Mathematik: Korrekturanleitung
|
|
|
- Christoph Sauer
- vor 8 Jahren
- Abrufe
Transkript
1 Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2014 Mathematik: Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen Aufgaben oder Aufgabenteile fest. Sie dient als Richtlinie bei der Bewertung von unvollständig oder teilweise falsch gelösten Aufgaben. Ist eine Aufgabe klar und richtig gelöst, so ist die entsprechende Punktzahl unabhängig vom eingeschlagenen Weg zu erteilen. Einige Hinweise: Fehlen die Lösungswege oder sind diese unklar, so sind angemessene Abzüge zu machen. Ausnahmen sind angegeben. Auch bei mangelhafter Darstellung soll ein angemessener Abzug gemacht werden. Wo nichts anderes angegeben ist, wird als Richtwert pro Fehler 1 Punkt abgezogen. Dies gilt insbesondere für Rechenfehler wie auch für Abschreibfehler. Für kleinere Versehen mag ½ Punkt angebracht sein. Fehlerfortpflanzungen führen nur dann zu weiteren Abzügen, wenn sich dadurch die Aufgabe wesentlich vereinfacht oder wenn ein unsinniges Ergebnis entsteht. Überlegungsfehler und grobe Mathematikfehler rechtfertigen auch höhere Abzüge, unter Umständen bis zum Totalabzug. Dasselbe gilt für falsch aufgestellte Gleichungen. Das Lösen solcher Gleichungen gibt nicht in jedem Fall Anrecht auf Punkte. Die Anwendung dieser Richtlinien liegt im Ermessen der Korrigierenden. In Zweifelsfällen ist eine abteilungs- oder schulinterne Absprache angezeigt.
2 Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2014 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Aufgabe 1 Berechne x. 3x 2 x 2 1 = x 8 2x + 4 = 1 10x 4 = 1 10x = 5 x = 0.5 Aufgabe 2 Vereinfache die Terme so weit wie möglich. a) 6b + 5c 7b + 10c 3a 6a a) 5b 6a b) 16a (3a 4(2a 1)) b) 21a - 4 Berechne und gib das Resultat als gekürzten Bruch oder Dezimalbruch an. c) 2 0.3:0.5 c) 6 5 =11 5 =1.2 d) : Punkte d) 25 6 = = = 4.16 (ungekürzt: ½ Pkt.)
3 Aufgabe 3 Die Summe der vier Brüche auf dem oberen Kreis beträgt 2. Das Produkt der vier Brüche auf dem unteren Kreis beträgt ebenfalls 2. Wie lauten die beiden Brüche X und Y? Gib die Ergebnisse als gekürzte Brüche an. 2 X = Y= = (ungekürzt: ½ Pkt.) Aufgabe 4 Berechne die Werte und trage sie in die Tabelle ein. x y x y! x! (y 4) je ½ Pkt Aufgabe 5 Vereinfache so weit wie möglich. 4x! 3x! = 12x 14 3a! + 9a! = 12a 5 je ½ Pkt. xy y! x! = x 6 y 6 ab! : (ab! ) = b 2 7! : 7! = 7 2 = 49 10!! : 10!! = 10 2 = 100 2! 2! 2! : 2! = 20 a + b + a b = 2b 4 Punkte
4 Aufgabe 6 Barney kauft einen älteren Computer zu 60% des Katalogpreises. Später verkauft Barney das Gerät mit 10% Gewinn an seinen Freund Homer. Wie gross war der Katalogpreis, wenn Homer Fr bezahlen muss? Kaufpreis Fr : = Fr Katalogpreis Fr : = Fr Aufgabe 7 a) Halbiere mit dem Zirkel den Winkel bei A. Spiegle das Dreieck ABC an dieser Winkelhalbierenden. Zeichne die Bildfigur mit Farbe. b) Spiegle das Originaldreieck ABC am Punkt P. Zeichne die Bildfigur mit einer anderen Farbe. a) w α, B, C je ½ Pkt. b) A, B, C je ½ Pkt. Hilfslinien für w α nicht sichtbar: ½ Pkt. Etwa 1 mm Toleranz zulassen (z.b. falls C nicht exakt auf AB liegt).
5 Aufgabe 8 Auf der Insel Monkey Island ist ein alter Schatz vergraben. Die Piraten entziffern die Schatzkarte: Der Schatz befindet sich mehr als 150 m und weniger als 200 m von der Quelle Q entfernt, näher beim Baum A als beim Baum B und genau 100 m vom geradlinigen Weg s entfernt. Wo müssen die Piraten graben? Konstruiere die Lösung und markiere sie mit Farbe. g.o. Kreispaar um Q mit r 1 = 150 m / r 2 = 200 m g.o. Mittelsenkrechte von AB g.o. Parallelen(paar) zu s im Abstand 100 m richtig markierte Abschnitte (nur 1 Abschnitt: - ) 1.5 Pkt.
6 2.5 cm Aufgabe 9 Das nicht massstabgetreu gezeichnete Rechteck ist 4 cm breit und 10 cm lang. Die Teilfläche A beträgt! der Gesamtfläche.!" Die Teilfläche C ist gleich gross wie die Teilfläche A. A B C Berechne die Länge der Strecke x. x Gesamtfläche 4 cm 10 cm = 40 cm 2 Variante 1: Flächeninhalt von A bzw. C 40 cm 2 : 10 3 = 12 cm 2 Grundlinie des Dreiecks C 2 12 cm 2 : 4 cm = 6 cm Grundlinie des Trapezes A 2 (12 cm 2 : 4 cm) 2.5 cm = 3.5 cm x berechnen 10 cm 6 cm 3.5 cm = 0.5 cm Variante 2: Flächeninhalt von B 40 cm cm 2 = 16 cm 2 Parallelenseite von B 10 cm 2.5 cm = 7.5 cm Mittellinie von B 16 cm 2 : 4 cm = 4 cm x berechnen 2 4 cm 7.5 cm = 0.5 cm Aufgabe 10 Ergänze die fett umrandeten Kästchen aus. Die anderen Kästchen können leer gelassen werden. Nr x 100 Figur Strecken () Punkte () 301 () Flächen 1 4 3x 2 ()
7 Aufgabe 11 Teil C wird auf Teil B und Teil B auf Teil A geklebt, so dass der Körper D entsteht (siehe Skizzen). Körper D wird nun in rote Farbe getaucht, so dass alle Aussenflächen rot gefärbt werden. Kreuze in den Bauteilen A, B und C diejenigen Würfelchen an, welche beim Färben genau drei rote Seitenflächen erhalten. A richtig B richtig C richtig Aufgabe 12 Ein Tram, eine Velofahrerin und ein Jogger bewegen sich auf dem gleichen Weg vom Bahnhof ins Fussballstadion. Die Distanz beträgt 2400 m. Prüfe die untenstehenden Behauptungen und kreuze die korrekten Antworten an. [m] [h:min] a) Die Velofahrerin überholt den Jogger. b) Der Jogger macht beim Fussballstadion einen längeren Halt. c) Das Tram überholt den Jogger, bevor er den halben Weg zurückgelegt hat. d) Zum Zeitpunkt, an dem die Velofahrerin beim Stadion ankommt, ist der Jogger hinter dem Tram. e) Das Velo fährt mit einer Durchschnittsgeschwindigkeit von 18 km/h. f) Das Tram fährt im Durchschnitt schneller als die Velofahrerin. je ½ Pkt.
8 Aufgabe 13 Ein Händler bietet auf dem Markt Orangen an, die er nach folgendem System aufschichtet: In der untersten Schicht sind 25 Orangen quadratförmig angeordnet. In der zweituntersten Schicht sind die Orangen dann so angeordnet, dass jede Orange in einem Zwischenraum liegt, der von vier benachbarten Orangen der unteren Schicht gebildet wird. So fährt der Händler fort, Schicht um Schicht, bis zuoberst die letzte Orange die Spitze bildet (siehe Bild). a) Wie viele Orangen kann der Händler mit diesem Vorgehen in der Pyramide platzieren? a) unterste bis oberste Schicht = 55 Orangen b) In der untersten Schicht sind nun 35 Orangen als Rechteck angeordnet. Der Händler platziert die Orangen nach demselben Prinzip, bis zur obersten Schicht, die nun nicht mehr eine einzelne Orange ist, sondern eine Linie. Wie viele Orangen lassen sich nun platzieren? b) unterste bis oberste Schicht = = 85 Orangen
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte
St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 2: Korrekturanleitung Einige Hinweise:
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 2: (mit Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Herbst 2015
Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Herbst 015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen
Mathematik 1. Kanton St.Gallen Bildungsdepartement. St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung (ohne Taschenrechner)
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note:
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2016
Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2016 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen
Mathematik 2: (mit Taschenrechner) Korrekturanleitung
Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015 Mathematik 2: (mit Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen
Erreichte Punktzahl: Schlussnote:
Kanton St. Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2017 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note:
Mathematik: Korrekturanleitung
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2014 Mathematik: Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen Aufgaben
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015
Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen
Mathematik 1. Kanton St.Gallen Bildungsdepartement. St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung (ohne Taschenrechner)
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2015 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note:
Mathematik I Prüfung für den Übertritt aus der 9. Klasse
Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe
St.Gallische Kantonsschulen Aufnahmeprüfung 010 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 3 4 5 6 7 8 9 10 11 1 13 Punkte Löse
Mathematik I Prüfung für den Übertritt aus der 8. Klasse
Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Zentrale Aufnahmeprüfung 2011 für die Langgymnasien des Kantons Zürich. Name: Vorname:
Zentrale Aufnahmeprüfung 2011 für die Langgymnasien des Kantons Zürich Mathematik Name: Vorname: Prüfungsnummer: Allgemeine Hinweise: Du hast 60 Minuten Zeit. Löse die Aufgaben direkt auf das Aufgabenblatt.
Mathematik 2: (mit Taschenrechner) Korrekturanleitung
Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Herbst 2015 Mathematik 2: (mit Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen
Mathematik I Prüfung für den Übertritt aus der 8. Klasse
Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
(3r) r 2 =? xy 3y a + 6b 14. ( xy
Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:
Mathematik Aufnahmeprüfung 2014 Profile m,n,s
Mathematik Aufnahmeprüfung 2014 Profile m,n,s Zeit: Rechner: Hinweis: 2 Stunden. TI30/TI34 oder vergleichbare. Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische
Repetition Mathematik 7. Klasse
Repetition Mathematik 7. Klasse 1. Ein neugeborenes Kätzchen wiegt bei der Geburt durchschnittlich 100g. Es nimmt in den ersten 8 Wochen pro Woche 60g zu. Wie viel beträgt nachher die Gewichtszunahme pro
Mathematik Aufnahmeprüfung 2013 Profile m,n,s
Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe
St.Gallische Kantonsschulen Aufnahmeprüfung 2006 Gymnasium. Note:
Kand.-Nummer St.Gallische Kantonsschulen Aufnahmeprüfung 2006 Gymnasium Mathematik ohne Taschenrechner Dauer 90 Minuten Name: Vorname: Bisherige Schule: Klasse: Schwerpunktfach: Aufgabe 2 3 4 5 6 7 8 9
5v ( 3) ( 6v)+ 6 9v ] (5a) 2 +8a 2 9ab 2 : = 5v [18v +2 3v] = 5v 15v 2 20v 2. = 33a2 9ab 2 ab
Mathematik Aufnahmeprüfung 016 Lösungen Aufgabe 1 (a) Vereinfache so weit wie möglich: (b) Vereinfache so weit wie möglich: [ 5v ( 3) ( 6v)+ 6 9v ] 3 (5a) +8a 9ab : 3 ab =? =? (a) [ 5v ( 3) ( 6v)+ 6 9v
Repetition Mathematik 8. Klasse
Repetition Mathematik 8. Klasse. Berechne schrittweise mit einem korrekten Lösungsweg: + 3 3 4 : 3. Berechne schrittweise mit einem korrekten Lösungsweg: 0 + 0 b.) 3 4 + 3 5 c.) 9 8 8 9 5 3. Berechne schrittweise
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 1 Ohne Taschenrechner
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 1 Ohne Taschenrechner Prüfungsbedingungen Der Taschenrechner darf nicht verwendet werden. Die Aufgaben sind direkt unterhalb der Aufgabe zu
Pädagogische Maturitätsschule Kreuzlingen Aufnahmeprüfung Januar MATHEMATIK Teil A
Pädagogische Maturitätsschule Kreuzlingen Aufnahmeprüfung Januar 2008 MATHEMATIK Teil A Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken, die einzelnen Schritte müssen sauber und übersichtlich
Übertrittsprüfung 2014
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2014 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...
St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte
St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse
Mathematik I - Prüfung für den Übertritt aus der 9. Klasse
su» I MATUR Aufnahmeprüfung 2015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I - Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: Bearbeitungsdauer: 60
Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft
Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne
Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 006 Serie B Teil Fach: Teil Zeit: 45 Minuten Hilfsmittel: - Geometriewerkzeuge, kein Taschenrechner Vorschriften: - Der Lösungsvorgang muss vollständig ersichtlich sein. - Ungültiges ist
St.Gallische Kantonsschulen Aufnahmeprüfung 2010 FMS / WMS / WMI Mathematik / 1. Teil
St.Gallische Kantonsschulen Aufnahmeprüfung 010 FMS / WMS / WMI Mathematik / 1. Teil ohne Taschenrechner Dauer: 40 Minuten Kandidatennummer: Geburtsdatum: Abteilung: 1. Teil. Teil Summe Punkte Note Die
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 6 6 4 5 4 6 31 Die Prüfung dauert 45 Minuten.
St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe
St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse
Mathematik I Prüfung für den Übertritt aus der 9. Klasse
Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Mathematik 1. (ohne Taschenrechner) Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl / Note: Erreichte Punktzahl: Schlussnote:
Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Herbst 014 Mathematik 1 (ohne Taschenrechner) Dauer: 60 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl / Note: Aufgabe
(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte
Mathematik Aufnahmeprüfung 015 Aufgabe 1 3 4 5 6 7 8 9 10 11 1 Summe Punkte 4 4 3 3 3 3 4 4 4 4 40 Punkte für die Teilaufgaben: (a) Punkte, (b) Punkte (a) 1 Punkt, (b) 1 Punkt, (c) Punkte (a) 1 Punkt,
Montag, 31. August 2015, Uhr
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 2 Mit Taschenrechner Prüfungsbedingungen: Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner), keine Handys! Die Aufgaben sind direkt
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
M3/I Übung für die 5. Schularbeit Name:
1)Das Dreieck ABC ist vom Eckpunkt A aus im Verhältnis : 4 zu vergrößern. a = 45 mm, b = 40 mm, c = 60 mm 2)Vergrößere das Rechteck (a = 46 mm; b = 25 mm) im Verhältnis 2 :. Wähle als Zentrum den Eckpunkt
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 013 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Löse die Aufgaben auf diesen Blättern. Der Lösungsweg
Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Hilfsmittel: Nicht-programmierbarer Taschenrechner erlaubt, nicht aber Formelsammlungen usw.
MATHEMATIK - Teil B Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2015 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und
Mathematik Aufnahmeprüfung 2015
Mathematik Aufnahmeprüfung 2015 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate
Teil 1 Ohne Taschenrechner
Kantonsschule Trogen / BBZ Herisau Aufnahmeprüfung BM (BBZ / BFS W) und FMS September 2012 Mathematik Prüfungsbedingungen: Der Taschenrechner darf nicht gebraucht werden! Teil 1 Ohne Taschenrechner Die
Aufnahmeprüfung Juni 2017 Mathematik
Berufsmaturitätsschulen des Kantons Aargau Aufnahmeprüfung Juni 2017 Kandidaten Nr.: Name: Vorname: Geburtsdatum: / / Erreichte Punkte / 20 Note: Examinator: Koexaminator: Allgemeine Hinweise: Dauer der
Aufnahmeprüfung März 2017 Mathematik
Berufsmaturität für Erwachsene Aufnahmeprüfung März 2017 Kandidaten-Nr.: Name: Vorname: Geburtsdatum: / / 19 Total Punkte: / 20 Note : Examinator: Koexaminator: Allgemeine Hinweise: Dauer der Prüfung:
Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg
Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480
- Zeichenutensilien, kein Taschenrechner, keine Formelsammlung
Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel (alt): Arithmetik und Algebra (Hohl) Fach Mathematik Teil 1 Serie D Dauer 45 Minuten
Mathematik 1 ohne Taschenrechner
Kand. - Nummer St. Gallische Kantonsschulen Aufnahmeprüfung 2007 Gymnasium Mathematik 1 ohne Taschenrechner Dauer 90 Minuten 1. Klassen Name: Vorname: Bisherige Schule: Klasse: Schwerpunktfach: Aufgabe
Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft
Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne
Mathematik, 2. Sekundarschule
Zentrale Aufnahmeprüfung 2009 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name:........................
St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe
St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium Mathematik 2 mit Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 Punkte Löse die
AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK
Berufsfachschulen Graubünden 2. April 2014 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten (Teil 1: 45 Minuten/Teil 2: 45 Minuten) Hinweise: Löse die Aufgaben auf den beigelegten
St. Gallische Kantonsschulen Aufnahmeprüfung 2012 FMS / WMS / WMI Mathematik 1
St. Gallische Kantonsschulen Aufnahmeprüfung 01 FMS / WMS / WMI Mathematik 1 ohne Taschenrechner Dauer: 60 Minuten Kandidatennummer: Summe: Geburtsdatum: Abteilung: Note: Aufgabe 1 3 4 5 6 7 8 Punkte Die
1. a) Vereinfache den Term so weit wie möglich. 4a a 6 a 3 3. b) Vereinfache den Term so weit wie möglich. (3a)2 + 16a 2 : 15.
1. a) Vereinfache den Term so weit wie möglich. 4a + 8 4 + 2a 6 a 3 3 b) Vereinfache den Term so weit wie möglich. (3a)2 + 16a 2 : 15 2a 2 4a 2 von 15 2. a) Löse die Gleichung nach x auf. 7x 3(5x 16) =
Mathematik, 3. Sekundarschule
Zentrale Aufnahmeprüfung 2009 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name:........................
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: B2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit: Uhr
KLASSE: NAME: VORNAME: Mögliche Punktzahl: 5 50 Punkte = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK. KLASSEN KANTONSSCHULE REUSSBÜHL 6. Mai 014 Zeit: 1.10 14.40 Uhr Allgemeines: unbedingt
St.Gallische Kantonsschulen Aufnahmeprüfung 2008 Gymnasium. Kandidatennummer: Geburtsdatum: Note:
St.Gallische Kantonsschulen Aufnahmeprüfung 2008 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Mathematik Aufnahmeprüfung 2016
Mathematik Aufnahmeprüfung 2016 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate
Aufnahmeprüfung Gymnasium 2015, Mathematik
Kantonsschulen Solothurn und Olten Aufnahmeprüfung Gmnasium 2015, Mathematik Prüfungsnummer: Zeit: 120 Minuten Endresultate, welche nicht ganzzahlig sind, sollen auf zwei Dezimalstellen nach dem Komma
Kantonale Fachmittelschulen Aufnahmeprüfung Mathematik
Kantonale Fachmittelschulen Aufnahmeprüfung 010 Beachten Sie bitte: Mathematik Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Prüfungsnummer. Zum Lösen der Aufgaben stehen 10 Minuten zur Verfügung.
Aufgabe 1 E: Fläche und Umfang von geradlinig begrenzten Figuren
Schüler/in Aufgabe 1 E: Fläche und Umfang von geradlinig begrenzten Figuren LERNZIELE: Flächeninhalt mit Rasterzählmethode bestimmen Flächeninhalt und Umfang mit Formeln berechnen Flächeninhalt durch Zerlegen
Lösungen FMS-Aufnahmeprüfung 2016 Mathematik
Lösungen FMS-Aufnahmeprüfung 016 Mathematik 1. Löse die Gleichungen nach x auf und schreibe die Lösung als ganze Zahl oder als gekürzten Bruch: a) x 4x + 9 5 = 3 9 x + 11 15 45 15 5x 5 (4x + 9) = 3 (x
Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren
Schüler/in Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren LERNZIELE: Flächeninhalt mit Rasterzählmethode bestimmen Flächeninhalt und Umfang mit Formeln berechnen Flächeninhalt durch Zerlegen
Übertrittsprüfung 2015
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2015 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...
Repetition Mathematik 6. Klasse (Zahlenbuch 6)
Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von
St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte
St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse
Aufnahmeprüfung Mathematik
Zeit Reihenfolge Hilfsmittel Bewertung Lösungen 90 Minuten Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Taschenrechner ohne Grafik und CAS Beiliegende Formelsammlung Aus der Summe der bei
Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (2. Sek)
Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2016 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht
Schularbeitsstoff zur 2. Schularbeit am
Schularbeitsstoff zur. Schularbeit am 19.1.016 Flächeninhalt 8 Flächeninhalt 1 9 Flächeninhalt 1 14 Flächeninhalt Bruchzahlen 10 Bruchzahlen Potenzen Potenzen 11 Potenzen 1 Potenzen Variable und Funktionen
Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:
MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2015 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und
AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2015 LÖSUNGEN MATHEMATIK
Berufsfachschulen Graubünden 8. April 2015 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2015 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten (Teil 1: 45 Minuten/Teil 2: 45 Minuten) Hinweise: Löse die Aufgaben auf den beigelegten
AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2015 MATHEMATIK
Berufsfachschulen Graubünden 8. April 2015 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2015 MATHEMATIK Name:. Vorname:.. Zeitrahmen 90 Minuten (Teil 1: 5 Minuten/Teil 2: 5 Minuten) Hinweise: Löse die Aufgaben auf
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner Prüfungsbedingungen Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner), keine Handys! Die Aufgaben sind direkt unterhalb
Musterprüfung Gymnasiale Maturitätsschulen. Name/Vorname: Wohnort:
Musterprüfung Gymnasiale Maturitätsschulen Name/Vorname: Wohnort: Mathematik schriftlich Zeit: 120 Minuten Hinweise: Schreibe auf jedes Blatt deinen Namen. Löse alle Aufgaben direkt auf den Prüfungsblättern.
Vierte Schularbeit Mathematik Klasse 1E am
Vierte Schularbeit Mathematik Klasse 1E am 08.05.2014 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19
Berufsmaturitätsschule für Erwachsene, naturwissenschaftliche Richtung
Aufnahmeprüfung 5. Mai 2007 Name: Berufsmaturitätsschule für Erwachsene, naturwissenschaftliche Richtung Fach: Mathematik Zeit: 100 Minuten für 15 Aufgaben Die Aufgaben müssen auf den Frageblättern gelöst
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:
MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2016 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Lösungen Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 4 5 6 6 6 6 33 Die Prüfung dauert
Kompetenzen am Ende der Einheit GRUNDWISSEN
Kompetenzen am Ende der Einheit GRUNDWISSEN A) Grundrechenarten mit - 1.Natürlichen Zahlen : Berechne ohne Taschenrechner : a) 6438 + 64742 b) 8633 5877 c) 28 * 36 d) 7884 : 9-2. Brüchen : Berechne ohne
Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion)
Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Von der Kandidatin oder vom Kandidaten
1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A
1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten
1. Schularbeit Stoffgebiete:
1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:
Probeunterricht 2011 an Wirtschaftsschulen in Bayern
an Wirtschaftsschulen in Bayern Mathematik 6. Jahrgangsstufe - Haupttermin Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:....
Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)
(Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie
Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)
Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:
Aufnahmeprüfung 2014 Mathematik
Aufnahmeprüfung Berufsmatura Mathematik 2. April 201 Berufsfachschulen Graubünden Aufnahmeprüfung 201 Mathematik Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen.
Aufgabe Erreichte Punktzahl: Schlussnote:
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2013 Mathematik 1 (ohne Taschenrechner) Dauer: Kandidatennummer: Geburtsdatum: Korrigiert von: 90 Minuten Punktzahl/Note:
Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P)
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2013 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
M3 Übung für die 3. Schularbeit Name: 1)Die Klammerterme sind zu multiplizieren. a) (2x + 3y) (-2x) = b) (-2x - 3y) 2x =
M3 Übung für die 3 Schularbeit Name: 1)Die Klammerterme sind zu multiplizieren a) (x + 3y) (-x) = b) (-x - 3y) x = )Vereinfache die Terme und kontrolliere die Ergebnisse mit folgenden Werten! a = 1; b
