Data Mining (ehem. Entscheidungsunterstützungssysteme)
|
|
|
- Cornelia Steinmann
- vor 10 Jahren
- Abrufe
Transkript
1 Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15
2 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte)
3 ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE 1. Aufgabe a) Wodurch ist ein Entscheidungsproblem gekennzeichnet? Auswahl aus mind. zwei Alternativen (Handlungsalternativen, Entscheidungsmöglichkeiten, Aktionen, Strategien) durch wenigstens einen Entscheidungsträger (z.b. Individuum, Unternehmen, Staat) unter Sicherheit oder Unsicherheit (Ungewissheit, Risiko, Unschärfe). b) Wie sieht ein typischer Prozess des Entscheidens aus? Entscheidung = Willensbildung + Entschluss; Entscheidungsprozess = Ablauf einer Entscheidung (mehrstufige Entscheidung) Phasen: Problemformulierung (nach Wahrnehmung von Symptomen, die eine Entscheidung erfordern) Präzisierung des Zielsystems für die Alternativensuche und -bewertung Alternativensuche und Ergebnisprognose (für die einzelnen Alternativen) Alternativenauswahl = eigentliche Entscheidung Ggf. weitere Entscheidungen während der Realisierungsphase (konkreten Umsetzung)
4 ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE 1. Aufgabe c) Was ist das Ziel der Entscheidungstheorie und worin liegt der Unterschied zwischen deskriptiver und präskriptiver Entscheidungstheorie? Entscheidungstheorie befasst sich mit Entscheidungsverhalten Teilgebiete: Deskriptive Entscheidungstheorie: fragt nach tatsächlichem Entscheidungsverhalten (induktiv) Präskriptive ( normative ) Entscheidungstheorie: fragt danach, wie Entscheidungen rational getroffen werden können sucht nach den Grundlagen und Verfahren logischen Entscheidens -> Entscheidungslogik Ziel: Entwicklung von mathematischen Modellen, mit deren Hilfe aus einem gegebenen Input der zu erwartende Output bestimmt werden kann
5 ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE 1. Aufgabe d) Lösung zum Exkurs: Deskriptive Statistik (OPAL)
6 ANWENDUNGSSYSTEME UND SYSTEMKATEGORIEN VON EUS 2. Aufgabe a) Erklären Sie die Begriffe Administrationssystem und Dispositionssystem! Grenzen Sie diese Systemklasse von den Planungs- und Kontrollsystemen ab!
7 ANWENDUNGSSYSTEME UND SYSTEMKATEGORIEN VON EUS 2. Aufgabe a) Erklären Sie die Begriffe Administrationssystem und Dispositionssystem! Grenzen Sie diese Systemklasse von den Planungs- und Kontrollsystemen ab! Administrations- und Dispositionssysteme Operative Systeme zur Unterstützung des operativen (Tages-)Geschäftes nur bedingt Managementunterstützend: stellen lediglich die Datenbasis für die Beurteilung des gegenwärtigen und vergangenen Betriebsgeschehens dar 1. Klasse: Operative Systeme, Pyramide unterer Teil Planungs- und Kontrollsysteme (Führungssysteme): direkt auf die Belange der Fach- und Führungskräfte ausgerichtet. Informationssysteme, Entscheidungsunterstützungssysteme, Berichts- und Kontrollsysteme 2. Klasse: Planungs- und Kontrollsysteme, Pyramide oberer Teil
8 ANWENDUNGSSYSTEME UND SYSTEMKATEGORIEN VON EUS 2. Aufgabe b) In welche Systemklasse lassen sich die Dispositiven Informationssysteme einordnen? c) Grenzen Sie die Begriffe Executive Information System, Decision Support System und Management Support System voneinander ab!
9 ANWENDUNGSSYSTEME UND SYSTEMKATEGORIEN VON EUS 2. Aufgabe d) Nennen Sie zwei Beispiele für Operative Systeme innerhalb eines Unternehmens.
10 DATA MINING 3. Aufgabe a) Überlegen und erläutern Sie an einem selbstgewählten Beispiel, wo Sie im Alltag mit Data Mining in Berührung kommen! b) Was ist KDD? Welche Ziele werden damit verfolgt? Knowledge Discovery in Databases describes the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data. Nicht-trivialer Prozess (non-trivial process) dessen Ziel es ist, Muster (patterns) aus großen Datenbeständen (data) zu extrahieren, welche für einen großen Teil des Datenbestandes gültig sind (valid), bislang unbekannte (novel), potenziell nützliche (potentially useful) und leicht verständliche (ultimately understandable) Zusammenhänge innerhalb des Datenbestandes beschreiben.
11 DATA MINING 3. Aufgabe c) Worin liegt der Unterschied zwischen Knowledge Discovery und Data Mining? d) Welche Aufgabenbereiche des Data Mining kennen Sie und welche Problembereiche lassen sich daraus ableiten? Problemtypen des Data Mining: Beschreibungsaufgaben descriptive data mining Segmentierung (Welche Kundengruppen gibt es?) Abhängigkeiten (Welche Waren werden oft zusammen gekauft?) Prognoseaufgaben predictive data mining Klassifikation (Ist der Kunde kündigungsgefährdet?) Regression (Umsatz des Kunden in der nächsten Saison?)
12 DATEN-/INFORMATIONSQUALITÄT U. SKALENNIVEAUS 4. Aufgabe a) Grenzen Sie Daten, Information und Wissen voneinander ab und erläutern Sie die Übergänge!
13 DATEN-/INFORMATIONSQUALITÄT U. SKALENNIVEAUS 4. Aufgabe b) Nennen Sie jeweils vier wichtige Kriterien für Daten- und Informationsqualität!
14 DATEN-/INFORMATIONSQUALITÄT U. SKALENNIVEAUS 4. Aufgabe c) Was ist ein Skalenniveau und welcher Zusammenhang besteht hinsichtlich der Daten- bzw. Informationsqualität? Skalenniveau = Eigenschaft von Merkmalen bzw. von Variablen statistischen Informationsgehalt von Bedeutung für die Interpretation der Daten und die Eignung statistischer Verfahren gibt an Welche Vergleichsaussagen und welche rechnerischen Operationen für die Skalenwerte sinnvoll und somit zulässig sind Welche Transformationen von Skalenwerten die Messung erhalten (sogenannte zulässige Transformationen)
15 DATEN-/INFORMATIONSQUALITÄT U. SKALENNIVEAUS 4. Aufgabe d) Ergebnisse der OPAL-Aufgabe? Diskrete Werte Stetige Werte abzählbar viele Merkmalsausprägungen beliebige Werte in einem Bereich (Intervall) Metrische Daten gemessene reelle Zahl mit interpretierbaren Abständen, quantitativ (z.b. Gewicht, Größe) =/ </> +/- ( / ) -> diskret oder stetig Ordinale Daten Nominale Daten lassen sich ordnen, Ordnung aber nicht durch reellen Wert ausdrückbar (z.b. Schulnoten sehr gut ) =/ </> -> meist diskret zählbar aber keine Ordnung gegeben, qualitativ (z.b. Geschlecht) =/ -> stets diskret Weitere Beispiele: Alter (0-100 Jahre), Temperatur (0-100 C) Würfeln (2, 3, 4, ) Platzierung Sport (1., 2., 3. Platz) stetig, metrische Skala diskret, metrische Skala diskret, ordinale Skala
16 AGENDA TEIL 2 Fallstudie Teil 1 (ohne EB)
17 DM-Software RapidMiner Fallstudie Teil I
18 DM-Software RapidMiner Fallstudie Teil I
19 DM-Software RapidMiner erste Schritte (4.)
20 DM-Software RapidMiner Fallstudie Teil II
21 DM-Software RapidMiner erste Schritte Hauptprozess: Data Mining Bsp. Entscheidungsbaum
Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining
Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe
Skalenniveau Grundlegende Konzepte
Skalenniveau Grundlegende Konzepte M E R K M A L / V A R I A B L E, M E R K M A L S A U S P R Ä G U N G / W E R T, C O D I E R U N G, D A T E N - M A T R I X, Q U A N T I T A T I V E S M E R K M A L, Q
Teil I: Deskriptive Statistik
Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten
Grundlagen der Datenanalyse am Beispiel von SPSS
Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein [email protected] Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe
Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery
Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?
Data Mining: Einige Grundlagen aus der Stochastik
Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener
Auswahl alter Klausuraufgaben aus einer ähnlichen Vorlesung Maßgeblich für die Prüfung sind die Vorlesungsinhalte!
Auswahl alter Klausuraufgaben aus einer ähnlichen Vorlesung Maßgeblich für die Prüfung sind die Vorlesungsinhalte! Aufgabe 1: Grundlagen (5 Punkte) a) Definieren Sie kurz Usability und User Experience.
DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374
DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN Nr. 374 Eignung von Verfahren der Mustererkennung im Process Mining Sabrina Kohne
Mitarbeiterbefragung als PE- und OE-Instrument
Mitarbeiterbefragung als PE- und OE-Instrument 1. Was nützt die Mitarbeiterbefragung? Eine Mitarbeiterbefragung hat den Sinn, die Sichtweisen der im Unternehmen tätigen Menschen zu erkennen und für die
Stichprobenauslegung. für stetige und binäre Datentypen
Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung
Was meinen die Leute eigentlich mit: Grexit?
Was meinen die Leute eigentlich mit: Grexit? Grexit sind eigentlich 2 Wörter. 1. Griechenland 2. Exit Exit ist ein englisches Wort. Es bedeutet: Ausgang. Aber was haben diese 2 Sachen mit-einander zu tun?
Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015
Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet
Grundlagen der Inferenzstatistik
Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,
Vgl. Kapitel 5 aus Systematisches Requirements Engineering, Christoph Ebert https://www.sws.bfh.ch/studium/cas/swe-fs13/protected/re/re_buch.
Vgl. Kapitel 5 aus Systematisches Requirements Engineering, Christoph Ebert https://www.sws.bfh.ch/studium/cas/swe-fs13/protected/re/re_buch.pdf 2 Nach derbefragung aller Stakeholder und der Dokumentation
Data Mining als Arbeitsprozess
Data Mining als Arbeitsprozess Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 31. Dezember 2015 In Unternehmen werden umfangreichere Aktivitäten oder Projekte im Bereich des Data Mining
Data Mining und Knowledge Discovery in Databases
Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining
Forschungsmethoden in der Sozialen Arbeit
Forschungsmethoden in der Sozialen Arbeit Erhebungsinstrument Lehrveranstaltung an der Fachhochschule für Sozialarbeit und Sozialpädagogik "Alice Salomon" Hochschule für Soziale Arbeit, Gesundheit, Erziehung
Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau
1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank
Statistik I für Betriebswirte Vorlesung 5
Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition
8.2.2.3 Übung - Arbeiten mit Android
5.0 8.2.2.3 Übung - Arbeiten mit Android Einführung Drucken Sie die Übung aus und führen Sie sie Übungen durch. In dieser Übung werden Sie Apps und Widgets auf dem Home-Bildschirm platzieren und Sie zwischen
Predictive Modeling Markup Language. Thomas Morandell
Predictive Modeling Markup Language Thomas Morandell Index Einführung PMML als Standard für den Austausch von Data Mining Ergebnissen/Prozessen Allgemeine Struktur eines PMML Dokuments Beispiel von PMML
Basis (=100%) zusätzlichen Schulabschluss an. Befragungszeitraum: 29.11.-10.12.2011
Tabelle 1: Interesse an höherem Schulabschluss Streben Sie nach Beendigung der Schule, die Sie momentan besuchen, noch einen weiteren oder höheren Schulabschluss an? Seite 1 Selektion: Schüler die nicht
8. Grundlagen der empirischen Sozialforschung
Einführung in das Studium der Management- und Wirtschaftswissenschaften WS 2013/14 8. Grundlagen der empirischen Sozialforschung Internationales Institut für Management und ökonomische Bildung Professur
Führen von blinden Mitarbeitern
125 Teamführung Führungskräfte sind heutzutage keine Vorgesetzten mehr, die anderen autoritär ihre Vorstellungen aufzwingen. Führung lebt von der wechselseitigen Information zwischen Führungskraft und
Klausur Informationsmanagement 15.01.2010
Klausur Informationsmanagement 15.01.2010 Sie haben 90 Minuten Zeit zum Bearbeiten. Sie können maximal 90 Punkte erreichen. Nehmen Sie die für eine Aufgabe vergebenen Punkte auch als Hinweis für die Bearbeitungszeit.
«Eine Person ist funktional gesund, wenn sie möglichst kompetent mit einem möglichst gesunden Körper an möglichst normalisierten Lebensbereichen
18 «Eine Person ist funktional gesund, wenn sie möglichst kompetent mit einem möglichst gesunden Körper an möglichst normalisierten Lebensbereichen teilnimmt und teilhat.» 3Das Konzept der Funktionalen
Personalentwicklung. Umfrage zur Personalentwicklung. Februar 2014. Cisar - consulting and solutions GmbH. In Zusammenarbeit mit
Personalentwicklung Umfrage zur Personalentwicklung Februar 2014 In Zusammenarbeit mit Cisar - consulting and solutions GmbH Hintergrund Cisar hat im Auftrag von ADP bei ca. 75 kleinen, mittleren und Großunternehmen
CITIES AGAINST RACISM RESPONSIBILITIES OF CITIES IN COUNTERACTING RACISM SUSTAINABILITY. Evaluation der Plakatkampagne der Stadt Graz gegen Rassismus
CITIES AGAINST RACISM RESPONSIBILITIES OF CITIES IN COUNTERACTING RACISM SUSTAINABILITY Evaluation der Plakatkampagne der Stadt Graz gegen Rassismus Durchgeführt durch das ETC Graz März 2013 - 2 - Inhalt
Weiterentwicklung des Studiengangkonzepts. Das erweiterte QM-Gespräch für Studium und Lehre
Weiterentwicklung des Studiengangkonzepts Das erweiterte QM-Gespräch für Studium und Lehre Übersicht 1. Vorbemerkung 2. Vorstellung der Ausgangssituation 3. Weiterentwicklung des Studiengangkonzepts Seite
Internationale Unternehmensführung. Übung:
Internationale Unternehmensführung Übung: Aufgabensammlung WS 2014/ 15 Patrick Trautner M.Sc. Sprechstunde: Donnerstag 14:00 16:00 Uhr E-Mail: [email protected] 1 Übung zur Veranstaltung
Gedanken zu: Wildbäche und Murgänge eine Herausforderung für Praxis und Forschung
Bundesamt für Umwelt BAFU Gedanken zu: Wildbäche und Murgänge eine Herausforderung für Praxis und Forschung Peter Greminger Risikomanagement kann einen Beitrag dazu leisten, bei ungewisser Sachlage best
Informationssystemanalyse Lebenszyklusmodelle 3 1. Lebenszyklusmodelle sollen hauptsächlich drei Aufgaben erfüllen:
Informationssystemanalyse Lebenszyklusmodelle 3 1 Aufgaben von Lebenszyklusmodellen Lebenszyklusmodelle sollen hauptsächlich drei Aufgaben erfüllen: Definition der Tätigkeiten im Entwicklungsprojekt Zusicherung
Erhebung von Anforderungen an den Einsatz von ebusiness-standards in kleinen und mittleren Unternehmen
Erhebung von Anforderungen an den Einsatz von ebusiness-standards in kleinen und mittleren Unternehmen Experteninterview Das Projekt in Kürze: Was nutzen ebusiness-standards? Wie können kleine und mittlere
Anwendung der Predictive Analytics
TDWI Konferenz mit BARC@TDWI Track 2014 München, 23. 25. Juni 2014 Anwendung der Predictive Analytics Prof. Dr. Carsten Felden Dipl. Wirt. Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Übungsfragen (I) 1. Grundkonzepte der Absatzwirtschaft
Übungsfragen (I) 1. Grundkonzepte der Absatzwirtschaft Zu 1.1 Begriffe und Funktionen der Absatzwirtschaft: Erklären Sie den Unterschied zwischen Absatz und Umsatz! Nennen Sie jeweils drei qualitative
SSC BP MUSTERPRÜFUNG Prüfungsfach: Projektmanagement
Prüfungsfach Prüfungsdauer Projektmanagement (Fallstudie) 1 Stunde Anzahl Aufgabenblätter 6 Bitte bei den Lösungsblättern nicht auf die Rückseite schreiben! Bitte beachten Sie: Sollten Sie bei der Lösung
Fachwirt. Geprüfter. werden. Intensivtraining für eine erfolgreiche IHK-Prüfung. Teil A wirtschaftsübergreifende Qualifikationen
Intensivtraining für eine erfolgreiche IHK-Prüfung Geprüfter Fachwirt werden Teil A wirtschaftsübergreifende Qualifikationen Peter Collier, Reinhard Fresow, Klaus Steines Mit Aufgaben- und Lösungssätzen
Quantitative Methoden der Bildungsforschung
Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang
Kontingenzkoeffizient (nach Pearson)
Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen
Klausur zur Veranstaltung. Airline- und Airportmanagement. im WS 2008-2009
, Klausur zur Veranstaltung im WS 2008-2009 Hinweise: Die Klausur besteht aus 13 Seiten (inkl. Deckblatt). Bitte überprüfen Sie, ob Ihr Exemplar komplett ist und lassen Sie sich ansonsten ein neues geben.
Kundenzufriedenheit im IT-Outsourcing grundsätzliche Überlegungen und empirische Ergebnisse Prof. Dr. Eberhard Schott
Kundenzufriedenheit im IT-Outsourcing grundsätzliche Überlegungen und empirische Ergebnisse Prof. Dr. Eberhard Schott 21. November 2007 Agenda 1. Einige grundsätzliche Überlegungen zur Kundenzufriedenheit
Korrelation (II) Korrelation und Kausalität
Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen
Erfolgreiche Webseiten: Zur Notwendigkeit die eigene(n) Zielgruppe(n) zu kennen und zu verstehen!
Erfolgreiche Webseiten: Zur Notwendigkeit die eigene(n) Zielgruppe(n) zu kennen und zu verstehen! www.wee24.de. [email protected]. 08382 / 6040561 1 Experten sprechen Ihre Sprache. 2 Unternehmenswebseiten
Fragenkatalog zur Bewertung Ihres ERP Geschäftsvorhabens:
Fragenkatalog zur Bewertung Ihres ERP Geschäftsvorhabens: Der Aufbau eines neuen Geschäftsstandbeins im ERP Markt ist ein langwieriger Prozess welcher von einigen wenigen kritischen Erfolgsfaktoren abhängt.
Fortgeschrittene Statistik Logistische Regression
Fortgeschrittene Statistik Logistische Regression O D D S, O D D S - R A T I O, L O G I T T R A N S F O R M A T I O N, I N T E R P R E T A T I O N V O N K O E F F I Z I E N T E N, L O G I S T I S C H E
Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik
2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala
Wärmedämmungsexperiment 1
Wärmedämmungsexperiment 1 Ziel dieses Experiments ist die Messung der Wärmeleitfähigkeit verschiedener Materialien durch Umwandlung der übertragenen Wärmeenergie in Bewegung. Die Menge der Wärmeenergie
Auslobung des Wettbewerbs Reinickendorfer Frauen in Führung
Bezirksamt Reinickendorf von Berlin Bezirksstadtrat für Wirtschaft, Gesundheit und Bürgerdienste Bezirksstadtrat für Jugend, Familie und Soziales Gleichstellungsbeauftragte Wirtschaftsförderung Auslobung
Checkliste zur qualitativen Nutzenbewertung
Checkliste zur qualitativen Nutzenbewertung Herausgeber Pentadoc Consulting AG Messeturm Friedrich-Ebert-Anlage 49 60308 Frankfurt am Main Tel +49 (0)69 509 56-54 07 Fax +49 (0)69 509 56-55 73 E-Mail [email protected]
Wissensmanagement im Geschäftsalltag: Wie unterstützt es mich in der beruflichen Praxis?
Swiss Knowledge Management Forum SKMF Frühlings-Event 2014 Wissensmanagement im Geschäftsalltag: Wie unterstützt es mich in der beruflichen Praxis? Dienstag, 17. Juni 2014 Eidgenössisches Personalamt EPA
Bestandskundenmanagement Wo drückt bei Ihnen der Schuh?
Bestandskundenmanagement Wo drückt bei Ihnen der Schuh? best-reactions GmbH Hirschberger Straße 33 D 90559 Burgthann Alle Rechte vorbehalten HRB 23679, Amtsgericht Nürnberg Geschäftsführer Alexander P.
Ideation-Day Fit für Innovation
Your Partner in Change. Your Partner in Innovation. Ideation-Day Fit für Innovation Fotoprotokoll 12.07.2013 www.integratedconsulting.at 1 Einstieg www.integratedconsulting.at 2 Erwartungen und mögliche
Landes-Arbeits-Gemeinschaft Gemeinsam Leben Gemeinsam Lernen Rheinland-Pfalz e.v.
Landes-Arbeits-Gemeinschaft Gemeinsam Leben Gemeinsam Lernen Rheinland-Pfalz e.v. Wer sind wir? Wir sind ein Verein. Wir setzen uns für Menschen mit Behinderung ein. Menschen mit Behinderung sollen überall
Verkaufsstätten. Dipl.- Ing.(FH) M.Eng.(TU) Thomas Höhne 17.12.2015
n Vorlesungsinhalte: - ungeregelte VkStätt - geregelte VkStätt - Brandabschnitte (Brandwände / Ladenstraßen) - Decken - geregelte VkStätt, Bsp. K in KL 1 n Wesentliche geregelte Sonderbauten; LBauO 50
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de
Recherche nach Stellenanzeigen in Zeitungen
Leitfaden Berufswahlorientierung für die Sek. I 1 Jahrgangsstufe: 8. Klasse, 1. Halbjahr Themengebiete: Modul 7: 4 Infos, Unterstützung und Hilfe Wer hilft mir? Wen kann ich fragen? Wo bekomme ich Informationen?
Data Mining-Projekte
Data Mining-Projekte Data Mining-Projekte Data Mining stellt normalerweise kein ei nmaliges Projekt dar, welches Erkenntnisse liefert, die dann nur einmal verwendet werden, sondern es soll gewöhnlich ein
Fragebogen ISONORM 9241/110-S
Fragebogen ISONORM 9241/110-S Beurteilung von Software auf Grundlage der Internationalen Ergonomie-Norm DIN EN ISO 9241-110 von Prof. Dr. Jochen Prümper www.seikumu.de Fragebogen ISONORM 9241/110-S Seite
BigData Wie wichtig ist die Datenqualität bei der Analyse und Auswertung von großen Daten Praxisbeispiel. Christin Otto
BigData Wie wichtig ist die qualität bei der Analyse und Auswertung von großen Praxisbeispiel Christin Otto Was ist Big Data? Der Big Data Prozess Sammlung und Speicherung von Analyse der zum Gewinn von
Neuronale Netze (I) Biologisches Neuronales Netz
Neuronale Netze (I) Biologisches Neuronales Netz Im menschlichen Gehirn ist ein Neuron mit bis zu 20.000 anderen Neuronen verbunden. Milliarden von Neuronen beteiligen sich simultan an der Verarbeitung
Übungen zur Softwaretechnik
Technische Universität München Fakultät für Informatik Lehrstuhl IV: Software & Systems Engineering Markus Pister, Dr. Bernhard Rumpe WS 2002/2003 Lösungsblatt 9 17. Dezember 2002 www4.in.tum.de/~rumpe/se
1. Einfuhrung zur Statistik
Philipps-Universitat Marburg Was ist Statistik? Statistik = Wissenschaft vom Umgang mit Daten Phasen einer statistischen Studie 1 Studiendesign Welche Daten sollen erhoben werden? Wie sollen diese erhoben
Datenbanken I - Übung 1
Datenbanken I - Übung 1 Oktober, 2010 1 von 11 Datenbanken I Lernkontrolle Beantworten Sie folgende Fragen (nach Möglichkeit ohne nachzuschlagen): Was bezeichnet man als Datenredundanz? Wieso führt Datenredundanz
1 Einleitung. 1.1 Motivation und Zielsetzung der Untersuchung
1 Einleitung 1.1 Motivation und Zielsetzung der Untersuchung Obgleich Tourenplanungsprobleme zu den am häufigsten untersuchten Problemstellungen des Operations Research zählen, konzentriert sich der Großteil
11.3 Komplexe Potenzreihen und weitere komplexe Funktionen
.3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt
ISO 9001:Kundenorientierung
BdB e.v. Fachtagung Qualitätssicherung in der Betreuungsarbeit 25./26.11.2005 Impulsreferat von R.Adler zur AG Beschwerdemanagement 1. Wie hängen Beschwerdemanagement und Qualitätsmanagement (nach ISO
Das System sollte den Benutzer immer auf dem Laufenden halten, indem es angemessenes Feedback in einer angemessenen Zeit liefert.
Usability Heuristiken Karima Tefifha Proseminar: "Software Engineering Kernkonzepte: Usability" 28.06.2012 Prof. Dr. Kurt Schneider Leibniz Universität Hannover Die ProSeminar-Ausarbeitung beschäftigt
WS 2002/03. Prof. Dr. Rainer Manthey. Institut für Informatik III Universität Bonn. Informationssysteme. Kapitel 1. Informationssysteme
Informationssysteme Informationssysteme WS 2002/03 Prof. Dr. Rainer Manthey Institut für Informatik III Universität Bonn 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 DB und/oder IS: terminologischer
WERKZEUG KUNDENGRUPPEN BILDEN
Integrierter MarketinXervice Dr. Rüdiger Alte Wilhelm-Busch-Straße 27 99099 Erfurt Tel.: 0361 / 55 45 84 38 WERKZEUG GRUPPEN BILDEN Die folgenden Fragen mögen Ihnen helfen, Kriterien aufzustellen, anhand
Knowledge Discovery. Lösungsblatt 1
Universität Kassel Fachbereich Mathematik/nformatik Fachgebiet Wissensverarbeitung Hertie-Stiftungslehrstuhl Wilhelmshöher Allee 73 34121 Kassel Email: [email protected] Tel.: ++49 561 804-6252 Dr.
7. Das Spannungsfeld von Wissenschaft und Praxis
Einführung in das Studium der Management- und Wirtschaftswissenschaften WS 2013/14 7. Das Spannungsfeld von Wissenschaft und Praxis Internationales Institut für Management und ökonomische Bildung Professur
Was ist Sozial-Raum-Orientierung?
Was ist Sozial-Raum-Orientierung? Dr. Wolfgang Hinte Universität Duisburg-Essen Institut für Stadt-Entwicklung und Sozial-Raum-Orientierte Arbeit Das ist eine Zusammen-Fassung des Vortrages: Sozialräume
Inhaltsverzeichnis: Definitionen Informationssysteme als Kommunikationssystem Problemlösende Perspektiven Allgemeine System Annäherung Fazit
Informationssysteme Inhaltsverzeichnis: Definitionen Informationssysteme als Kommunikationssystem Problemlösende Perspektiven Allgemeine System Annäherung Fazit Definitionen: Informationen Informationssysteme
Data Mining-Modelle und -Algorithmen
Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining ist ein Prozess, bei dem mehrere Komponenten i n- teragieren. Sie greifen auf Datenquellen, um diese zum Training,
Rhetorik und Argumentationstheorie. [[email protected]]
Rhetorik und Argumentationstheorie 1 [[email protected]] Ablauf der Veranstaltung Termine 1-6 Erarbeitung diverser Grundbegriffe Termine 7-12 Besprechung von philosophischen Aufsätzen Termin
Themenbereich "Bestattungskosten"
Ergebnisse aus der Meinungsforschung: "So denken die Bürger" Übersicht Bestattungen kosten schnell sehr viel Geld. 6. Euro im Durchschnitt können als Anhaltspunkt dienen, beschreiben aber nur unzureichend,
Die Zentralheizung der Stadt Wer heizt wie?
Die Zentralheizung der Stadt Wer heizt wie? Entwicklung der Fernwärme. Sie erheben, wie bei ihnen geheizt wird, und vergleichen mit der Situation in Wien und in den Bundesländern. Entwicklung der Zentralheizung
Wärmebildkamera. Arbeitszeit: 15 Minuten
Wärmebildkamera Arbeitszeit: 15 Minuten Ob Menschen, Tiere oder Gegenstände: Sie alle senden unsichtbare Wärmestrahlen aus. Mit sogenannten Wärmebildkameras können diese sichtbar gemacht werden. Dadurch
Evaluation des Projektes
AuF im LSB Berlin Evaluation des Projektes Führungs-Akademie des DOSB /// Willy-Brandt-Platz 2 /// 50679 Köln /// Tel 0221/221 220 13 /// Fax 0221/221 220 14 /// [email protected] /// www.fuehrungs-akademie.de
Integrierte Dienstleistungen regionaler Netzwerke für Lebenslanges Lernen zur Vertiefung des Programms. Lernende Regionen Förderung von Netzwerken
Integrierte Dienstleistungen regionaler Netzwerke für Lebenslanges Lernen zur Vertiefung des Programms Lernende Regionen Förderung von Netzwerken Gefördert vom Bundesministerium für Bildung und Forschung
Erfolg beginnt im Kopf
Erfolg beginnt im Kopf Wie Sie ausgeglichen bleiben und Ihre Ziele einfacher erreichen 8. VR-Unternehmerforum AGRAR Die Ausgangslage Am Markt 6 49406 Barnstorf Am Markt 6 49406 Barnstorf Alles verändert
WAS finde ich WO im Beipackzettel
WAS finde ich WO im Beipackzettel Sie haben eine Frage zu Ihrem? Meist finden Sie die Antwort im Beipackzettel (offiziell "Gebrauchsinformation" genannt). Der Aufbau der Beipackzettel ist von den Behörden
Management Report. Hernstein. Befragung von Führungskräften in Österreich, Deutschland und der Schweiz
Hernstein Management Report Befragung von Führungskräften in Österreich, Deutschland und der Schweiz Report 5, Thema: Diversity Management in Unternehmen Oktober 2012 OGM Österreichische Gesellschaft für
Im Prüfungsteil Mündlicher Ausdruck sollen Sie zeigen, wie gut Sie Deutsch sprechen.
Im Prüfungsteil Mündlicher Ausdruck sollen Sie zeigen, wie gut Sie Deutsch sprechen. Dieser Teil besteht aus insgesamt 7 Aufgaben, in denen Ihnen unterschiedliche Situationen aus dem Universitätsleben
Maschinelles Lernen und Data Mining: Methoden und Anwendungen
Maschinelles Lernen und Data Mining: Methoden und Anwendungen Eyke Hüllermeier Knowledge Engineering & Bioinformatics Fachbereich Mathematik und Informatik GFFT-Jahrestagung, Wesel, 17. Januar 2008 Knowledge
Bachelor Prüfungsleistung
FakultätWirtschaftswissenschaftenLehrstuhlfürWirtschaftsinformatik,insb.Systementwicklung Bachelor Prüfungsleistung Sommersemester2008 EinführungindieWirtschaftsinformatik immodul GrundlagenderWirtschaftswissenschaften
SDD System Design Document
SDD Software Konstruktion WS01/02 Gruppe 4 1. Einleitung Das vorliegende Dokument richtet sich vor allem an die Entwickler, aber auch an den Kunden, der das enstehende System verwenden wird. Es soll einen
Aufgabe 3. Grundlagen des Dienstleistungsmanagement (Klausur WS10/11) Hagen, 23.08.2010. Univ.-Prof. Dr. Sabine Fließ Marco Wehler, MScBM
Aufgabe 3 Grundlagen des (Klausur WS10/11) Hagen, 23.08.2010 Univ.-Prof. Dr. Sabine Fließ Marco Wehler, MScBM Das traditionsreiche Familienunternehmen Treggerwerke hat sich von einem Anbieter für medizinische
Führungsgespräch Fordern, Fördern, Entwickeln
Angaben zur Person Name, Vorname: Karin Musterfrau Funktion: Leiterin Abrechnung Betrachtungszeitraum: Ergebnis 2007; Vereinbarung: Febr Dezember 2008 Datum: 15.1.08, korrigiert am 30.7.08 Datum des letzten
RUNDE TISCHE /World Cafe. Themen
RUNDE TISCHE /World Cafe Themen A. Erfahrungen - Erfolge und Stolpersteine B. Marketing/Kommunikation C. Finanzierung/Förderungen D. Neue Ideen für sanft mobile Angebote/Projekte in der Zukunft A. Erfahrungen
Managementbewertung Managementbewertung
Managementbewertung Grundlagen für die Erarbeitung eines Verfahrens nach DIN EN ISO 9001:2000 Inhalte des Workshops 1. Die Anforderungen der ISO 9001:2000 und ihre Interpretation 2. Die Umsetzung der Normanforderungen
Benchmark zur Kompetenzbestimmung in der österreichischen SW Industrie. Mag. Robert Kromer NCP / AWS Konferenz Wien, 29.2.2012
Benchmark zur Kompetenzbestimmung in der österreichischen SW Industrie Mag. Robert Kromer NCP / AWS Konferenz Wien, 29.2.2012 Warum beschäftigen wir uns mit Wissensbewertung? ( 1978 (in Folie 2 Welchen
Marketing IV - Investitionsgüter- und Technologiemarketing (WS 2014/15)
TECHNISCHE UNIVERSITÄT ILMENAU Fakultät für Wirtschaftswissenschaften und Medien Fachgebiet Marketing Univ.-Prof. Dr. rer. pol. habil. Anja Geigenmüller Marketing IV - Investitionsgüter- und Technologiemarketing
Persönliches Coaching
Veränderung gehört zum Leben, auch im Beruf. Doch manchmal ist es gar nicht so einfach, den ersten Schritt in eine neue Richtung zu gehen. Dann kann es hilfreich sein, Anstöße von außen zu bekommen z.b.
Repetitorium zum Staatsexamen für Lehramtsstudenten. Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201. Sommersemester 2014
Sommersemester 2014 Repetitorium zum Staatsexamen für Lehramtsstudenten Informationswirtschaft & Planung und Entscheidung 30.05.2014 NB-201 Lehrstuhl für ABWL und Wirtschaftsinformatik Prof. Dr. Alexandros
Fachbereich Wirtschaftswissenschaften Die Vorsitzenden der Prüfungsausschüsse
Fachbereich Wirtschaftswissenschaften Die Vorsitzenden der Prüfungsausschüsse Hinweise für Studierende in den Bachelorstudiengängen Business Administration (B.A.; Rheinbach) Betriebswirtschaft (B.Sc.;
... hab ich gegoogelt. webfinder. Suchmaschinenmarketing !!!!!!
... hab ich gegoogelt. webfinder Suchmaschinenmarketing G egoogelt ist längst zu einem geflügelten Wort geworden. Wer googlet, der sucht und wer sucht, soll Sie finden. Und zwar an vorderster Position,
