen

Iterative Verfahren zur Lösung von Linearen Gleichungssystemen Kapitel 4 Iterative Verfahren zur Lösung von Linearen Gleichungssystemen Situation: A C n n schwach besetzt, n groß, b C n. Ziel: Bestimme x C n mit Ax = b. 4.1 Spliting-Methoden Die Grundidee ist hier

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

Kapitel 5 Iterative Verfahren für LGS

Kapitel 5 Iterative Verfahren für LGS Kapitel 5 Iterative Verfahren für LGS Einführung Matrixnormen Splitting Verfahren Mehrgitter (Multigrid) Verfahren Gradientenverfahren Vorkonditionierung CG-Verfahren Abbruch von iterativen Verfahren Zusammenfassung

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

Vorkonditionierer. diskrete stationäre Eulergleichungen

Vorkonditionierer. diskrete stationäre Eulergleichungen Übersicht Bernhard Pollul,, RWTH Templergraben 55, 52056, E-mail: pollul@igpm.rwth-aachen.de Vorkonditionierer für diskrete stationäre Eulergleichungen 1/13 1., Teilprojekt B4 2. Vorkonditionierung 3.

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 6. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. März 2010 Nachträge Gliederung Nachträge it Nachträge Wichtige Begriffe Eine Zusammenfassung der Folien 8 16 der letzten

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Klausur zur Mathematik II (Modul: Lineare Algebra II)

Klausur zur Mathematik II (Modul: Lineare Algebra II) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Wintersemester 0/04 Klausur zur Mathematik II (Modul: Lineare Algebra II) 05.0.04 Sie haben 60 Minuten Zeit zum

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

Prof. Dr. L. Diening Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt. Klausur. Numerik WS 2010/11

Prof. Dr. L. Diening Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt. Klausur. Numerik WS 2010/11 Prof. Dr. L. Diening 09.02.2011 Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt Klausur Numerik WS 2010/11 Es ist erlaubt, eine selbst erstellte, einseitig per Hand beschriebene A4 Seite in der Klausur

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

Das CG-Verfahren. Sven Wetterauer

Das CG-Verfahren. Sven Wetterauer Das CG-Verfahren Sven Wetterauer 06.07.2010 1 Inhaltsverzeichnis 1 Einführung 3 2 Die quadratische Form 3 3 Methode des steilsten Abstiegs 4 4 Methode der Konjugierten Richtungen 6 4.1 Gram-Schmidt-Konjugation.........................

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I NUMERISCHE MATHEMATIK I Vorlesungsskript, Sommersemester 2011 Christian Clason Stand vom 29. September 2011 Institut für Mathematik und Wissenschaftliches Rechnen Karl-Franzens-Universität Graz INHALTSVERZEICHNIS

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 25. Juni + 2.+9. Juli 2009 Grundlagen Definition Ist für A C n,n, Ax = λx

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

Glättung durch iterative Verfahren

Glättung durch iterative Verfahren Numerische Methoden in der Finanzmathematik II Sommersemester 211 Glättung durch iterative Verfahren Vorlesung Numerische Methoden in der Finanzmathematik II Sommersemester 211 Numerische Methoden in der

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5

Zeigen Sie, dass der einzige Gruppenhomomorphismus von (G, ) nach (Z 5, +) die Abbildung Φ : G Z 5 Aufgabe I (4 Punkte) Es sei G : {e, g, g, g } eine 4-elementige Gruppe mit neutralem Element e Die Verknüpfung auf G werde mit bezeichnet Außerdem seien in G folgende Gleichungen erfüllt: g g g und g g

Mehr

Konvergenz des Jacobi- und Gauß-Seidel-Verfahrens

Konvergenz des Jacobi- und Gauß-Seidel-Verfahrens Konvergenz des Jacobi- und Gauß-Seidel-Verfahrens Bachelor-Arbeit im -Fach Bachelorstudiengang Mathematik der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

13 Partielle Ableitung und Richtungsableitung

13 Partielle Ableitung und Richtungsableitung 3 PARTIELLE ABLEITUNG UND RICHTUNGSABLEITUNG 74 3 Partielle Ableitung und Richtungsableitung 3 Definition und Notiz Sei B R n offen, f : B R m, v R n, so heißt für γ x,v (t) = x + tv d dt f(x + tv) f(x)

Mehr

Lineare Algebra. 10. Übungsstunde. Steven Battilana.

Lineare Algebra. 10. Übungsstunde. Steven Battilana. Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch November 3, 26 Erinnerung Gram-Schmidt Verfahren Sei V ein euklidischer/unitärer Vektorraum mit dim(v ) n < Gegeben: W span{v,...,

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 204 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

3.6 Approximationstheorie

3.6 Approximationstheorie 3.6 Approximationstheorie Bisher haben wir uns im Wesentlichen mit der Interpolation beschäftigt. Die Approximation ist weiter gefasst: wir suchen eine einfache Funktion p P (dabei ist der Funktionenraum

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren 8. Vorlesung, 5. April 2017 170 004 Numerische Methoden I Eigenwerte und Eigenvektoren 1 Eigenwerte und Eigenvektoren Gegeben ist eine n n-matrix A. Gesucht sind ein vom Nullvektor verschiedener Vektor

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 5. Dezember 2007 Definition : Tomographie (Fortsetzung) : Tomographie Definition: Ein lineares Gleichungssystem (LGS) ist ein System von n

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Parallelrechnern. 12. März Technische Universität Chemnitz. Der Jacobi-Davidson Algorithmus auf. Parallelrechnern. Patrick Kürschner.

Parallelrechnern. 12. März Technische Universität Chemnitz. Der Jacobi-Davidson Algorithmus auf. Parallelrechnern. Patrick Kürschner. Technische Universität Chemnitz 12. März 2008 - sweise Gliederung - sweise - sweise Eigenwertprobleme Ziel: Lösung von Eigenwertproblemen Dabei: Ax = λx Matrix A C n n sehr groß, dünnbesetzt (sparse) Gesucht:

Mehr

Mathematik für Ingenieure 1

Mathematik für Ingenieure 1 A. Hoffmann B. Marx W. Vogt Mathematik für Ingenieure 1 Lineare Algebra, Analysts Theorie und Numerik PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

51 Numerische Berechnung von Eigenwerten und Eigenvektoren

51 Numerische Berechnung von Eigenwerten und Eigenvektoren 5 Numerische Berechnung von Eigenwerten und Eigenvektoren 5. Motivation Die Berechnung der Eigenwerte einer Matrix A IR n n als Lösungen der charakteristischen Gleichung (vgl. Kapitel 45) ist für n 5 unpraktikabel,

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen 1 / 16 Vektorraum u R n, u = (u 1,..., u n ), u k R Euklidisches Skalarprodukt Euklidische Vektornorm (u, v) = u k v k u 2 = (u, u) = n u 2 k Vektoren u, v R n heißen orthogonal,

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr