Repetition Mathematik 7. Klasse
|
|
|
- Axel Stein
- vor 9 Jahren
- Abrufe
Transkript
1 Repetition Mathematik 7. Klasse 1. Ein neugeborenes Kätzchen wiegt bei der Geburt durchschnittlich 100g. Es nimmt in den ersten 8 Wochen pro Woche 60g zu. Wie viel beträgt nachher die Gewichtszunahme pro Woche, wenn die Katze nach 38 Wochen 4kg wiegt? ml Milchschoppen enthält 1,5mg Eisen, 100ml Muttermilch 30µg. Wie viel Muttermilch müsste ein Baby trinken, um gleich viel Eisen zu sich zu nehmen wie in 2dl Milchschoppen enthalten ist? 3. Gib in der Einheit in Klammern an: a.) 0,8cm (m) e.) 0,00006t (g) i.) 0,7l (ml) 2km (dm) f.) 10 7 g (kg) j.) 20hl (cl) c.) 9,07dm (mm) g.) mg (t) k.) 2 020ml (l) d.) µm (cm) h.) 0,01kg (mg) l.) 3 000dl (hl) 4. Das Licht legt pro Sekunde eine Strecke von km zurück. Wie oft ist das Licht schneller als ein Passagierflugzeug, welches mit 1 000km/h unterwegs ist? 5. Notiere nur das Resultat: a.) 0,08 : 4 0,025 : 5 c.) 0,0024 : 8 d.) 0,12 : 5 e.) 0,35 : 2 f.) 0,39 : 30 g.) 0,93 : 20 h.) 0,065 : 13 i.) 0,03 : 5 j.) 0,15 : 6 k.) 0,1 : 50 l.) 0,0008 : Notiere nur das Resultat: a.) 1,44 : 8 1,92 : 16 c.) 17,1 : 2 d.) 7,5 : 2 e.) 1,21 : 11 f.) 7,8 : 4 7. Berechne (schriftlich oder mündlich): a.) 3,5 : 0,7 7,2 : 0,36 c.) 8 : 0,16 d.) 14 : 0,125 e.) 0,17 : 0,5 f.) 3,3 : 0,02
2 8. Berechne (schriftlich oder mündlich): a.) 0, '000'000 0, c.) 0, d.) 1'600 0,025 e.) 500'000 0,0052 f.) 400 0, g.) 1,5 0,18 h.) 0,04 2 i.) 0,05 0,048 j.) 0,2 0,3 0,4 9. Berechne als gemeinen Bruch und als Dezimalbruch: a.) 2 3 von von Die Darstellung rechts zeigt einen Ausschnitt einer Skala mit proportionaler Zuordnung. Die oberen Werte zeigen den Preis in Fr., die unteren Werte das Gewicht in kg an. Berechne mit einer Tabelle: a.) den Preis für 2,5kg das Gewicht für 3,2Fr. 11. a.) Claudia wechselt auf der Bank 200 Euro in CHF um. Wie viel erhält sie? Andreas wechselt CHF in Euro um. Wie viel erhält er? 12. a.) Nenne die um kleinere Zahl: 1'101'011 Schreibe die folgende Zahl auf: 700 Billiarden 700 Billionen 708 Milliarden 2 Millionen c.) Schreibe die folgende Zahl auf: 503 Trillionen 10 Billiarden 907 Billionen 2 Millionen d.) Notiere die Zahl mit Hilfe einer Zehnerpotenz: 45,1 Trillionen e.) Nenne die um 100 kleinere Zahl: 10'100'101'010 f.) Rechne -6 und schreibe als Zahl: Zweimilliarden Dreihundertneunundzwanzigtausend g.) Bestimme die Anzahl Nullen der Zahl: 90 Trilliarden 13. Wenn auf einem Zahlenstrahl die Zahl 100 von der Zahl 1'000 18cm entfernt ist, wie weit ist dann die Zahl 1'000 von der Zahl 1'000'000 entfernt? 14. Ein Würfel mit der Kantenlänge 1dm wiege 4kg. Wie schwer wäre dann ein Würfel mit der Kantenlänge 1km aus demselben Material? 15. Welche Zahl liegt in der Mitte zwischen 10 4 und 10 8?
3 16. Berechne von einem Parallelogramm mit der Fläche A = 0,4m 2, der Seite b = 15dm und der Höhe h a = 0,8m den Umfang u. 17. Ein Rechteck mit dem Umfang u = 100cm und der Länge a = 40cm hat den gleichen Flächeninhalt wie ein Rhombus mit der Diagonalen e = 50cm. Berechne die Länge der Diagonalen f. 18. Konstruiere ein Dreieck ABC mit a = 5,3cm, c = 7,8cm und γ = 110. Mit Konstruktionsbericht. Beschrifte korrekt. 19. Verwandle in die Einheit in Klammern: a.) cm 2 (m 2 ) dm 2 (ha) c.) 0,0004 km 2 (a) d.) mm 2 (km 2 ) 20. a.) Zeichne den vierten Körper Bestimme die Formel für die Anzahl Würfel des -ten Körpers. 1. Körper 2. Körper 3. Körper 4. Körper -ter Körper c.) Bestimme die Formel für die Anzahl sichtbarer Quadrate des -ten Körpers. 1. Körper 2. Körper 3. Körper 4. Körper -ter Körper d.) Bestimme die Formel für die Anzahl unsichtbarer Quadrate des -ten Körpers. 1. Körper 2. Körper 3. Körper 4. Körper -ter Körper 21. Notiere das Resultat (mit oder ohne Zwischenschritte): a.) e.) : 10 8 : f.) 16 : 4-2 c.) 10-8 : g.) : 16 d.) : 5 h.) : 6 3 2
4 22. Notiere das Resultat (mit oder ohne Zwischenschritte): a.) 16 (8 + 4 : 2) g.) (8 + 7) (16 (8-4)) : 2 h.) 7 + (6 - (5-4)) - 3 c.) 24 : (12-6 : 3) i.) 20 - (18 - (16-14)) d.) 24 (12 : 6 + 3) j.) 36 : ( ) e.) (180 - ( )) : 4 k.) (56 : 4-2 3) f.) 42 - (42-4 2) l.) : (15 : 3-18 : 6) : Berechne die Oberfläche O eines Quaders mit a = 2dm, b = 3dm und c = 5dm. Notiere korrekt die einzelnen Ausrechnungsschritte. a b 24. Zeichne ab und ergänze zu einem Quadernetz. 25. Wie viele 1mm 3 -Würfelchen haben in einem Würfel mit der Kantenlänge 0,5m Platz? Notiere die Rechnung. 26. Die Oberfläche eines Quaders mit a = 10cm, b = 5cm und c = 8cm wird rot gestrichen. Nun zerlegt man den Quader in einzelne Würfelchen mit der Seitenlänge 1cm. Wie viele Würfelchen besitzen 3 rote Flächen, 2 rote Flächen, 1 rote Fläche und keine rote Fläche? 27. Die hellen Boen werden mit bezeichnet, die dunklen Boen mit y. Erstelle zum gegebenen Tet eine Gleichung und bestimme fünf Zahlenpaare /y, welche die Gleichung erfüllen: In drei weissen Boen hat es 8 Hölzchen mehr als in vier schwarzen Boen. Gleichung: = y 28. Die hellen Boen werden mit bezeichnet, die dunklen Boen mit y. Bestimme und y, wenn gilt: In zwei hellen Boen hat es gleich viele Hölzchen wie in drei dunklen Boen, und in drei hellen Boen hat es 7 Hölzchen mehr als in einer dunklen Bo. Notiere den Lösungsweg.
5 29. Löse die Gleichung schriftlich korrekt nach auf und notiere die Lösungsmenge: a.) 4-15 = = c.) 12 9 = d.) 0,1 2 = 0,3 30. Beschreibe die Situation mit Variablen (), notiere die Gleichung, löse sie korrekt auf und gib die Lösung an: Grossmutter, Mutter und Tochter sind zusammen 96 Jahre alt. Die Mutter ist halb so alt wie die Grossmutter, und die Tochter ist 24 Jahre jünger als die Mutter. Wie alt ist die Tochter? 31. Berechne (notiere als Potenz): a.) : Berechne : a.) 9 = 10' = Für welche natürlichen Zahlen gilt : 100 < 4 < 1'000? 34. Ein Futtervorrat für 24 Tiere reicht 20 Wochen lang. Wie lange reichte dieser Vorrat für 30 Tiere? 35. Welche Geschwindigkeit hat ein Flugzeug, welches in 0,75h eine Strecke von 648km zurücklegt? 36. Ein Würfel mit einer Kantenlänge von 50cm hat ein Gewicht von 50kg. Berechne das Gewicht eines Würfels mit einer Kantenlänge von 80cm. 37. Berechne für die weisse / orange / grüne / blaue Teilfläche, welchen Anteil sie an der ganzen Rechtecksfläche hat: - als gekürzten gemeinen Bruch - als Dezimalbruch - als Prozentangabe ( % ) Weiss Orange Grün Blau Gem. Bruch Dezimalbruch Prozent (%)
6 38. Fülle die untenstehende Tabelle aus: Gekürzter gem. Bruch Dezimalbruch Prozent (%) 0, ,6 62, Färbe vom Rechteck: a.) 15% mit rot c.) 7 20 mit grün 0,4 mit blau 40. Bestimme die Häufigkeit der angegebenen Buchstaben im genannten Wort und gib die Resultate absolut und relativ (gekürzter gemeiner Bruch) an. Wörter abs. a rel. abs. e rel. abs. n rel. Rennraeder 41. Zwei Mädchen vergleichen ihr Sackgeld. Paula besitzt 56Fr., Mia 70Fr. Wie viel Prozent (%) besitzt Paula weniger als Mia? 42. Ergänze die fehlenden Werte. Inhalt 200 ml 60 ml 150 ml 1 l Anteil in % 80 % 100 % 12 % 90 % 0.2 %
7 43. Konstruiere alle Punkte, welche sowohl von g und h wie auch von P und Q den gleichen Abstand haben. g X Q P X h 44. Konstruiere die Achse g einer Achsenspiegelung sowie die Bildfigur, wenn A der Bildpunkt von A ist. Färbe die Lösung rot. A A B C 45. Konstruiere den Spiegelpunkt P einer Punktspiegelung sowie die Bildfigur, wenn A der Bildpunkt von A ist. Färbe die Lösung rot. A A B C
8 46. Vereinfache: a.) y 16-14y f.) (6 + 7y) (8 + 9y) 8 8y y g.) 3(4-5y) 5(4 + 3y) c.) 7 7y 3 3y h.) 4(2 4y) + 2(4 2y) d.) (4 + 5y) - (6 + 7y) i.) 5( + 3y) 2(4 y) e.) ( 2y) + 3(4 + 5y) j.) 6(3 + y) 3( + 6y) 47. Berechne / vereinfache: a.) c.) d.) 8a 8 25b 6b 6 a 5 c 15c2 2 16a 6 b 48. Berechne / vereinfache: a.) 4(5+6y-7z) 2yz(-7y+3z) c.) 2(3-4y) - 5(4-3y) - 2(-2y) d.) 2(4+6y) - [4-2(-2y)] e.) (-5)(5+1) f.) (2-4y) 2
Repetition Mathematik 8. Klasse
Repetition Mathematik 8. Klasse. Berechne schrittweise mit einem korrekten Lösungsweg: + 3 3 4 : 3. Berechne schrittweise mit einem korrekten Lösungsweg: 0 + 0 b.) 3 4 + 3 5 c.) 9 8 8 9 5 3. Berechne schrittweise
Repetition Mathematik 6. Klasse (Zahlenbuch 6)
Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von
Repetition mathbuch 1+
Repetition mathbuch + Themen: LU 4 So klein- so gross LU 9 Flächen/Volumen LU 0 x-beliebig LU Knack die Box LU 2 Parallel.& Dreiecke LU 6 Wie viel ist viel LU 7&8 Brüche & Prozente LU 9 Suen und Produkte
mathbu.ch 7-9 TEIL cm = km dm = km 6.85 l = hl = m cl
REPETITION Name: Unterschrift: Aufgabe 1 Grössen - Vorsätze 200 cm = 0.002 km 122.55 dm = 0.012255 km 6.85 l = 0.0685 hl 3 3 320 mg = 0.00032 kg dm = 0.0375 m cl 8 10 = 0.003 l 750 000 µm = 0.75 m 900
St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte
St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse
Musterprüfung Gymnasiale Maturitätsschulen. Name/Vorname: Wohnort:
Musterprüfung Gymnasiale Maturitätsschulen Name/Vorname: Wohnort: Mathematik schriftlich Zeit: 120 Minuten Hinweise: Schreibe auf jedes Blatt deinen Namen. Löse alle Aufgaben direkt auf den Prüfungsblättern.
Serie W1 Klasse 8 RS. 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3
Serie W1 Klasse 8 RS 1. 7,4 dm³ = cm³ 2. 5 (13-6) = 3. Berechne für a = - 4,5 b = - 3 3 c = 4 2a - b; a + b; b : c 4. 36:0,4 = 5. Vergleiche. 30+2 10+5 30+2 (10+5) 6. Kürze 12 44 7. Berechne a 8a - 28
r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:
Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck
Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg
Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480
Basiswissen Klasse 5, Algebra (G8)
Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:
St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Korrekturanleitung. Kandidatennummer: Summe: Geburtsdatum: Note:
St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Korrekturanleitung Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10
Warm-up Wie groß sind die Winkel α, β, γ? Es gilt: a b und c d. α = 58 (Wechselwinkel zu γ) β = 122 (Scheitelwinkel)
Winkel Textaufgabe Maßstab Warm-up 24. Wie groß sind die Winkel α, β, γ? Es gilt: a b und c d α = 58 (Wechselwinkel zu γ) β = 2 (Scheitelwinkel) γ = 58 (Nebenwinkel 80 2 ) 2. Für 4 Eiskugeln muss Felix
Wiederholungsaufgaben Klasse 7 Blatt 1
Wiederholungsaufgaben Klasse 7 Blatt 1 Aufgabe 1 Berechne ohne Taschenrechner. a) (0,7 + 0,85) : 0,016 b) (65,2 25) 0,5 Aufgabe 2 Was ist eine Primzahl? Nenne mindestens 10 Primzahlen. Aufgabe 3 Wie nennt
1 Mein Wissen aus der 3. Klasse
1 Mein Wissen aus der 3. Klasse Check-in C1 Ich kann mit gegebenen Seiten den Satz des Pythagoras formulieren. Formuliere mit den gegebenen Seiten den Satz des Pythagoras! C2 Ich kann Verhältnisse vereinfachen.
Jahresprüfung Mathematik. 1. Klasse / KSR. Donnerstag, 27. Mai Uhr
Erreichte Punktezahl: / Note: (Maximale Punktezahl: 68) Jahresprüfung 2010 Mathematik 1 Klasse / KSR Donnerstag, 27 Mai 2010 1310-1440 Uhr Das GROSSGEDRUCKTE: Unbedingt zuerst durchlesen! - Prüfung auf
Mathematik Probe-Aufnahmeprüfung 2013-II Profile m,n,s
Mathematik Probe-ufnahmeprüfung 2013-II Profile m,n,s Zeit: Rechner: Hinweis: 2 Stunden. TI30/TI34 oder vergleichbare. Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben.
1. Z a h l e n, G r ö s s e n. O p e r a t i o n e n
Mathematik Name: Klasse: Repetition Stellwerk Punkte: von Datum: Unterschrift: Note: 1. Z a h l e n, G r ö s s e n. O p e r a t i o n e n 1. Schreibe 560 Millionen als Zahl. GZ 2. Welcher Bruch wird durch
Kompetenzen am Ende der Einheit GRUNDWISSEN
Kompetenzen am Ende der Einheit GRUNDWISSEN A) Grundrechenarten mit - 1.Natürlichen Zahlen : Berechne ohne Taschenrechner : a) 6438 + 64742 b) 8633 5877 c) 28 * 36 d) 7884 : 9-2. Brüchen : Berechne ohne
Mathematik 1. Kanton St.Gallen Bildungsdepartement. St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung (ohne Taschenrechner)
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note:
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2014 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Aufgabe 1 Berechne x. 3x 2 x 2 1 = 2 4 8 12x 8 2x
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 006 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte
Mathematik 1 (ohne Taschenrechner)
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2013 Mathematik 1 (ohne Taschenrechner) Dauer: Kandidatennummer: Geburtsdatum: Korrigiert von: 90 Minuten Punktzahl/Note:
Flächeneinheiten und Flächeninhalt
Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,
M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch 3 in einem Kreisdiagramm.
M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch 3 in einem Kreisdiagramm. 4 3 4 von 100kg = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was
Geometrie. in 15 Minuten. Geometrie. Klasse
Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,
z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm².
Einsetzbar ab Lerneinheit Zuordnungen a) Runde 34,92 auf Zehntel. 35,0 b) Berechne: 3 5 11 3 +. = 1 4 8 8 8 z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 007 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Mathematik: Korrekturanleitung
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2014 Mathematik: Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen Aufgaben
MATHEMATIK - Teil A. Prüfungsnummer 000. Punkte: Note: Aufnahmeprüfung 2018 Pädagogische Maturitätsschule Kreuzlingen
MATHEMATIK - Teil A Prüfungsnummer 000 Punkte: Note: Aufnahmeprüfung 2018 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und einzelnen Schritte müssen
AP1G_2017_Mathematik schriftlich
AP1G_2017_Mathematik schriftlich Mathematik Teil 1 schriftlich max. Punkte: 34 Vorbemerkungen und Anweisungen Dauer: 60 Minuten Die Prüfung darf erst nach Freigabe der Aufsichtsperson aufgeklappt werden.
AP1G_2018_Mathematik schriftlich
AP1G_2018_Mathematik schriftlich Mathematik Teil 1 schriftlich max. Punkte: 34 Vorbemerkungen und Anweisungen Dauer: 60 Minuten Die Prüfung darf erst nach Freigabe der Aufsichtsperson aufgeklappt werden.
Schularbeitsstoff zur 2. Schularbeit am
Schularbeitsstoff zur. Schularbeit am 19.1.016 Flächeninhalt 8 Flächeninhalt 1 9 Flächeninhalt 1 14 Flächeninhalt Bruchzahlen 10 Bruchzahlen Potenzen Potenzen 11 Potenzen 1 Potenzen Variable und Funktionen
1. Schularbeit Stoffgebiete:
1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:
Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth
Wiederholungsaufgaben Klasse 6 Blatt 1 EG Wörth Fülle die Tabelle aus Vorgänger 898989 Zahl 115 1519900 Nachfolger 9000 Schreibe ohne Klammern und berechne dann: a) 43 77 = b) 64 35 = Einen Linienzug erhält
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
St. Gallische Kantonsschulen Aufnahmeprüfung 2011 FMS / WMS / WMI Mathematik / 1. Teil
St. Gallische Kantonsschulen Aufnahmeprüfung 011 FMS / WMS / WMI Mathematik / 1. Teil ohne Taschenrechner Dauer: 40 Minuten Kandidatennummer: Geburtsdatum: Abteilung: 1. Teil. Teil Summe Punkte Note Die
1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}
1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung
Mathematik Aufnahmeprüfung 2012 Profile m,n,s
Mathematik ufnahmeprüfung 2012 Profile m,n,s Zeit: Rechner: Hinweis: 2 Stunden. TI30/TI34 oder vergleichbare. Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. ufgabe
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 01 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Mathematik 1 (ohne Taschenrechner)
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2014 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note:
St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe
St.Gallische Kantonsschulen Aufnahmeprüfung 010 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 3 4 5 6 7 8 9 10 11 1 13 Punkte Löse
Einstufungstest für den Bereich: Zahlenraum (Zahlen und Variablen) / Lösung
Einstufungstest für den Bereich: Zahlenraum (Zahlen und Variablen) / Lösung Einmaleins Einmaleins/ A1 a) 4 6 = 24 g) 6 6 = 36 b) 2 7 = 14 h) 8 7 = 56 c) 5 3 = 15 i) 9 5 = 45 d) 1 8 = 8 j) 8 6 = 48 e) 6
So klein! So gross! 4
1 8 301 Welche der folgenden Aussagen sind wahr (w), welche sind falsch (f)? A Ein Fingernagel ist etwa 1 cm breit. w f B Ein Wanderer legt in einer Viertelstunde bequem 5 km zurück. w f C Ein Haar hat
SEMESTERPRÜFUNG MATHEMATIK. 1. Klassen KSR. Dienstag, 29. Mai :10-14:40 Uhr
KLASSE: NAME: VORNAME: Mögliche Punktzahl: 75 68 Pte. = Note 6 Erreichte Punktzahl: Note: SEMESTERPRÜFUNG MATHEMATIK 1. Klassen KSR Dienstag, 9. Mai 01 1:10-14:40 Uhr Allgemeines Diese Prüfung hat 14 Seiten
Mathematik für Gymnasien Übungsaufgaben - Jahrgangsstufe 6
Mathematik für Gymnasien Übungsaufgaben - Jahrgangsstufe I. Brüche. Allgemein: a) Aus welchen Bestandteilen besteht ein Bruch? b) Was besagt der Nenner? c) Was besagt der Zähler? d) In welchen Diagrammen
2006/1. Ist diese Aussage gerechtfertigt? Schreib deine Begründung im Antwortbogen auf. Zuordnung: H3/I4
2006/1. In einer Zeitschrift ist zu lesen: Untenstehende Graphik demonstriert, dass die Anzahl der Alkoholkranken in der Stadt X von 2002 bis 2003 stark zugenommen hat Ist diese Aussage gerechtfertigt?
5v ( 3) ( 6v)+ 6 9v ] (5a) 2 +8a 2 9ab 2 : = 5v [18v +2 3v] = 5v 15v 2 20v 2. = 33a2 9ab 2 ab
Mathematik Aufnahmeprüfung 016 Lösungen Aufgabe 1 (a) Vereinfache so weit wie möglich: (b) Vereinfache so weit wie möglich: [ 5v ( 3) ( 6v)+ 6 9v ] 3 (5a) +8a 9ab : 3 ab =? =? (a) [ 5v ( 3) ( 6v)+ 6 9v
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 6 6 4 5 4 6 31 Die Prüfung dauert 45 Minuten.
Name:... Vorname:... Prüfungsnummer:...
Zentrale Aufnahmeprüfung 2012 für die Fachmittelschulen des Kantons Zürich Mathematik, 2./3. Sekundarschule Neues Lehrmittel Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten
Mathematik Aufnahmeprüfung 2016
Mathematik Aufnahmeprüfung 2016 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate
MTG Grundwissen Mathematik 5.Klasse
MTG Grundwissen Mathematik 5.Klasse Umgang mit großen Zahlen Beispiel: 47.035.107.006 = 4 10 10 + 7 10 9 + 3 10 7 + 5 10 6 + 10 5 + 7 10 3 + 6 10 0 A1: Schreibe 117 Billionen 12 Milliarden vierhundertsiebentausendsechzig
sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }
M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4
Mathematik II (Geometrie)
Mathematik II (Geometrie) Zeit: 120 Minuten Jede Aufgabe gibt maximal 5 Punkte. Zum Lösen jeder der sieben Aufgaben steht jeweils ein Blatt zur Verfügung. Verwende auch die Rückseite, falls du auf der
Mathematik schriftlich Sekundarschule
für die Kurzgymnasien des Kantons Zürich Mathematik schriftlich 2008 Von der Kandidatin oder vom Kandidaten auszufüllen Name:... Vorname:... Prüfungsnummer:... Hinweise Du hast 90 Minuten Zeit. Du musst
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Mathematik I Prüfung für den Übertritt aus der 8. Klasse
Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
SEMESTERPRÜFUNG MATHEMATIK. 1. Klassen KSR. Dienstag, 29. Mai :10-14:40 Uhr
KLASSE: NAME: VORNAME: Mögliche Punktzahl: 75 68 Pte. = Note 6 Erreichte Punktzahl: Note: SEMESTERPRÜFUNG MATHEMATIK 1. Klassen KSR Dienstag, 9. Mai 01 1:10-14:40 Uhr Allgemeines Diese Prüfung hat 14 Seiten
Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:
GRUNDWISSENTEST 07 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 7 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Bei formalen
JAHRESPRÜFUNG MATHEMATIK 1. KLASSEN KSR. Montag, 30. Mai :10-14:40 Uhr
NAME: VORNAME: KLASSE: Maximale Punktzahl: 64 Erreichte Punktzahl: / 60 Note: JAHRESPRÜFUNG MATHEMATIK 1. KLASSEN KSR Montag, 30. Mai 011 13:10-14:40 Uhr ALLGEMEINES Bitte alle Blätter der Prüfung sofort
Name:... Vorname:...
Zentrale Aufnahmeprüfung 2012 für die Kurzgymnasien des Kantons Zürich Mathematik 2./3. Sekundarschule Bisheriges Lehrmittel Bitte zuerst auszufüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90
Lernzielkontrollen Lösungen
Lernzielkontrollen Lösungen Zum Gebrauch der Lernzielkontrollen Die Lernzielkontrollen sind ein Angebot von Aufgaben, die der jeweiligen Klassensituation entsprechend variiert oder erweitert werden sollen.
Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik
Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen Mathematik Solothurn, 21. Mai 2012 1 Arithmetik 1.1 Natürliche Zahlen 1.1.1 Die Sch können natürliche Zahlen lesen und schreiben. S. 6/7 S.
Aufgaben zum Basiswissen 5. Klasse
Aufgaben zum Basiswissen 5. Klasse 1. Daten 1. Aufgabe: Familie Tierlieb besitzt 4 Katzen, 2 Hunde, 5 Kaninchen, 2 Papageien, 4 Mäuse und ein Pferd. Zeichne hierfür ein Kreisdiagramm. 2. Aufgabe: Zeichne
Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:
MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2015 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und
Mathematik für Gymnasien
Mathematik für Gymnasien Übungsaufgaben- LÖSUNGEN -Jahrgangsstufe I. Brüche. Allgemein: a) Zähler, Bruchstrich, Nenner b) Der Nenner gibt die Anzahl der gleichen Teile an, in die das Ganze zerlegt werden
1. a) Vereinfache den Term so weit wie möglich. 4a a 6 a 3 3. b) Vereinfache den Term so weit wie möglich. (3a)2 + 16a 2 : 15.
1. a) Vereinfache den Term so weit wie möglich. 4a + 8 4 + 2a 6 a 3 3 b) Vereinfache den Term so weit wie möglich. (3a)2 + 16a 2 : 15 2a 2 4a 2 von 15 2. a) Löse die Gleichung nach x auf. 7x 3(5x 16) =
Mathematik 2: (mit Taschenrechner) Korrekturanleitung
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2014 Mathematik 2: (mit Taschenrechner) Korrekturanleitung Aufgabe 1 Berechne die fehlenden Werte in der Tabelle.
Mathematik 1 (ohne Taschenrechner)
Kanton St.Gallen Bildungsdepartement Gymnasium Aufnahmeprüfung 2018 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note: Aufgabe 1 2 3 4
1 Zahlen. 1.1 Zahlenmengen. Grundwissen Mathematik 5
1 Zahlen 1.1 Zahlenmengen I N= { 1, 2, 3,...} Menge der natürlichen Zahlen I N 0 = { 0, 1, 2,...} Menge der natürlichen Zahlen mit Null Z = {...-3; -2; -1; 0; 1; 2; 3;...} Menge der ganzen Zahlen V 12
Bayerischer Mathematiktest an Realschulen 2006
Jgst. 6 Aufgabe: 1.1 Die vier Grundrechenarten 1.0 Berechne: 1.1 73 3 22 + 30 = 37 Aufgabe 1.1 76,4% 23,6% Jgst. 6 Aufgabe: 1.2 Potenzen 1.0 Berechne: 1.2 2 2 2 5 4 + 3 = 18 Aufgabe 1.2 80,4% 19,6% - 2
Grundwissen. 5. Jahrgangsstufe. Mathematik
Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000
Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.
Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.
Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6
Bildungsplan 2004 Bildungsstandards für Mathematik Kern- und Klassen 5 und 6 Max-Planck-Gymnasium Böblingen 1 UE 1: Rechnen mit großen Zahlen UE 2: Messen und Auswerten natürliche Zahlen einfache Zehnerpotenzen
St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe
St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium Mathematik 2 mit Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 Punkte Löse die
Stoffverteilungsplan Mathematik Klasse 5
Stoffverteilungsplan Mathematik Klasse 5 Lehrwerk: Mathematik heute; Schroedel Zeitraum Themen/Inhalte Begriffe/Bemerkungen Lehrbuch/KA Leitidee/Kompetenzen Weitere Hinweise 6 Wochen Natürliche Zahlen
Mathematik. ~~ Thurgau "'~ Zweiter Teil - mit Taschenrechner. Lösungen - Lösungen - Lösungen. 5 6 Total
Mathematik Zweiter Teil - mit Taschenrechner Name Vorname Aufgabe 1 2 Punkte total Punkte erreicht 6 6 4 5 Kandidatennummer I Gruppennummer Die Prüfung dauert 45 Minuten. Die Benützung des Taschenrechners
Kantonale Prüfungen Mathematik I Prüfung für den Übertritt aus der 9. Klasse
Kantonale Prüfungen 202 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik I Serie H9 Gymnasien des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten:
Mathematik I. Kantonale Vergleichsarbeit 2012/ Klasse Primarschule. Datum der Durchführung: 15. Januar Lösungen und Korrekturanweisungen
Volksschulamt Kantonale Vergleichsarbeit 2012/2013 6. Klasse Primarschule Mathematik I Datum der Durchführung: 15. Januar 2013 Lösungen und Korrekturanweisungen Es gibt keine Punktabzüge für fehlende Sorten!
St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium. Kandidatennummer: Korrekturanleitung. Aufgabe
St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium Mathematik 2 mit Taschenrechner Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrekturanleitung Summe: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10
Grundwissen. 6. Jahrgangsstufe. Mathematik
Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren
Resultate, die nicht ganzzahlig sind, sind auf zwei Stellen nach dem Dezimalpunkt zu runden.
Mathematik Zeit: 120 Minuten Löse jede Aufgabe auf dem dafür vorgesehenen Platz auf den Prüfungsblättern. Wenn zu wenig Platz vorhanden ist, kannst du die Rückseite benutzen. Zeige dies mit einem Pfeil
math-circuit Liebe Schülerin, lieber Schüler
Liebe Schülerin, lieber Schüler Der math-circuit besteht, wie ein Circuittraining im Sport, aus verschiedenen Posten. Im Sport trainiert man bestimmte Fertigkeiten. Im math-circuit trainierst du die wichtigsten
Einführung 2. Hinweis: In der elektronischen Version sind die Seiten verlinkt.
Inhaltsverzeichnis Einführung 2 Aufgaben Lösungen A1 Zahlverständnis (Natürliche Zahlen)... 3 27 A1* Zahlverständnis (Natürliche Zahlen)... 4 28 A2 Rechnen (Natürliche Zahlen)... 5 29 A2* Rechnen (Natürliche
Kopfübungen zur regelmäßigen Wiederholung der Basiskompetenzen Die Teilaufgaben beziehen sich auf den angegebenen Kompetenzbereich.
zur regelmäßigen Wiederholung der Basiskompetenzen Die Teilaufgaben beziehen sich auf den angegebenen Kompetenzbereich. Einsetzbar ab Klasse 8 Möglichkeiten des Unterrichtseinsatzes: Zu Stundenbeginn,
Grundwissen 8 - Aufgaben Seite 1
Grundwissen 8 - Aufgaben 22.01.2016 Seite 1 1. Ergänze jede der folgenden Aussagen zum Rechnen mit Potenzen mathematisch sinnvoll und grammatikalisch korrekt. a) Zwei Potenzen mit gleicher Basis werden
Grundwissen zur 5. Klasse (G9)
Grundwissen zur 5. Klasse (G9) (Strukturiert nach dem Schulbuch Lambacher Schweizer 5 zum Lehrplan Plus) I. Natürliche und ganze Zahlen a) Veranschaulichung von Zahlen Du musst wissen, wie man Zahlen am
DOWNLOAD. Vertretungsstunde Mathematik Klasse: Figuren und Körper. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:
DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunde Mathematik 3 5. Klasse: auszug aus dem Originaltitel: Rechtecke 1 1. Konstruiere ein Rechteck mit a = 8 cm und b = 5 cm. 2. Notiere alle Eigenschaften
Thema Einheiten umwandeln. Maßeinheiten
Einheiten umwandeln Maßeinheiten. Wandle in die in Klammern angegebene Einheit um. a) t (kg) b) 4 t (kg) c) 4 000 kg (t) d) 88 000 kg (t) e) 6 t (kg) f) 000 kg (t) g) 944 t (kg) h) 000 kg (t). Wandle in
Aufgabe 1: Wandle in die angegebene Einheit um. a) 534 kg = t b) 87 dm = m. c) 7 min = s d) 0,145 l = ml / 4 P.
a) 534 kg = t b) 87 dm = m c) 7 min = s d) 0,145 l = ml Aufgabe 2: Schriftliches Rechnen a) 5 3 8 b) 6 1 8 9 c) 8 7 2 3 d) 9 8 4 : 8 = 2 6 9 + 1 8 2 3 a) 3 4 + 4 5 = b) 8 5 9 3 1 9 = c) 2 3 6 7 = d) 2
SEMESTERPRÜFUNG MATHEMATIK. 1. Klassen KSR. Montag, 26. Mai :10-14:40 Uhr
KLASSE: NAME: VORNAME: Erreichte Punktzahl: / 61 Note: SEMESTERPRÜFUNG MATHEMATIK 1. Klassen KSR Montag, 6. Mai 008 1:10-14:40 Uhr Allgemeines Bitte Prüfung sofort 8mal anschreiben, auf jeder Seite zuoberst!
Mathematik Aufnahmeprüfung 2014 Profile m,n,s
Mathematik Aufnahmeprüfung 2014 Profile m,n,s Zeit: Rechner: Hinweis: 2 Stunden. TI30/TI34 oder vergleichbare. Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische
MATHEMATIK 7. Schulstufe Schularbeiten
MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)
Mathematik Aufnahmeprüfung 2016
Mathematik Aufnahmeprüfung 2016 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate
Natürliche Zahlen, besondere Zahlenmengen
Natürliche Zahlen, besondere Zahlenmengen A5_01 Menge der natürlichen Zahlen N = {1, 2, 3,...} Menge der natürlichen Zahlen mit der Null N 0 = {0, 1, 2,...} Primzahlen: Eine Primzahl hat genau zwei Teiler,
