Geometrie zum Anfassen
|
|
|
- Klemens Bergmann
- vor 8 Jahren
- Abrufe
Transkript
1 Geometrie zum Anfassen 1
2 Unterlagen: Vorträge Geometrie zum Anfassen, Leipzig 2005 > Vortragsskript (pdf) > Power Point Presentation (ppt) 2
3 Flechten 3
4 Flechten einer Ecke
5 5
6 6
7 7
8 Soma-Würfel 8
9 Flechtstruktur 9
10 Flechtstruktur 10
11 Flechtstruktur 11
12 Flechtstruktur 12
13 Flechtstruktur 13
14 Zur Anzeige wird der QuickTime Dekompressor TIFF (Unkomprimiert) benötigt. San Carlo Borromeo,
15 Zahlen 1, 2, 3,, 5, 6 so verteilen, dass auf jedem Kreis dieselbe Summe 15
16 Zahlen 1, 2, 3,, 5, 6 so verteilen, dass auf jedem Kreis dieselbe Summe 1 16
17 Zahlen 1, 2, 3,, 5, 6 so verteilen, dass auf jedem Kreis dieselbe Summe
18 Zahlen 1, 2, 3,, 5, 6 so verteilen, dass auf jedem Kreis dieselbe Summe
19 Zahlen 1, 2, 3,, 5, 6 so verteilen, dass auf jedem Kreis dieselbe Summe
20 Zahlen 1, 2, 3,, 5, 6 so verteilen, dass auf jedem Kreis dieselbe Summe
21 Zahlen 1, 2, 3,, 5, 6 so verteilen, dass auf jedem Kreis dieselbe Summe
22 Zahlen 1, 2, 3,, 5, 6 so verteilen, dass auf jedem Kreis dieselbe Summe Summe = 1 =
23 23
24
25 a b c Quader 25
26 a b c Quader b c b c b c a - ε b - ε a c a c a c c - ε a b a b a b 26
27 Spat oder Quader? Orthogonalisierung im Kopf 27
28 Spat Geht das so? 28
29 Spat und seine Streifen 29
30 Spat und seine Streifen Symmetrie? 30
31 Spat und seine Streifen Symmetrie? Schubspiegelsymmetrie 31
32 Schubspiegelsymmetrie 32
33 Drehsymmetrien des Würfels? 33
34 3
35 35
36 36
37 37
38 38
39 Drei Achsen mit vierteiliger Drehsymmetrie 39
40 0
41 1
42 2
43 3
44 Vier Achsen mit dreiteiliger Drehsymmetrie
45 Isometrische Darstellung 5
46 Isometrische Darstellung 6
47 Isometrische Darstellung 7
48 Isometrische Darstellung 8
49 9
50 50
51 51
52 Sechs Achsen mit zweiteiliger Drehsymmetrie 52
53 Drehachsen beim Flechtmodell? 53
54 Drehachsen beim Flechtmodell? 5
55 Drehachsen beim Flechtmodell? Nur noch Halbdrehungen 55
56 Drehachsen beim Flechtmodell? Immer noch Drittelsdrehungen 56
57 Drehachsen beim Flechtmodell? Keine Drehung mehr 57
58 Gibt es ein Flechtmodell des Würfels mit denselben Drehsymmetrien wie beim massiven Würfel? 58
59 Verschnürung eines Würfels 59
60 60
61 Regelmäßiges Sechseck 61
62 62
63 63
64 6
65 Regelmäßiges Sechseck 65
66 Regelmäßiges Sechseck 66
67 Regelmäßiges Sechseck 67
68 Regelmäßiges Sechseck 68
69 Regelmäßiges Sechseck 69
70 Regelmäßiges Sechseck 70
71 Regelmäßiges Sechseck 71
72 Regelmäßiges Sechseck 72
73 73
74 7
75 75
76 76
77 77
78 Flechtstruktur 78
79 79
80 80
81 81
82 Zahlen 1,..., 12 verteilen 82
83 Zahlen 1,..., 12 verteilen 1 83
84 Zahlen 1,..., 12 verteilen
85 Zahlen 1,..., 12 verteilen
86 Zahlen 1,..., 12 verteilen
87 Zahlen 1,..., 12 verteilen
88 Zahlen 1,..., 12 verteilen
89 Zahlen 1,..., 12 verteilen
90 Zahlen 1,..., 12 verteilen
91 Zahlen 1,..., 12 verteilen
92 Zahlen 1,..., 12 verteilen
93 Zahlen 1,..., 12 verteilen
94 Zahlen 1,..., 12 verteilen
95 Summe = 3 13 =
96 Kombinatorik Anzahl zyklische Anordnungen von Farben?! = 2 = 6 96
97 Rotterdam De Oude Haven met de kubuswoningen 97
98 Rotterdam Kubuswoningen (architect: Piet Blom) 98
99 Topologie Rechnen ohne Messen, aber doch Geometrie 99
100 Topologie In der Ebene ist es langweilig 100
101 Topologie In der Ebene ist es langweilig 101
102 Topologie
103 Topologie Eckenzahl Index j =1 k 3_ 1_ 2 1_
104 Topologie 1_ 10
105 Topologie 1_ 1_ 1_ 1_ 105
106 Topologie 1_ 1_ 1_ 1_ 1_ 1_ 1_ 106
107 Topologie 1_ "Außen" ist auch ein Dreieck 1_ 1_ 1_ 1_ 1_ 1_ 1_ 107
108 Topologie 1_ "Außen" ist auch ein Dreieck 1_ 1_ 1_ 1_ 1_ 1_ 1_ Indexsumme = 2 108
109 Topologie 0 "Außen" ist jetzt ein Viereck
110 Topologie 0 1_ 0 1_ 1_ 0 0 1_ 1_ 1_ 0 1_ 0 1_ 110
111 Topologie 0 1_ 0 1_ 1_ 0 0 1_ 1_ 1_ 0 1_ 0 1_ Indexsumme = 2 111
112 Topologie Indexsumme = 2 112
113 Topologie Ist das immer so? Ist die Indexsumme eine topologische Invariante? Indexsumme = 2 113
114 Topologie ja Ist das immer so? Ist die Indexsumme eine topologische Invariante? Indexsumme = 2 Leonhard Euler
115 Topologie Indexsumme = 2 115
116 Topologie Indexsumme = 2 116
117 Oktaeder 117
118 Oktaeder Vier Streifen Gleiche Flechtstruktur 118
119 Rhombendodekaeder Würfel 119
120 Rhombendodekaeder Würfel Pyramide aufsetzen Neigungswinkel 5 120
121 Rhombendodekaeder Würfel Pyramide aufsetzen Neigungswinkel 5 Weitere Pyramiden. Wie viele? 121
122 Rhombendodekaeder 122
123 Rhombendodekaeder 123
124 Rhombendodekaeder α = 2 arctan( 1 ) α α 12
125 Rhombendodekaeder α = 2 arctan( 1 ) α α α Diagonalen im DIN Format 125
126 Rhombendodekaeder α = 2 arctan( 1 ) α α Vier Streifen Gleiche Flechtstruktur 126
127 Rhombendodekaeder α = 2 arctan( 1 ) α Vier Streifen Gleiche Flechtstruktur 127
128 Rhombendodekaeder als Raumfüller Spitzer Eierkarton 128
129 Rhombendodekaeder als Raumfüller Spitzer Eierkarton 129
130 Rhombendodekaeder als Raumfüller Stumpfer Eierkarton 130
131 Rhombendodekaeder als Raumfüller Stumpfer Eierkarton 131
132 Rhombendodekaeder als Raumfüller Innenkugeln 132
133 Schülerfehler falscher Winkel Vier Streifen Gleiche Flechtstruktur 133
134 Schülerfehler Kepler-Stern Vier Streifen Gleiche Flechtstruktur 13
Hans Walser, Geometrie. Würfelmodelle
Hans Walser, Geometrie Würfelmodelle Inhalt 1 Flechtmodelle... 1 1.1 Flechttechnik... 1 1.2 Flechtmodell des Würfels... 1 1.2.1 Der Soma-Würfel... 2 1.2.2 Flechtstruktur... 2 1.3 Drehsymmetrien... 3 1.4
Hans Walser Geometrie zum Anfassen
Hans Walser Geometrie zum Anfassen BLK-Tagung Leipzig, 8. bis 2. September 25 Inhalt Einleitung... 2 Flechttechnik... 3 Flechtmodell des Würfels... Quader und Spat... 3. Flechtmodell des Quaders... 3.2
Symmetrien und Winkel
1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen
Modell der Minimalfläche im Oktaeder Anregung: [Limperg 2011] sowie eine private Mitteilung von G. L., W.
Hans Walser, [011087b], [0150110] Modell der Minimalfläche im Oktaeder Anregung: [Limperg 011] sowie eine private Mitteilung von G. L., W. 1 Worum geht es? Wir tauchen ein Kantenmodell eines Oktaeders
Oktaeder. Bernhard Möller. 22. Dezember 2010
Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben
Hans Walser, [ a] Eine Figur mit acht plus einem Kreis Anregungen: E. Chr. W. und P. G.
Hans Walser, [20090928a] Eine Figur mit acht plus einem Kreis Anregungen: E. Chr. W. und P. G. 1 Worum geht es? In der ebenen Geometrie scheinen sich Quadrat und regelmäßiges Dreieck zu beißen. Es ist
SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr
SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:
Die Abbildung 2 zeigt eine Verzerrung dieses Parketts. Abb. 1: Bienenwabenmuster. Abb. 2: Verzerrung
Hans Walser, [20131217] Gleichseitige punktsymmetrische Sechsecke 1 Einführung Die Abbildung 1 zeigt das üblich hexagonale Parkett (Bienenwabenmuster). Abb. 1: Bienenwabenmuster Die Abbildung 2 zeigt eine
Lösung zur Aufgabe Würfel färben von Heft 20
Lösung zur Aufgabe Würfel färben von Heft 20 (1) Jedes der 24 Teilquadrate grenzt an genau eine der acht Ecken. Da nach unserer Vorschrift die drei Teilquadrate an jeder Ecke unterschiedlich gefärbt sein
Hans Walser, Studie [ a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon
Hans Walser, Studie [20040320a] Zerlegungen des Zwölfeckes / Dissections of the Dodekagon 1 Spielregeln 1.1 Gleichschenklige Dreiecke Regelmäßiges Zwölfeck Das regelmäßige Zwölfeck soll in gleichschenklige
1. Winkel (Kapitel 3)
1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt
Mathematik Klasse 6. Übungsbausteine mit Kompetenzerwerb, abgestimmt auf das Leitbild der Schule Verantwortungsbereitschaft.
Mathematik Klasse 6 Inhalt/Thema von Maßstab Band 2 1. Fit nach den Sommerferien Runden und Überschlagen Große Zahlen Zahlen am Zahlenstrahl Rechnen mit Größen Schriftliche Rechenverfahren 2. Brüche und
Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:
Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht
Hans Walser, [ a], Das DIN Rechteck 1/29
Hans Walser, [0050930a], Das DIN Rechteck /9 Hans Walser Das DIN Rechteck DIN-Format Inhalt Internationale Papierformate (ISO/DIN)... Schnittpunkte...4 3 Drehstreckung...6 4 Oktogon aus einem DIN Rechteck...
2. Platonische Körper
2 Platonische Körper 27 2. Platonische Körper Dieses Kapitel legt den Schwerpunkt auf die Geometrie. Geometrie in der Grundschule befasst sich mit zwei zentralen Gebieten: Symmetrie und Raumvorstellung.
Kopfübungen für die Oberstufe
Serie A Alle Kopfübungen der Serie A beinhalten die folgenden Themen in der angegebenen Reihenfolge. Tragen die Schülerinnen und Schüler ihre Antworten in eine Antwortmatrix ein, so kann nach Abschluss
Körper kennen lernen Station 1
Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen
Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel
Mein Indianerheft: Geometrie 4. Lösungen
Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel
An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Neues Zahlenbuch Übersicht
Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel
Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e j, f =
Serie 6: Lösungen Wir erinnern uns daran, dass für die Anzahl Elemente konvexer Polyeder die folgenden dualen Beziehungen gelten: e = e j, f = j=3 j e j = 2k = j=3 f j (1) j=3 j f j (2) j=3 e k + f = 2
Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten
Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden
Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax
Renate Rasch WS 09/10 Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Literatur: Franke M.: M:Didaktik der Geometrie. Zur Geometrievorlesung gehören praktische Übungen (Bitte
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.
Geometrie in der Grundschule. Ein erster Überblick
Geometrie in der Grundschule Ein erster Überblick Elemente der Schulgeometrie - Organisatorisches Die Veranstaltung findet immer mittwochs 8-9.30 Uhr statt und (ca.) 14-täglich am Do 8-9.30 Uhr statt.
D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
Fußbälle, platonische und archimedische Körper
Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?
Eignungstest Mathematik
Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für
Technische Darstellung
Fakultät Maschinenwesen Institut für Festkörpermechanik Professur für Getriebelehre Prof. Dr. rer. nat. habil. Dr. h. c. Karl-Heinz Modler Bearbeiter: Dr.-Ing. Kerstin Becker Telefon: +49 351 463-32732
WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten
WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren
1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}
1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung
Mathematik Aufnahmeprüfung 2013 Profile m,n,s
Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe
Module für den Geometrieunterricht. Geometrie lehren Geometrie lernen
Module für den Geometrieunterricht Geometrie lehren Geometrie lernen 1 Ein Kind muss genügend Erfahrungen zu geometrischen Ideen erwerben können (classroom or otherwise), um ein höheres Entwicklungsstadium
Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, von 9:00 bis 11:00 Seite 1 von 2
Studienberechtigungsprüfung Mathematik 1 VHS polycollege Siebenbrunnengasse, 19.1.201 von 9:00 bis 11:00 Seite 1 von 2 Der Rechenvorgang ist ausführlich darzustellen! Maximale Punkteanzahl: 20 1. ( Punkte)
Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 =
Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Lösung Das Dreieck ist rechtwinklig, da 13 2 = 12 2 + 5 2 Also gilt für die gesuchte Höhe auf der Hypotenuse
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (3) - Stereometrie Das komplette Material finden Sie hier: School-Scout.de Inhaltsverzeichnis Stereometrie
Über die regelmäßigen Platonischen Körper
Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)
WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) SCHULCURRICULUM IM FACH MATHEMATIK BILDUNGSGANG FÖRDERSTUFE Fachcurriculum Klasse 5F Schwerpunkte Kompetenzen Inhalte Mathematische
2. Berechnungen mit Pythagoras
2. Berechnungen mit 2.1. Grundaufgaben 1) Berechnungen an rechtwinkligen Dreiecken a) Wie lang ist die Hypotenuse, wenn die beiden Katheten eines rechtwinkligen Dreiecks 3.6 cm und 4.8 cm lang sind? b)
Schullehrplan in der Geometrie der Vorlehre
Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für
Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6
Bildungsplan 2004 Bildungsstandards für Mathematik Kern- und Klassen 5 und 6 Max-Planck-Gymnasium Böblingen 1 UE 1: Rechnen mit großen Zahlen UE 2: Messen und Auswerten natürliche Zahlen einfache Zehnerpotenzen
Winkeldefizite bei konvexen Polyedern
44 Hans Walser Winkeldefizite bei konvexen Polyedern Die Summe der ebenen Winkel an einer konvexen Polyederecke ist kleiner als 360. Zu jeder Polyederecke gibt es also ein Winkeldefizit als Ergänzung auf
Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn
Deutsch Deutsch Plural a hoch 3 a zum Quadrat acht achtzig Addition, die Ar, das Basis, die Betrag von a, der Binom, das Bruch, der Bruchstrich, der Deckfläche, die Dekagramm, das Deltoid, das Dezimalbruch,
16. Platonische Körper kombinatorisch
16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder
Grundwissen 9 Bereich 1: Rechnen mit reellen Zahlen
Bereich 1: Rechnen mit reellen Zahlen Rechenregeln Berechne jeweils: Teilweises Radizieren a) = b) = c) Nenner rational machen a) = b) = c) Bereich 2: Quadratische Funktionen und Gleichungen Scheitelpunktform
Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Sekundarschule, Teil 2. Übungsheft
Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Sekundarschule, Teil 2 Übungsheft Lektion 7 Konstruktionen 1 Lektion 7 Konstruktionen 1 1. Konstruiere ein Dreieck mit folgenden ngaben:
Themenerläuterung. Die wichtigsten benötigten Formeln
Themenerläuterung In diesem Kapitel geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. s kommen auch Aufgaben
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Lösungen und definitive Korrekturanweisung
Bündner Mittelschulen Einheitsprüfung 2016 Geometrie Lösungen und definitive Korrekturanweisung Es werden nur ganze Punkte vergeben. Negative Punktzahlen sind nicht möglich. Punktzahl in die freie Spalte
Tag der Mathematik 2006
Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner
Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag
Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen
Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen
Geometrie Ich kann... Formen und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Symmetrien in Figuren erkennen
Plus,Minus, Ergänzen, Tauschaufgaben im ZR 10 Sich in der Klasse, im Schulhaus zurechtfinden
Jahresplan 2.Klasse 2007/08 2007/08 Mathematik Geometrie Interessens- und Begabungsförderung: Einführung in die Arbeit am PC 1 03.09.-07.09. Plus,Minus, Ergänzen, Tauschaufgaben im ZR 10 Sich in der Klasse,
a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen.
und Klausuren: P.. 0 Raute und Pyramide Gegeben sind die Punkte A( 8 4 ), B(7 8 7) und C(7 6 5). a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche
Daten des aktuellen regelmäßigen 6-Ecks
Wie groß ist der Umfang eines regelmäßigen 6-Ecks, das einen Flächeninhalt von 200 cm² hat? Geben Sie die Eckenzahl 6 ein und klicken Sie "Bestätige Eckenzahl". Wählen Sie als bekannte Größe die Fläche.
Repetition Begriffe Geometrie. 14. Juni 2012
Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte
MATHEMATIK - LEHRPLAN UNTERSTUFE
INSTITUTO AUSTRIACO GUATEMALTECO MATHEMATIK - LEHRPLAN UNTERSTUFE Der Lehrplan für Mathematik wurde in Anlehnung an den österreichischen Lehrplan ( 11. Mai 2000 ) erstellt. Durch die Verwendung von österreichischen
Mathematik für die Sekundarstufe 1
Hans Walser Mathematik für die Sekundarstufe 1 Modul 206 Regelmäßige Vielecke Lernumgebung Hans Walser: Modul 206, Regelmäßige Vielecke. Lernumgebung ii Modul 206 für die Lehrveranstaltung Mathematik für
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Basteln und Zeichnen
Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle
Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung
Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden
Projekt: Winkel im Igelweg
JAHRESARBEITSPLAN denkstark 2 978-3-507-84816-0 Schulwoche Zeitraum Leitidee Projekte und Inhalt denkstark 2 978-3-507-84816-0 Kompetenzen denkstark 2 1-3 3 Wochen Messen Raum und Form Projekt: Winkel
Sekundarschulabschluss für Erwachsene. Geometrie A 2014
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für
Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2)
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 2815 Bremen Kurs 7 Geometrie 2 MSA Vollzeit (1 von 2) Name: Ich 1. 2. 3. So schätze ich meinen Lernzuwachs ein. kann die
Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $
$Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der
Symmetrien und Winkel
Eigenschaften der Achsenspiegelung Alle Punkte werden an der Symmetrieachse gespiegelt. Die Verbindungslinien stehen senkrecht zur Symmetrieachse. Original- und Bildpunkte haben je den gleichen Abstand
Grundlagen Mathematik 7. Jahrgangsstufe
ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und
(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte
Mathematik Aufnahmeprüfung 015 Aufgabe 1 3 4 5 6 7 8 9 10 11 1 Summe Punkte 4 4 3 3 3 3 4 4 4 4 40 Punkte für die Teilaufgaben: (a) Punkte, (b) Punkte (a) 1 Punkt, (b) 1 Punkt, (c) Punkte (a) 1 Punkt,
Mathematik Geometrie
Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen
Aufgabe 1: Vektorgeometrie (12 Punkte)
Mathematik schriftlich Klassen: 4IM, 4S, 4Wa, 4WZ, 5KSW Bemerkungen: Hilfsmittel: Die Prüfungsdauer beträgt 4 Stunden. Beginnen Sie jede Aufgabe mit einem neuen Blatt! Taschenrechner TI-Nspire CAS Der
Die Platonischen Körper
Wie viele Platonische Körper gibt es? Der griechische Philosoph Platon (427-348/347 v. Chr.) beschrieb die regelmässigen, geometrischen Körper im Dialog Timaios. Es ist leicht nachzuweisen, dass es nur
Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P)
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2013 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis
5/6 5./6. 12. 08 SINUS Transfer Grundschule 5. Jahrestagung Berlin Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis Workshop: Faltwinkel, rechte Winkel, Flächeninhalt
GEOMETRIE 1 3. Wiederholungsaufgaben
GEOMETRIE 3 Wiederholungsaufgaben GEOMETRIE 3 Inhaltsverzeichnis 0 Wiederholungsaufgaben 0. Grundlagen der Geometrie......................... 0.2 Geometrische bbildungen......................... 2 0.3
Analytische Geometrie
Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u
Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg
Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com
Sekundarschulabschluss für Erwachsene. Geometrie A 2012
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Mathematik Aufnahmeprüfung 2012 Profile m,n,s
Mathematik ufnahmeprüfung 2012 Profile m,n,s Zeit: Rechner: Hinweis: 2 Stunden. TI30/TI34 oder vergleichbare. Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. ufgabe
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Inhaltsfelder Jahrgangsstufe 5 Jahrgangsstufe 6 Jahrgangsstufe 7 Jahrgangsstufe 8 Jahrgangsstufe 9 Jahrgangsstufe 10.
Mathematik-Wettbewerb des Landes Hessen Aufgabengruppe B (Realschulbereich) Aufteilung der Inhaltsfelder in den Jahrgangsstufen 5 10 auf die Einzeljahrgänge Die Themen der 1. Runde des Mathematik-Wettbewerbes
3 Polytope. 3.1 Polyeder
28 3 Polytope 3.1 Polyeder Polytope in der Ebene und im Raum standen neben Kreis und Kugel schon während der griechischen Antike im Mittelpunkt des mathematischen (und philosophischen) Interesses. Durch
Buch: Mathematik heute [Realschule Niedersachsen], Schroedel
Klasse: 5 Buch: heute [Realschule Niedersachsen], Schroedel 1. Einheit: Zahlen und Größen S. 7 - S. 45 WH.: Grundrechenarten, Kopfrechenfertigkeiten 2. Einheit: Rechnen mit natürlichen Zahlen und Größen
SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
Mathematik für Techniker
Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe
11b. Die
IV. BUCH RAUM MIT n-dimensionen 11b. Die www.udo-rehle.de 1 29.10.12 Auf einen Oktaeder kann man ein bis acht Tetraeder aufsetzen Eine Raumfüllung ist mit Tetra- und Oktaedern möglich www.udo-rehle.de
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 6 6 4 5 4 6 31 Die Prüfung dauert 45 Minuten.
Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie
Didaktisches Kolloquium Mathematik Institut für Didaktik der Mathematik und Elementarmathematik der TU Braunschweig 13. 12. 2011 Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen
Symmetrien und Pflasterungen
Symmetrien und Pflasterungen 2 Dies ist die ausformulierte Fassung meines Vortrags Symmetrien und Pflasterungen vom 7. Februar 2007 am Tag der offenen Tür an der Universität Mainz. Symmetrien Jeder von
MTG Grundwissen Mathematik 5.Klasse
MTG Grundwissen Mathematik 5.Klasse Umgang mit großen Zahlen Beispiel: 47.035.107.006 = 4 10 10 + 7 10 9 + 3 10 7 + 5 10 6 + 10 5 + 7 10 3 + 6 10 0 A1: Schreibe 117 Billionen 12 Milliarden vierhundertsiebentausendsechzig
Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe
Geometrische Körper Diagnoseblatt 5. Schulstufe Quader und Würfel 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen Kreis Schuhschachtel Eistüte Fahrkarte Kugel Seite 1 2. Kannst du Quader und
Anlage 4: Claudia Schmidt: Viele Ecken, viele Winkel und ihre Summe
Anlage 4: Claudia Schmidt: Viele Ecken, viele Winkel und ihre Summe Mathe-Koffer Raum und Form (Karte 4) durchgeführt in den Erweiterungskursen 7 und 8 der Europaschule Dortmund MK Raum und Form Einsatz:
Mathematik - Jahrgangsstufe 5
Mathematik - Jahrgangsstufe 5 1. Natürliche Zahlen und Größen (Stochastik, Arithmetik/Algebra) Strichlisten, Tabellen und Diagramme Die Stellenwerttafel im Dezimalsystem & Runden Grundrechenarten: Summe,
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
