Hans Walser. Puzzles.
|
|
|
- Mina Beckenbauer
- vor 8 Jahren
- Abrufe
Transkript
1 Hans Walser Puzzles
2 Die Item-Litanei Hohes Suchtpotenzial Variante zu Pythagoras Symmetrie und Auf der schiefen Bahn Farben und
3 Der Klassiker
4 Der Klassiker
5 Und? Variante zu Pythagoras
6 Und? Variante zu Pythagoras
7 Und? Symmetrie der Farben
8 Und? Symmetrie der Farben
9 Und? Symmetrie der Farben
10 Und? Hohes Suchtpotenzial
11 Und?
12 Vergleich
13 Das Lehrerdreieck
14 Das Lehrerdreieck Symmetrie der Farben
15 Das Lehrerdreieck Symmetrie der Farben
16 Das Lehrerdreieck
17 Ebene: Quadrat und Dreieck zerlegungsgleich Dudeney, 1903
18 Ebene: Quadrat und Dreieck zerlegungsgleich Dudeney, 1903 Gelenk-Zerlegung
19 Ebene: Quadrat und Dreieck zerlegungsgleich Dudeney, 1903 Gelenk-Zerlegung
20 Ebene: Quadrat und Dreieck zerlegungsgleich Dudeney, 1903 Gelenk-Zerlegung
21 Ebene: Quadrat und Dreieck zerlegungsgleich Dudeney, 1903 Gelenk-Zerlegung
22 Ebene: Quadrat und Dreieck zerlegungsgleich Dudeney, 1903 Gelenk-Zerlegung
23 Ebene: Quadrat und Dreieck zerlegungsgleich rot, blau Punktspiegelung: grün, magenta Dudeney, 1903
24 Ebene: Quadrat und Dreieck zerlegungsgleich blau, magenta, gelb, grün Punktspiegelung: rot, zyan, schwarz
25 Ebene: Quadrat und Dreieck zerlegungsgleich blau, magenta, gelb, grün Punktspiegelung: rot, zyan, schwarz
26 Ebene: Quadrat und Dreieck zerlegungsgleich alle Auf der schiefen Bahn
27 Ebene: Quadrat und Dreieck zerlegungsgleich blau, magenta, gelb, grün, zyan, violez, schwarz Punktspiegelung: rot
28 Ebene: Quadrat und Dreieck zerlegungsgleich blau, magenta, gelb, grün, zyan, violez, schwarz Punktspiegelung: rot
29 Ebene: Quadrat und Dreieck zerlegungsgleich Achsen- Symmetrie Punkt- Symmetrie blau, rot, grün Schubspiegelung: gelb, magenta, schwarz
30 Raum: Würfel und Tetraeder nicht zerlegungsgleich 1" Würfel vom Volumen 1
31 Raum: Würfel und Tetraeder nicht zerlegungsgleich Würfel vom Volumen 1 Tetraeder vom Volumen 1
32 Raum: Würfel und Tetraeder nicht zerlegungsgleich Würfel vom Volumen 1 Tetraeder vom Volumen 1
33 Theorie und Geschichte David Hilbert ( ) Göbngen
34 Theorie und Geschichte Ebene: Polygone zerlegungsgleich flächengleich Wallace-Bolyai-Gerwien 1832 Raum: Polyeder (Hilberts 3. Problem, 1900) zerlegungsgleich volumengleich Dehn (1902), Kagan (1903) Hadwiger (1954, k-dim, k 3)
35 Theorie und Geschichte Ebene: Polygone zerlegungsgleich flächengleich Wallace-Bolyai-Gerwien 1832 Raum: Polyeder (Hilberts 3. Problem, 1900) zerlegungsgleich volumengleich Dehn (1902), Kagan (1903) Hadwiger (1954, k-dim, k 3)
36 Praxis Grafiksogware mit vertex-snapper (EazyDraw) DGS (GeoGebra, Cabri)
37 Praxis Gleiche Grundlinie, gleiche Höhe
38 Praxis Hin und her
39 Praxis Handout
40 Praxis Punkt- Symmetrie
41 Praxis Geht es auch mit vier Farben?
42 Anzahl Farben?
43 Zerlegung in Quadrate: 2 Farben Je 12 rote und 12 blaue Quadrate
44 Andere Zerlegung: 5 Farben Op@mierung
45 Dreieck < > Sechseck
46 Dreieck < > Sechseck Flächengleich? Handout
47 Dreieck < > Sechseck Inkreisradius = 1 2 Seite = = 6 2 Dreiecksfläche = = Umkreisradius = 1 Sechsecksfläche = = 3 2 3
48 Dreieck < > Sechseck Inkreisradius = 1 2 Seite = = 6 2 Dreiecksfläche = = Umkreisradius = 1 Sechsecksfläche = = 3 2 3
49 Dreieck < > Sechseck
50 Dreieck < > Sechseck Minimallösung (best-known) gemäß
51 Dreieck < > Sechseck 9 Teile 2 (3) Formen 3 Farben Zyklische Symmetrie: blau > gelb > rot 5 Teile 5 Formen 3 Farben Keine Symmetrie Op@mierung
52 DIN A4-Papier
53 DIN A4-Papier Quadrat abschneiden
54 DIN A4-Papier Quadrat abschneiden Restrechteck
55 DIN A4-Papier Quadrat abschneiden Restrechteck Restrechteck
56 DIN A4-Papier Quadrat abschneiden Restrechteck Restrechteck Restrechteck
57 Achteck DIN A4-Papier Quadrat abschneiden Restrechteck Restrechteck Restrechteck Restrechteck
58 Flächenanteile?
59 Flächenanteile halbe / halbe?
60 Flächenanteile halbe / halbe?
61 Flächenanteile halbe / halbe
62 Flächenanteile Achteck halbe / halbe Symmetrie
63 Flächenanteile Achteck halbe / halbe Symmetrie
64 Flächenanteile Sechseck
65 Flächenanteile Sechseck Symmetrie
66 Flächenanteile Sechseck Symmetrie
67 Flächenanteile Achteck (Wiederholung, um das Muster zu sehen)
68 Flächenanteile Achteck (Wiederholung, um das Muster zu sehen)
69 Flächenanteile Achteck (Wiederholung, um das Muster zu sehen)
70 Flächenanteile Zehneck
71 Flächenanteile Zehneck
72 Flächenanteile Zehneck
73 Flächenanteile Zwölfeck
74 Flächenanteile Zwölfeck
75 Flächenanteile Zwölfeck
76 Flächenanteile 14-Eck
77 Flächenanteile 14-Eck
78 Flächenanteile 14-Eck
79 Flächenanteile 16-Eck Hohes Suchtpotenzial
80 Flächenanteile 16-Eck Hohes Suchtpotenzial
81 Flächenanteile 16-Eck Hohes Suchtpotenzial
82 Überblick
83 Überblick: 2, 6, 10, 14,... 1 = geht nicht 3 = = = geht nicht 7 = = = geht nicht 11 = Differenzen von Quadratzahlen Euler: nombres impairement pairs ungerade gerade Zahlen 16
84 Überblick: 2, 6, 10, 14,... 1 = geht nicht 3 = = = geht nicht 7 = = = geht nicht 11 = Differenzen von Quadratzahlen Euler: nombres impairement pairs ungerade gerade Zahlen 16
85 Euklid, Elemente, Buch II, 11 Problem Eine gegebene Strecke so zu teilen, dass das Rechteck aus der ganzen Strecke und dem einen AbschniZ dem Quadrat über dem anderen AbschniZ gleich ist.
86 Euklid, Buch II, 11 Problem Eine gegebene Strecke so zu teilen, dass das Rechteck aus der ganzen Strecke und dem einen AbschniZ dem Quadrat über dem anderen AbschniZ gleich ist.
87 MiZelpunkt?
88 MiZelpunkt?
89 DriZel?
90 Viertel?
91 Füngel?
92 Achtel?
93 Achtel? Fibonacci-Zahlen 1, 1, 2, 3, 5, 8,
94 Rechnung 1 1 ( 1 x ) = x 2 x 2 + x 1= 0 x = x Goldener SchniZ 1 x x
95 Zerlegung des Rechtecks zum Quadrat? " 1 1 ( 1 x ) = x 2 x 2 + x 1= 0 x = x Goldener SchniZ 1 x x
96 Zerlegung des Rechtecks zum Quadrat? "
97 Zerlegung des Rechtecks zum Quadrat? Tout change au pareil"
98 Zerlegung des Rechtecks zum Quadrat? Tout change au pareil"
99 Zerlegung des Rechtecks zum Quadrat? Tout change au pareil"
100 Zerlegung des Rechtecks zum Quadrat? Tout change au pareil"
101 Zerlegung des Rechtecks zum Quadrat? Der Goldene SchniZ ist Trichter-Symmetrie"
102 Zerlegung des Rechtecks zum Quadrat?
103 Zerlegung des Rechtecks zum Quadrat?
104 Zerlegung des Rechtecks zum Quadrat?
105 Zerlegung des Rechtecks zum Quadrat?
106 Auf der schiefen Bahn
107
108
109 Jo Niemeyer" 531 o. Titel" Acryl on canvas on wood" 2014"
110 Danke" Jo Niemeyer" 531 o. Titel" Acryl on canvas on wood" 2014"
Hans Walser, [ ] Flächengleiche Rechtecke
Hans Walser, [20130529] Flächengleiche Rechtecke 1 Worum es geht Flächengleiche Rechtecke und Parallelogramme sind zerlegungsgleich. Es werden einige Beispiele zum Auffinden der Zerlegungsgleichheit diskutiert.
Mathematik für die Sekundarstufe 1
Hans Walser Mathematik für die Sekundarstufe 1 Modul 206 Regelmäßige Vielecke Lernumgebung Hans Walser: Modul 206, Regelmäßige Vielecke. Lernumgebung ii Modul 206 für die Lehrveranstaltung Mathematik für
Pythagoreische Rechtecke Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Startdreieck
Hans Walser, [20040416a] Pythagoreische Rechtecke 1 Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Wir starten mit einem beliebigen rechtwinkligen Dreieck in der üblichen Beschriftung. Startdreieck
2.4A. Reguläre Polyeder (Platonische Körper)
.A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:
Die Abbildung 2 zeigt eine Verzerrung dieses Parketts. Abb. 1: Bienenwabenmuster. Abb. 2: Verzerrung
Hans Walser, [20131217] Gleichseitige punktsymmetrische Sechsecke 1 Einführung Die Abbildung 1 zeigt das üblich hexagonale Parkett (Bienenwabenmuster). Abb. 1: Bienenwabenmuster Die Abbildung 2 zeigt eine
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon.
38 11. Reguläre Vielecke und Körper Teilt man die Kreislinie in n gleiche Teile und verbindet benachbarte Teilpunkte, so entsteht ein reguläres n-eck oder Polygon. Schon Euklid von Alexandria hat sich
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Anzahl der Punkte auf Kreis und Gerade
Anzahl der Punkte auf Kreis und Gerade Ein Kreis hat sicher einen viel kürzeren Umfang als eine unendliche Gerade. Trotzdem besteht ein Kreis (ohne seinen obersten Punkt) aus gleich vielen Punkten wie
Hans Walser, Studie [ a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon
Hans Walser, Studie [20040320a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon 1 Spielregeln 1.1 Gleichschenklige Dreiecke Regelmäßiges Zwölfeck Das regelmäßige Zwölfeck soll in gleichschenklige
Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke
Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel
Hans Walser, [ a] Eine Figur mit acht plus einem Kreis Anregungen: E. Chr. W. und P. G.
Hans Walser, [20090928a] Eine Figur mit acht plus einem Kreis Anregungen: E. Chr. W. und P. G. 1 Worum geht es? In der ebenen Geometrie scheinen sich Quadrat und regelmäßiges Dreieck zu beißen. Es ist
Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.
6 Flächen Wie heißen die Figuren? Dreiecke Viereck d) Quadrat b) Kreis Quadrate Dreiecke Rechteck c) Rechtecke f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. Nimm vier gleich lange Stäbe.
Flächeninhalt, Volumen und Integral
Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1
Basteln und Zeichnen
Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle
Hans Walser. Das DIN-Format
Hans Walser Das DIN-Format Kolloquium über Mathematik, Informatik und Unterricht Donnerstag, 0. November 04, 7:5 Uhr ETH Zürich, Hörsaal HG G Zusammenfassung Das DIN-Format ist mehr als ein Stück Papier
Hans Walser. Die allgemeine Fibonacci-Folge
Hans Walser Die allgemeine Fibonacci-Folge Hans Walser: Die allgemeine Fibonacci-Folge ii Inhalt Die Rekursion... Heuristischer Hintergrund... 3 Formel von Binet... 4 Übersicht... 5 Sonderfälle...3 6 Beispiele...3
Modell der Minimalfläche im Oktaeder Anregung: [Limperg 2011] sowie eine private Mitteilung von G. L., W.
Hans Walser, [011087b], [0150110] Modell der Minimalfläche im Oktaeder Anregung: [Limperg 011] sowie eine private Mitteilung von G. L., W. 1 Worum geht es? Wir tauchen ein Kantenmodell eines Oktaeders
MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500
MATHEMATIK-STAFFEL 2013 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 1 (20 Punkte) Eine lange Zahl Es werden die Jahreszahlen von 1 bis 2013 hintereinander (ohne Leerzeichen,
Polyeder, Konvexität, Platonische und archimedische Körper
Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten
1 Der Goldene Schnitt
Goldener Schnitt 1 Der Goldene Schnitt 1 1.1 Das regelmäßige Zehneck 1 1. Ein anderer Name für den Goldenen Schnitt 4 1.3 Der Goldene Schnitt in Zahlen 6 1.4 Die Potenzen von und 8 1.5 Drei Beispiele 10
Der rechte Winkel!
Der rechte Winkel www.walser-h-m.ch/hans senkrecht, lotrecht, rechtwinklig senkrecht, lotrecht, rechtwinklig Was ist ein rechter Winkel? Was ist ein rechter Winkel? Ein rechter Winkel misst 90. Der rechte
Das ist nicht besonders spannend. Wir ändern daher die Regeln für den Turm leicht ab.
Hans Walser, [20150101] Schachbrett-Geometrie 1 Worum es geht Auf dem Schachbrett wird eine Metrik definiert, die sich an den Bewegungen von Schachfiguren orientiert. Für eine bestimmte Schachfigur ist
Repetition Begriffe Geometrie. 14. Juni 2012
Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte
Hans Walser, [ ] KO-Mauern Anregung: Th. W., Z. 1 Beispiel Die Abbildung 1 zeigt ein Beispiel einer KO-Mauer.
Hans Walser, [20160830] KO-Mauern Anregung: Th. W., Z. 1 Beispiel Die Abbildung 1 zeigt ein Beispiel einer KO-Mauer. Abb. 1: KO-Mauer 2 Start Das geht so: Wir beginnen mit der Mauergeometrie der Abbildung
(Max Bill) . Gilt A 0 A 4 A 2
19 3. Reguläre Polygone (Max Bill) Definitionen: 1. Ein Polygon ist ein Streckenzug. Dieser kann geschlossen oder offen sein. (Wir betrachten nur ebene Polygone.) Die Ecken werden aufeinander folgend nummeriert:
Aufgabensammlung für die Primar- und Vorschulstufe
. Lehre Weiterbildung Forschung Aufgabensammlung für die Primar- und Vorschulstufe Mögliche ergänzende Aufgabenstellungen für Vorschul- und Primarschülerinnen und - schüler zur Ausstellung Matheliebe von
Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges
Download Marco Bettner, Erik Dinges Mathe an Stationen Das 4x4-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang
Muster, Bandornamente und Parkette (1)
Muster, Bandornamente und Parkette (1) In Mustern, Bandornamenten und Parketten (im Folgenden: Figuren) wird ein Grundelement nach einer gewissen Regel mehrfach arrangiert. Die Regelmäßigkeiten lassen
Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen
Geometrie Ich kann... Formen und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Symmetrien in Figuren erkennen
Mathematik für die Sekundarstufe 1
Hans Walser Mathematik für die Sekundarstufe 1 Modul 203 Zusammensetzung von Geradenspiegelungen Symmetriegruppen Hans Walser: Modul 203, Zusammensetzung von Geradenspiegelungen. Symmetriegruppen ii Inhalt
Lesen - rechnen - malen
Zahlen-Logical 1 Lesen - rechnen - malen * Eine Zahl steht Kopf! Male sie blau aus! * Die schwarze Zahl steht nicht neben der roten Zahl! * rote Zahl + grüne Zahl = blaue Zahl * Die gelbe Zahl steht zwischen
Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen
Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform
Die Proportionen der regelmässigen Vielecke und die
geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Rechtecke gebildet aus Seite und Diagonale
SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr
SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:
Geometrie der Polygone Konstruktionen Markus Wurster 1
Geometrie der Polygone Teil 6 Klassische Konstruktionen Geometrie der Polygone Konstruktionen Markus Wurster 1 Sechseck Gegeben ist der Umkreis des Sechsecks Zeichne einen Kreis mit dem gewünschten Radius
1. Winkel (Kapitel 3)
1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt
Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges
Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang
Körper erkennen und beschreiben
Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form
Und so weiter... Annäherung an das Unendliche Lösungshinweise
Stefanie Anzenhofer, Hans-Georg Weigand, Jan Wörler Numerisch und graphisch. Umfang einer Quadratischen Flocke Abbildung : Quadratische Flocke mit Seitenlänge s = 9. Der Umfang U der Figur beträgt aufgrund
Hans Walser, [ a], Das DIN Rechteck 1/29
Hans Walser, [0050930a], Das DIN Rechteck /9 Hans Walser Das DIN Rechteck DIN-Format Inhalt Internationale Papierformate (ISO/DIN)... Schnittpunkte...4 3 Drehstreckung...6 4 Oktogon aus einem DIN Rechteck...
Abb. 1: Unterteilung des Quadrates
Hans Walser, [20131019] Würfelpuzzle 1 Unterteilung des Quadrates Wir unterteilen ein Quadrat durch seine Diagonalen in vier Dreiecke (Abb. 1) und färben diese mit genau vier Farben, zum Beispiel schwarz,
Satz des Pythagoras Aufgabe Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA
Satz des Pythagoras Aufgabe 1.1.1 Anforderungsbereich I (Reproduzieren) Anforderungsebene ESA a ) Die Katheten in einem rechtwinkligen Dreieck sind 8 cm bzw. 15 cm lang. Berechne die Länge der Hypotenuse.
Mathematik für die Sekundarstufe 1
Hans Walser Mathematik für die Sekundarstufe 1 Modul 407 Der Goldene Schnitt Lernumgebung Hans Walser: Modul 407, Der Goldene Schnitt. Lernumgebung ii Inhalt 1 Streifen-Pentagramm... 1 2 Näherungskonstruktionen
PLANIMETRIE, STEREOMETRIE UND TRIGONOMETRIE DER EBENE
PLANIMETRIE, STEREOMETRIE UND TRIGONOMETRIE DER EBENE 21. Auflage Mit 581 Bildern, 556 Aufgaben mit Lösungen 150 Wiederholungsaufgaben ohne Lösungen, einer Beilage mit 15 Raumbildern und einer Formelsammlung
Geometrie am Computer Werkstattposten
2 Höhen im Dreieck Erleben, wie Höhenschnittpunkt aus dem Innern des Dreiecks über eine Ecke ins Gebiet ausserhalb des Dreiecks want. Flächenberechnungen im Dreieck. 1. Konstruiere die Höhen in einem spitzwinkligen
1 Worum es geht Wir konstruieren den Eckenschwerpunkt eines Vieleckes nach den Hebelgesetzen. Die Frage ist, auf wie viele Arten dies möglich ist.
Hans Walser, [20120401] Schwerpunkte nach Archimedes 1 Worum es geht Wir konstruieren den Eckenschwerpunkt eines Vieleckes nach den Hebelgesetzen. Die Frage ist, auf wie viele Arten dies möglich ist. 2
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
a) Wie lang ist die Kathete a in cm, wenn die Kathete b = 7,8 cm und die Hypotenuse c = 9,8 cm lang sind?
Besuchen Sie auch die Seite http://www.matheaufgaben-loesen.de/ dort gibt es viele Aufgaben zu weiteren Themen und unter Hinweise den Weg zu den Lösungen. Aufgaben zu Pythagoras, Kathetensatz, Höhensatz
Symmetrie im Raum An Hand der platonischen Körper
Symmetrie im Raum An Hand der platonischen Körper Simon Steurer 25.6.2013 Historisches Platonische Körper Vorüberlegungen Oktaeder Hexaeder Tetraeder Dodekaeder & Ikosaeder Historisches benannt nach Platon
Repetition Mathematik 6. Klasse (Zahlenbuch 6)
Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von
Was passt nicht dazu? Warum? Streiche durch! Wie nennt man diese Gegenstände mit einem Wort? Was fehlt auf diesem Bild? Zeichne das, was fehlt, ein!
Was passt nicht dazu? Warum? Streiche durch! Wie nennt man diese Gegenstände mit einem Wort? Was fehlt auf diesem Bild? Zeichne das, was fehlt, ein! Was kann in dem leeren Feld sein? Male es dazu! Was
14,8 12,3 67,75 8, , ,0 ; 2 2 8, ,67 )* +! 8,23 )*36 6,66 . /0' 1 ' 1 9, , /0' 5 67,69338,45
Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte
Tag der Mathematik 2013
Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende
Mathematik VERA-8 in Bayern Korrekturanweisungen für Testheft C: Gymnasium
Mathematik VERA-8 in Bayern Korrekturanweisungen für Testheft C: Gymnasium Aufgabe 1: LKW-Ladung...3 Aufgabe 2: Katzenfutter...3 Aufgabe 3: Mittig...3 Aufgabe 4: Sonderangebot...4 Aufgabe 5: Quersumme...4
Von ebenen Formen zu ebenen Figuren (Unterrichtsentwurf Grundschule, 1. Klasse)
Naturwissenschaft Barbara Senft Von ebenen Formen zu ebenen Figuren (Unterrichtsentwurf Grundschule, 1. Klasse) Ein handlungsorientiertes Vorhaben zur Auseinandersetzung mit ebenen Grundformen und deren
Mathematik für die Sekundarstufe 1
Hans Walser Mathematik für die Sekundarstufe 1 Modul 407 Der Goldene Schnitt Hans Walser: Modul 407, Der Goldene Schnitt ii Inhalt 1 Der Goldene Schnitt... 1 1.1 Bezeichnungen... 1 Der Türöffner... 1.1
Geometrie zum Anfassen
www.math.unibas.ch/~walser Geometrie zum Anfassen 1 Unterlagen: www.math.unibas.ch/~walser Vorträge Geometrie zum Anfassen, Leipzig 2005 > Vortragsskript (pdf) > Power Point Presentation (ppt) www.math.unibas.ch/~walser
Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski
02.12.2010 Aufgabe 1: Basiswissen a) Prozentrechnung (7 P.) a) b) c) d) Prozentzahl Bruch Dezimalzahl 30% 3 10 O,3 25% 25 1 = 100 4 0,25 50% 1 50 = 2 100 0,5 75 % 75 100 0,75 b) Zuordnungen (6 P.) Frau
2.2C. Das allgemeine Dreieck
.C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die
Repetition Mathematik 7. Klasse
Repetition Mathematik 7. Klasse 1. Ein neugeborenes Kätzchen wiegt bei der Geburt durchschnittlich 100g. Es nimmt in den ersten 8 Wochen pro Woche 60g zu. Wie viel beträgt nachher die Gewichtszunahme pro
Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :
Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden
Ausgabe: Abgabe: Name: Benötigte Zeit für alle Aufgaben: Wiederholung
15. Übungsblatt Ausgabe: 28.04.04 Abgabe: 05.05.04 Name: Benötigte Zeit für alle Aufgaben: Wiederholung Römische Zahlen Eine Zahl verwandelt man am einfachsten in eine römische Zahl, indem man jeweils
Materialien für die konstruktive Analogisierung ebener Geometrie im virtuellen Raum (2)
Heinz Schumann Materialien für die konstruktive Analogisierung ebener Geometrie im virtuellen Raum (2) Analoge Dinge stimmen in gewissen Beziehungen zwischen ihren entsprechenden Teilen miteinander überein.
Hans Walser Arbeitskreis Geometrie Herbsttagung September 2012, Saarbrücken Tagungsthema: Begriffsbilden im Geometrieunterricht
Hans Walser Arbeitskreis Geometrie Herbsttagung 14. 16. September 2012, Saarbrücken Tagungsthema: Begriffsbilden im Geometrieunterricht Vergessene Vierecke Zusammenfassung Es werden drei Vierecke vorgestellt,
Lektion 3: Wiederholungen
Lektion 3: Wiederholungen Bearbeitet von Britta Schreiber, Jens Haeler & Atal Ashna Bei einigen der bisher behandelten Prozeduren wurden einzelne Befehle oder Befehlsfolgen mehrfach wiederholt. Beispiel:
Back to the Roots. Hans-Jürgen Elschenbroich
Back to the Roots Heron Pythagoras Die Medienberatung NRW ist ein Angebot des Medienzentrums Rheinland und des Westfälischen Landesmedienzentrums. 2 Zitat Willst du mehr wissen, so suche morgen aus der
Das DIN-Format. Hans Walser. Lehrerinnen- und Lehrertag. Basel, Mittwoch, 11. Februar 2015. Zusammenfassung
Hans Walser Das DIN-Format Zusammenfassung Lehrerinnen- und Lehrertag Basel, Mittwoch,. Februar 05 Das DIN-Format ist mehr als ein Stück Papier und die Quadratwurzel aus Zwei. Wir treffen auf Spiralen,
/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras
Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND
Lehrplanbezug der VERA-8-Aufgaben. Mathematik Testheft B [Wirtschaftsschule] Schuljahr 2008/09
Lehrplanbezug der VERA-8-Aufgaben Mathematik Testheft B [Wirtschaftsschule] Schuljahr 28/9 Überblick zum Lehrplanbezug der VERA-8-Aufgaben 29 Mathematik - Testheft B [Wirtschaftsschule] Nr. Name der Aufgabe
Elemente der SchulgeometrieGrundschule. Aufgabenblatt 4 Flächeninhalt
Elemente der SchulgeometrieGrundschule Aufgabenblatt 4 Flächeninhalt Achtung Fehler!! Alle Punkte auf der Kreislinie sind gleichweit von Mittelpunkt des Kreises entfernt. Die Distanz entspricht dem Radius
Die Definitionen des Rauminhaltsbegriffs werden immer mehr verfeinert, durch den Messprozess festgelegt.
Kapitel 3: Räumliche Körper und Rauminhalt Der Rauminhalt eines Körpers soll etwas über dessen Größe aussagen, der Rauminhaltsbegriff ist intuitiv irgendwie klar, ab der Grundschule durch Bauen von Körpern
Vorbereitung für die Arbeit: Satz des Pythagoras
Vorbereitung für die Arbeit: Satz des Pythagoras Satz des Pythagoras: 1. Die Dreiecke sind nicht im Richtigen Maßstab gezeichnet. Welcher der Dreiecke ist rechtwinklig. 2. Berechne die Längen der fehlenden
Känguru der Mathematik 2001 LÖSUNGEN
Känguru der Mathematik 200 LÖSUNGEN GRUPPE BENJAMIN ) Josef hat 7 Stücke Schnur. Er schneidet eines entzwei. Wie viele Stücke hat er jetzt? (A) 5 (B) 6 (C) 7 (D) 8 (E) 9 6 Stücke Schnur bleiben unversehrt,
Winkeldefizite bei konvexen Polyedern
44 Hans Walser Winkeldefizite bei konvexen Polyedern Die Summe der ebenen Winkel an einer konvexen Polyederecke ist kleiner als 360. Zu jeder Polyederecke gibt es also ein Winkeldefizit als Ergänzung auf
5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis
5/6 5./6. 12. 08 SINUS Transfer Grundschule 5. Jahrestagung Berlin Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis Workshop: Faltwinkel, rechte Winkel, Flächeninhalt
Aufgaben für die Klassenstufen 11/12
Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe
Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)
Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei
Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.
6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich
Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe
Geometrische Körper Diagnoseblatt 5. Schulstufe Quader und Würfel 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen Kreis Schuhschachtel Eistüte Fahrkarte Kugel Seite 1 2. Kannst du Quader und
Workshop: Falten im DIN-Format
Hans Walser Workshop: Falten im DIN-Format 27. Schweizerischer Tag über Mathematik und Unterricht Mittwoch, 7. September 2016 Kantonsschule Wil Zusammenfassung: Wir lernen ebene und räumliche Faltmodelle
Aufgabe S 1 (4 Punkte)
Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks
Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06
19. April 2006 Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06 Präsenzaufgaben: Aufgabe P1: Eine spezielle Lucasfolge (L n ) ist durch L n = L n 1 + L n 2, L 0 = 2, L 1 = 1 definiert. Berechnen
Känguru der Mathematik 2004 Gruppe Benjamin (5. und 6. Schulstufe)
1 Känguru der Mathematik 2004 Gruppe Benjamin (5. und 6. Schulstufe) 18.3.2004-3 Punkte Beispiele - 1) Wie viel ist 1000 100+10 1? A) 111 B) 900 C) 909 D) 990 E) 999 1000 100 + 10 1 = 900 + 9 = 909 2)
Das DIN-Format. Universität Potsdam. Montag, 18. Mai Hans Walser
Hans Walser Das DIN-Format Universität Potsdam Montag, 8. Mai 05 Zusammenfassung Das DIN-Format ist mehr als ein Stück Papier und die Quadratwurzel aus Zwei. Wir treffen auf Spiralen, Grenzpunkte, Fragen
Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)
Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck
Aufgaben Geometrie Lager
Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig
Goldener Schnitt Fibonacci-Zahlen Nachträge
Goldener Schnitt Fibonacci-Zahlen Nachträge 4. Zusammenhang Goldener Schnitt - Fibonacci-Zahlen An der Mathematik irritiert mich, dass der goldene Schnitt und die Fibonacci-Zahlen sich zueinander so verhalten,
Schrägbilder von Körpern Quader
Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme
Grundlagen der Planimetrie und Stereometrie
Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,
Geometrie Begriffe und Formeln
Geometrie Begriffe und Formeln Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres Universums
Drei Lernbausteine für garantiert bessere Noten!
2. Klasse Drei Lernbausteine für garantiert bessere Noten! WISSEN ÜBEN TESTEN 7 1 1 2 3 + 8 2 5 So lernst du mit diesem Buch: Wissen Hier findest du auf einen Blick die wichtigsten Erklärungen und Regeln
11b. Die
IV. BUCH RAUM MIT n-dimensionen 11b. Die www.udo-rehle.de 1 29.10.12 Auf einen Oktaeder kann man ein bis acht Tetraeder aufsetzen Eine Raumfüllung ist mit Tetra- und Oktaedern möglich www.udo-rehle.de
Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE
Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Prismen und Zylinder: 1. Berechne den Inhalt der Oberfläche, das Volumen und die Länge der Raumdiagonalen eines Würfels mit der Kantenlänge s = 30cm.
5. Flächenlehre ohne Rechnen
5. Flächenlehre ohne Rechnen Die Zielsetzung. Was ist der Flächeninhalt eines Quadrats? Zunächst erscheint die Frage als ganz leicht zu beantworten: man messe die Länge der Quadratseite und quadriere die
