Der rechte Winkel!
|
|
|
- Irmgard Chantal Busch
- vor 8 Jahren
- Abrufe
Transkript
1 Der rechte Winkel
2 senkrecht, lotrecht, rechtwinklig
3 senkrecht, lotrecht, rechtwinklig
4 Was ist ein rechter Winkel?
5 Was ist ein rechter Winkel? Ein rechter Winkel misst 90. Der rechte Winkel kocht bei 90
6 Was ist ein rechter Winkel? Ein rechter Winkel misst 90. Ein Winkel von einem Grad kann nicht mit Zirkel und Lineal konstruiert werden. Der rechte Winkel kocht bei 90
7 Was ist ein rechter Winkel? Ein rechter Winkel misst 90. Ein Winkel von einem Grad kann nicht mit Zirkel und Lineal konstruiert werden. 1 è 40 è regelmäßiges Neuneck è Widerspruch 40 Wie ist es mit dem gon-maß?
8 Babylon 60-er Teilung
9 Was ist ein rechter Winkel? Euklid: Gleich groß wie sein Nebenwinkel Rechter Winkel gleich linker Winkel
10 Was ist ein rechter Winkel? Euklid: Gleich groß wie sein Nebenwinkel Gleichmäßigkeit, Symmetrie
11 Werkzeuge
12 Werkzeuge Geodreieck
13 Werkzeuge Anschlagwinkel Das ist nicht im Winkel
14 Werkzeuge Orthogonal zirkel S P G g
15 Werkzeuge Orthogonal zirkel Einsicht S P G g
16 Schreibstift anderswo setzen? S P G g
17 Werkzeuge Zwölfknotenschnur Historisch nicht abgesichert unpraktisch ungenau Das Lehrerdreieck
18 Werkzeuge Dreiknotenschnur
19 Werkzeuge Dreiknotenschnur Symmetrie
20 Werkzeuge Dreiknotenschnur Symmetrie
21 Falten Eine Lage
22 Falten Zwei Lagen
23 Falten Kante auf Kante Vier Lagen
24 Falten Rechter Winkel
25 Falten Loch stanzen und auffalten?
26 Falten Loch stanzen und auffalten?
27 Falten Rechteck
28 Haus der Vierecke Rechte Winkel?
29 Haus der Vierecke Rechteckiger Rahmen Zelle Ist die rote Liste vollständig?
30 Haus der Vierecke Rechtwinkliges Gerüst Skelett Heidelberger Kreuz Michael Gieding
31 Haus der Vierecke Rechtwinkliges Gerüst Skelett Da fehlt was Heidelberger Kreuz Michael Gieding
32 Viereck mit orthogonalen Diagonalen
33 Viereck mit orthogonalen Diagonalen Grün = Rot... genau dann...
34 Viereck mit orthogonalen Diagonalen Ecke einklappen
35 Viereck mit orthogonalen Diagonalen Ecke einklappen
36 Viereck mit orthogonalen Diagonalen Ecke einklappen
37 Viereck mit orthogonalen Diagonalen Briefumschlag... genau dann...
38 Viereck mit orthogonalen Diagonalen Grün = Rot... genau dann...
39 Viereck mit orthogonalen Diagonalen Grün = Rot Gelenkmodell
40 Grün = Rot
41 Grün = Rot
42 Grün = Rot
43 Grün = Rot
44 Grün = Rot
45 Grün = Rot
46 Grün = Rot
47 Viereck mit orthogonalen Diagonalen Grün = Rot... genau dann...
48 Viereck mit orthogonalen Diagonalen Gemeinsamer Schnittpunkt... genau dann...
49 Viereck mit orthogonalen Diagonalen Winkel von genau dann...
50 Minimale Wegenetze
51 Minimale Wegenetze Geänderte Topologie
52 Minimale Wegenetze 9 8 = = Globales Minimum Lokales Minimum
53 Minimale Wegenetze Gesamtlänge = 25.91
54 Minimale Wegenetze 1 Gesamtlänge = 26.59
55 Minimale Wegenetze 1 Gesamtlänge = Gesamtlänge = 26.59
56 Viereck mit orthogonalen Diagonalen Grün = Rot... genau dann...
57 Viereck mit orthogonalen Diagonalen Haag, Wilfried (2003): Wege zu geometrischen Sätzen. Stu8gart: Kle8
58 Analogon im Raum Singular?
59 Analoga im Raum Zelle Würfel Gerüst Oktaeder Plural
60 Analoga im Raum v 3 v 4 v 2 Vektorzug v 1 Drehung um +90 v n+1 = v n Rekursion Noch eines
61 Viertakter
62 Frühling Sommer Vier Jahreszeiten Winter Herbst
63 Ansaugen Verdichten Viertakter Ausstoßen Arbeiten
64 Ansaugen reales Problem Modellbildung mathematisches Problem Verdichten Überprüfung Viertakter Analyse Simulation Ausstoßen reale Lösung Interpretation mathematische Lösung Arbeiten
65 Analoga im Raum v 3 v 4 v 2? Vektorzug v 1 Drehung um +90 v n+1 = v n Rekursion Noch eines
66 Analoga im Raum v 3 v 4 v 1 v 2 Drehung um +90 v 1 v2 v 3 cross Vektorzug Startvektoren: v 1 v 2 v 1 = 1, v 2 = 1 v n+1 = v n v n+1 = v n 1 v n Rekursion Rekursion Wie geht es weiter?
67 Analoga im Raum Geschlossener Vektorzug Offener Vektorzug v 4 v 3 v 1 v 2 v 1 v2 v 4 = v 1 v 3 Wie geht es weiter?
68 Analoga im Raum Geschlossener Vektorzug Offener Vektorzug v 4 v 3 v 1 v 2 v 1 v2 v 4 = v 1 v 3 Wie geht es weiter?
69 Analoga im Raum Geschlossener Vektorzug Offener Vektorzug v 4 v 3 v 1 v 2 v 1 v2 v 4 = v 1 v 3 Wie geht es weiter?
70 Analoga im Raum Geschlossener Vektorzug Offener Vektorzug v 4 v 3 v 1 v 2 v 1 v2 v 4 = v 1 v 3 Wie geht es weiter?
71 Analoga im Raum Offener Vektorzug Dreikant-Spirale v 3 v 4 = v 1 v 4 v 2 v 3 v 1 v 1 v2 Eckige Spirale
72 Analoga im Raum Achse Eckige Spirale
73 Analoga im Raum Achsensicht
74 Analoga im Raum Achsensicht Tribar (Penrose)
75 Analoga im Raum v 3 v 4 v 2 v 3 Vektorzug v 1 Drehung um +90 v n+1 = v n v 1 v2 cross v n+1 = v n 1 v n Rekursion Rekursion Analogie?
76 Formale Analogie (Äußeres Produkt, wedge product) a = a 1 a 2 A = a 1 e 1 a 2 e2 Matrix mit Einheitsvektoren det( A) = det a 1 e1 a 2 e2 = a 1e 2 a 2 e1 = a 2 a 1 = a
77 Formale Analogie (Äußeres Produkt, wedge product) a = a 1 a 2 A = a 1 e 1 a 2 e2 Drehung um +90 det( A) = det a 1 e1 a 2 e2 = a 1e 2 a 2 e1 = a 2 a 1 = a
78 Formale Analogie (Äußeres Produkt, wedge product) a = a 1 a 2 a 3 b = b 1 b 2 b 3 A = a 1 b 1 e1 a 2 b 2 e2 a 3 b 3 e3
79 Formale Analogie (Äußeres Produkt, wedge product) det( A) = det a 1 b 1 e1 a 2 b 2 e2 a 3 b 3 e3 = Laplace, dritte Spalte = e 1 det a 2 b 2 a 3 b 3 e 2 det a 1 b 1 a 3 b 3 + e 3 det a 1 b 1 a 2 b 2 = = a 2 b 3 a 3 b 2 a 3 b 1 a 1 b 3 a 1 b 2 a 2 b 1 = a b Lässt sich in höhere Dimensionen verallgemeinern
80 Formale Analogie (Äußeres Produkt, wedge product) ( a 1,..., a n 1 ) " det cross a 1,1 # a 1,n 1 e1 $ $ $ a n,1 # a n,n 1 en Lässt sich in höhere Dimensionen verallgemeinern
81 Formale Analogie (Äußeres Produkt, wedge product) ( a 1,..., a n 1 ) " det a 1,1 # a 1,n 1 e1 $ $ $ a n,1 # a n,n 1 en Eigenschaften? Input n 1 Vektoren Output ein Vektor orthogonal zu den Inputvektoren Länge = antikommutativ a 1,..., a n 1 n 1-d- Volumen des a 1,..., a n 1 - Spates Lässt sich in höhere Dimensionen verallgemeinern
82 Formale Analogie (Äußeres Produkt, wedge product) ( a 1,..., a n 1 ) " det a 1,1 # a 1,n 1 e1 $ $ $ a n,1 # a n,n 1 en Eigenschaften: Input n 1 Vektoren Output ein Vektor orthogonal zu den Inputvektoren Länge = antikommutativ a 1,..., a n 1 n 1-d- Volumen des a 1,..., a n 1 - Spates Lässt sich in höhere Dimensionen verallgemeinern
83 Formale Analogie (Äußeres Produkt, wedge product) ( a 1,..., a n 1 ) " det a 1,1 # a 1,n 1 e1 $ $ $ a n,1 # a n,n 1 en Eigenschaften: Input n 1 Vektoren Output ein Vektor orthogonal zu den Inputvektoren Länge = antikommutativ a 1,..., a n 1 n 1-d- Volumen des a 1,..., a n 1 - Spates Lässt sich in höhere Dimensionen verallgemeinern
84 Formale Analogie (Äußeres Produkt, wedge product) ( a 1,..., a n 1 ) " det a 1,1 # a 1,n 1 e1 $ $ $ a n,1 # a n,n 1 en Eigenschaften: Input n 1 Vektoren Output ein Vektor orthogonal zu den Inputvektoren Länge = antikommutativ a 1,..., a n 1 n 1-d- Volumen des a 1,..., a n 1 - Spates Lässt sich in höhere Dimensionen verallgemeinern
85 Formale Analogie (Äußeres Produkt, wedge product) ( a 1,..., a n 1 ) " det a 1,1 # a 1,n 1 e1 $ $ $ a n,1 # a n,n 1 en Eigenschaften: Input n 1 Vektoren Output ein Vektor orthogonal zu den Inputvektoren a 1,..., a n 1 Länge = n 1-d- Volumen des a 1,..., a n 1 - Spates antikommutativ Lässt sich in höhere Dimensionen verallgemeinern
86 Formale Analogie (Äußeres Produkt, wedge product) ( a 1,..., a n 1 ) " det a 1,1 # a 1,n 1 e1 $ $ $ a n,1 # a n,n 1 en Eigenschaften: Input n 1 Vektoren Output ein Vektor orthogonal zu den Inputvektoren a 1,..., a n 1 Länge = n 1-d- Volumen des a 1,..., a n 1 - Spates antikommutativ Lässt sich in höhere Dimensionen verallgemeinern
87 Quadrat als Vektorzug Paritätsunterschiede gerade / ungerade Gerade Dimension: schließt sich nach 2n Schritten Ungerade Dimension: Spirale, Ganghöhe n Grund: Alternierende Vorzeichen bei der Laplace-Entwicklung
88 Optimierung - Kulturtechniken
89 Optimierung Kürzester Weg über die Straße
90 Optimierung Theorie
91 Optimierung Praxis Reibung Der letzte Schritt bringt nicht viel Durchgestrichen wird orthogonal. Querdenker
92 Optimierung Praxis Reibung Der letzte Schritt bringt nicht viel Die letzte Mark ist die teuerste.
93 Ethik und Sprache Aber erst musst du mir selber gebaut sein, rechtwinklig an Leib und Seele. Nietzsche, Zarathustra Schräger Vogel Querdenker Querdenken als Prinzip Die Sache ist im Winkel. Die Sache ist im Lot. Windschiefe Geraden (deux droites gauches)
94 Danke
Der rechte Winkel Hans Walser
Der rechte Winkel Hans Walser 10. Juni 2015 Gymnasium, Goethestraße 5, Rostock 11. Juni 2015, 10:00-11:00 Hochschule Wismar, Hauptgebäude, großer Hörsaal Neben Gerade und Kreis ist der rechte Winkel der
Symmetrie im Raum An Hand der platonischen Körper
Symmetrie im Raum An Hand der platonischen Körper Simon Steurer 25.6.2013 Historisches Platonische Körper Vorüberlegungen Oktaeder Hexaeder Tetraeder Dodekaeder & Ikosaeder Historisches benannt nach Platon
Hans Walser Arbeitskreis Geometrie Herbsttagung September 2012, Saarbrücken Tagungsthema: Begriffsbilden im Geometrieunterricht
Hans Walser Arbeitskreis Geometrie Herbsttagung 14. 16. September 2012, Saarbrücken Tagungsthema: Begriffsbilden im Geometrieunterricht Vergessene Vierecke Zusammenfassung Es werden drei Vierecke vorgestellt,
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke
Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel
Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth
Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter
An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen
Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel
Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe
Geometrische Körper Diagnoseblatt 5. Schulstufe Quader und Würfel 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen Kreis Schuhschachtel Eistüte Fahrkarte Kugel Seite 1 2. Kannst du Quader und
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag
Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen
An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht
Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel
Geometrie der Polygone Konstruktionen Markus Wurster 1
Geometrie der Polygone Teil 6 Klassische Konstruktionen Geometrie der Polygone Konstruktionen Markus Wurster 1 Sechseck Gegeben ist der Umkreis des Sechsecks Zeichne einen Kreis mit dem gewünschten Radius
Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $
$Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der
Schullehrplan in der Geometrie der Vorlehre
Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für
Zum Einstieg. Mittelsenkrechte
Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch
Symmetrien und Winkel
1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen
Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.
Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch
Kürzeste Wege Mathematik ist schön 4
E R L Ä U T E R U N G E N Z U D E N K A L E N D E R N M A T H E M A T I K I S T S C H Ö N Kürzeste Wege Mathematik ist schön Der FERMAT-Punkt eines Dreiecks Der französische Mathematiker PIERRE DE FERMAT
Länge, Skalarprodukt, Vektorprodukt
Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren
Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.
6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans [email protected] Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen
Eigenschaften des blauen Vierecks. b) Kennst du den Namen der Vierecke? Das rote Viereck heißt Das blaue Viereck heißt Das grüne Viereck heißt
Name: Klasse: Datum: Besondere Vierecke erkunden Öffne die Datei 2_3_BesondereVierecke.ggb. 1 Im Fenster siehst du drei Vierecke: ein rotes, ein blaues und ein gelbes. Durch Verschieben der Eckpunkte kannst
Hans Walser. Vergessene Vierecke
Hans Walser Vergessene Vierecke Arbeitskreis Geometrie Herbsttagung 14. 16. September 2012, Saarbrücken Tagungsthema: Begriffsbilden im Geometrieunterricht Zusammenfassung Es werden drei Vierecke vorgestellt,
3. Die pythagoräische Geometrie.
II. Geometrie. 3. Die pythagoräische Geometrie. Neben der Zahlenlehre haben sich die Pythagoräer auch mit Geometrie beschäftigt. Schließlich ist ja der bekannte Satz des Pythagoras eng mit ihrem Namen
Mathematik für die Sekundarstufe 1
Hans Walser Mathematik für die Sekundarstufe 1 Modul 203 Zusammensetzung von Geradenspiegelungen Symmetriegruppen Hans Walser: Modul 203, Zusammensetzung von Geradenspiegelungen. Symmetriegruppen ii Inhalt
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Achsensymmetrie. Grundkonstruktionen
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P)
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2013 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
Achsen- und punktsymmetrische Figuren
Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)
Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig
Aufgabe S 1 (4 Punkte)
Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks
Grundregeln der Perspektive und ihre elementargeometrische Herleitung
Vortrag zu Mathematik, Geometrie und Perspektive von Prof. Dr. Bodo Pareigis am 15.10.2007 im Vorlesungszyklus Naturwissenschaften und Mathematische Wissenschaften im Rahmen des Seniorenstudiums der LMU.
Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1
Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen
Herbst b) Bestimmen Sie die Gleichung der Tangente t und Ihren Schnittpunkte A mit der x-achse. t geht durch B(1/2) und hat die Steigung m=-6 :
Herbst 24 1. Gegeben ist eine Funktion f : mit den Parametern a und b. a) Bestimmen Sie a und b so, dass der Graph von f durch den Punkt B(1/2) verläuft und die Tangente t in B parallel ist zur Geraden
SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops
15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den
Symmetrien und Winkel
Eigenschaften der Achsenspiegelung Alle Punkte werden an der Symmetrieachse gespiegelt. Die Verbindungslinien stehen senkrecht zur Symmetrieachse. Original- und Bildpunkte haben je den gleichen Abstand
4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule
4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule Lagebeziehungen Eigenschaften von Gegenständen Geometrische Figuren und Körper Muster, Ornamente, Symmetrien Größe und Umfang von
Das Skalarprodukt und seine Anwendungen
Das Skalarprodukt und seine Anwendungen Axel Schüler, Mathematisches Institut, Univ. Leipzig mailto:[email protected] Schmalzgrube, März 999 Das Skalarprodukt Das Skalarprodukt von Vektoren
Warum sind Gullydeckel rund und Pflastersteine viereckig?
Warum sind Gullydeckel rund und Pflastersteine viereckig? Jörn Steuding Heilbronn, 11. März 2015 Rund - Eckig 1. Runde Warum sind Gullydeckel rund? Was wäre wenn...? Wieso braucht man Gullydeckel überhaupt?
Bearbeitungszeit: Name: Erklärung
Ausgabe: Mittwoch, 05.05.2004 Abgabe: Freitag, 14.05.2004 Am Freitag den 14.05.2004 halte ich die Mathestunde. Bring deshalb auch dann dein Übungsblatt mit! Bearbeitungszeit: Name: Erklärung 1 2 3 Pflichtaufgabe
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Würfelverdopplung. Michael Schmitz
www.mathegami.de März 2010 Würfelverdopplung Michael Schmitz Zusammenfassung Im folgenden Beitrag geht es um die Verdopplung eines Würfels mit Hilfe von Zirkel und Lineal. Da eine solche Konstruktion nicht
Analysis: Klausur Analysis
Analysis Klausur zu Extrempunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen, Extremwertaufgaben (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com
Hinweise für das Fach Mathematik
Kompetenztest für Schülerinnen und Schüler der Klassenstufe 6 an Regelschulen, Gymnasien, Gesamtschulen und Förderzentren mit dem Bildungsgang der Regelschule Hinweise für das Fach Mathematik Inhalt: -
Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :
GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle
Kommt ein Vektor zur Drogenberatung: "Hilfe ich bin linear abhängig."
Stephan Peter Wirtschaftsingenieurwesen WS 15/16 Mathematik Serie 8 Vektorrechnung Kommt ein Vektor zur Drogenberatung: "Hilfe ich bin linear abhängig." Aufgabe 1 Gegeben sind die Vektoren a = b = 1 graphisch
r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter
8 3. Darstellung der Geraden im Raum 3.. Parametergleichung der Geraden Die naheliegende Vermutung, dass eine Gerade des Raumes durch eine Gleichung der Form ax + by + cz +d = 0 beschrieben werden kann
Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6
Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke
SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
Eignungstest Mathematik
Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für
Bundestag. Diagramm 1: Diagramm 2: Sitzverteilung im Bundestag. Mathematik: Musteraufgabe 2006/ Bundestag 16. Bundestag
Bundestag Daniel hat für ein Politikreferat im Internet nach der Sitzverteilung im aktuellen 16. Bundestag recherchiert. Zurzeit regiert eine Koalition aus CDU/CSU und SPD. Vor der Wahl hat im 15. Bundestag
Jahresplanung 1.Klasse 100% Mathematik
Jahresplanung 1.Klasse 100% Mathematik Unterrichtswoche Schuljahr 2015/2016 Kapitel Seitentitel Schulbuchseiten 1 - Wiederholung von Lerninhalten der Volksschule 2 1 Statistik Wie viele Geschwister hast
Modell der Minimalfläche im Oktaeder Anregung: [Limperg 2011] sowie eine private Mitteilung von G. L., W.
Hans Walser, [011087b], [0150110] Modell der Minimalfläche im Oktaeder Anregung: [Limperg 011] sowie eine private Mitteilung von G. L., W. 1 Worum geht es? Wir tauchen ein Kantenmodell eines Oktaeders
Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen
5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis
5/6 5./6. 12. 08 SINUS Transfer Grundschule 5. Jahrestagung Berlin Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis Workshop: Faltwinkel, rechte Winkel, Flächeninhalt
2 14,8 13,8 10,7. Werte einsetzen
Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte
Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I
Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Robert Geretschläger Graz, Österreich, 2010 Hinweis: Die Blätter 1, 2, 3 und 4 sind für Schüler und Schülerinnen
Spiegelungen und einige Anwendungen Natalie Mangels Ulrike Beelitz
Spiegelungen und einige Anwendungen 30.10.2014 Natalie Mangels Ulrike Beelitz Allg. Kompetenzen im Geometrieunterricht Ebene und räumliche Figuren werden analysiert, klassifiziert und durch Skizzen, Konstruktionen,
Begründen in der Geometrie
Nr.6 9.6.2016 Begründen in der Geometrie Didaktische Grundsätze Zuerst die geometrischen Phänomene erkunden und kennenlernen. Viel zeichnen! Vierecke, Kreise, Dreiecke, Winkel, Strecken,... In dieser ersten
Überbestimmte Gleichungssysteme, Regression
Überbestimmte Gleichungssysteme, Regression 8. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas MUL 16. Mai 2013 C. Brand, E. Hausenblas 8. Vorlesung 1 / 19 Gliederung 1 Überbestimmte
WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)
WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) SCHULCURRICULUM IM FACH MATHEMATIK BILDUNGSGANG FÖRDERSTUFE Fachcurriculum Klasse 5F Schwerpunkte Kompetenzen Inhalte Mathematische
Tag der Mathematik 2013
Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende
Analytische Geometrie
Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),
2.3.4 Drehungen in drei Dimensionen
2.3.4 Drehungen in drei Dimensionen Wir verallgemeinern die bisherigen Betrachtungen nun auf den dreidimensionalen Fall. Für Drehungen des Koordinatensystems um die Koordinatenachsen ergibt sich 1 x 1
Mathematik für die Sekundarstufe 1
Hans Walser Mathematik für die Sekundarstufe 1 Modul 206 Regelmäßige Vielecke Lernumgebung Hans Walser: Modul 206, Regelmäßige Vielecke. Lernumgebung ii Modul 206 für die Lehrveranstaltung Mathematik für
Warum sind Gullydeckel rund und Pflastersteine (meistens) viereckig?
Warum sind Gullydeckel rund und Pflastersteine (meistens) viereckig? NICOLA OSWALD + JÖRN STEUDING (UNI WÜRZBURG) BAD NEUSTADT, 15. DEZEMBER 2012 KinderUni in Bad Neustadt p. 1 Warum sind Gullydeckel rund?
SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr
SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:
Amt für Volksschule März 2011
Amt für Volksschule März 2011 Lehrplan Grobziele im Überblick (LP Seiten 78 + 79) Grobziele /Symbole Möglichkeiten und Hinweise Eas Schwerpunkt Kl. 4 5 6 1 Die Schüler und Schüle- eben, waagrecht, horizontal,
Jahresplanung. Unterrichtswoche Schuljahr / Schulbuchseiten. Schularbeit
Reihenfolge und Zeitbedarf der Themenblöcke in der Jahresplanung haben Vorschlagscharakter und müssen an die individuellen Bedürfnisse, die Länge des es, Ferienzeiten und besondere inhaltliche Zielsetzungen
Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06
19. April 2006 Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06 Präsenzaufgaben: Aufgabe P1: Eine spezielle Lucasfolge (L n ) ist durch L n = L n 1 + L n 2, L 0 = 2, L 1 = 1 definiert. Berechnen
Mein Indianerheft: Geometrie 4. Lösungen
Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel
Theoretische Physik 1, Mechanik
Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische
7.6. Prüfungsaufgaben zu Normalenformen
7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen
Geometrie der Polygone Zirkel und Lineal Markus Wurster 1
Geometrie der Polygone Teil 5 Zirkel und Lineal Geometrie der Polygone Zirkel und Lineal Markus Wurster 1 Die klassische Methode mit Zirkel und Lineal Wenn wir Geometrie treiben, verwenden wir dazu oft
Die Proportionen der regelmässigen Vielecke und die
geometricdesign Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Die Proportionen der regelmässigen Vielecke und die Platonischen Körper Rechtecke gebildet aus Seite und Diagonale
Kapitel D : Flächen- und Volumenberechnungen
Kapitel D : Flächen- und Volumenberechnungen Berechnung einfacher Flächen Bei Flächenberechnungen werden die Masse folgendermassen bezeichnet: = Fläche in m 2, dm 2, cm 2, mm 2, etc a, b, c, d = Bezeichnung
Zweidimensionale Vektorrechnung:
Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a
6 Einige Beweisprinzipien. Themen: Das Invarianzprinzip Das Extremalprinzip
6 Einige Beweisprinzipien Themen: Das Invarianzprinzip Das Extremalprinzip Das Invarianzprinzip In einem Problem wird ein Objekt behandelt, das sich ständig ändert, beispielsweise eine Zahlenfolge oder
5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge.
1. Definition von drei Vektoren sind l.u. 2. Wie überprüft man 3 Vektoren mit Hilfe eines LGS auf lineare Unabhängigkeit? 3. Definition von Basis?... wenn sich der Nullvektor nur als triviale LK darstellen
Gruppe A. Mündliche Matur 2003, Mathematik, 4cN. Aufgabe 1 (Matrizen) Finde eine Matrix mit. und
Gruppe A Aufgabe 1 (Matrizen) Finde eine Matrix mit und Wie lauten die Eigenwerte und Eigenvektoren von? Aufgabe 2 (Analysis) Ein Ball fällt aus 5m Höhe auf den Boden und springt dann mehrmals wieder auf
Oktaeder. Bernhard Möller. 22. Dezember 2010
Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23
MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern
= x 2x = x (x 12) = 0 x 5 =0 (lokales Maximum) x 6,7 = ± 12 (lokale Minima)
Maturitätsprüfung 7 Mathematik Aufgabe Gegeben ist die Funktion f(x) = x x + a) Untersuchen Sie die Funktion bezüglich Symmetrien, bestimmen Sie die Nullstellen, zeigen Sie, dass es zwei Minimalstellen
1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A
1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten
Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.
GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle
Fächerverbindender Unterricht Renaissance
Fächerverbindender Unterricht Renaissance Bereich Mathematik THEMA: Der Goldene Schnitt Zeit: Schüler bestimmen das Arbeitstempo selbst, müssen aber alle Aufgaben fertig stellen Bei 14 Tagen FvU haben
Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f =
Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e = e j, f = j=3 j e j = 2k = j=3 f j (1) j=3 j f j (2) j=3 e k + f = 2
Download. Selbstkontrollaufgaben Mathematik für die Klasse. Geometrie. Sandra Sommer/Markus Sommer. Downloadauszug aus dem Originaltitel:
Download Sandra Sommer/Markus Sommer Selbstkontrollaufgaben Mathematik für die 3.-4. Klasse Geometrie Selbstkontrollaufgaben Mathe 3. /4. Klasse Grundschule Sandra Sommer Markus Sommer 65 lehrplanrelevante
Testprüfung (Abitur 2013)
Testprüfung (Abitur 2013) Steve Göring, [email protected] 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:
Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen
Sommersemester 2016 Didaktik der Grundschulmathematik Di, 12-14 Uhr, HS 1 I Zahlen und Operationen V 1 12.04. Arithmetik in der Grundschule V 2 19.04. Die Entwicklung mathematischer Kompetenzen V 3 26.04.
Origamics Gefaltete Mathematik
Hans-Wolfgang Henn Origamics Gefaltete Mathematik Braunschweig, 28.5.2013 Winter sche Grunderfahrungen Heinrich Winter (1995): (GE 1) Erscheinungen der Welt um uns, die uns alle angehen oder angehen sollten,
Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.
Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen
Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die
