Algorithmen - Eine Einführung
|
|
|
- Willi Kohl
- vor 8 Jahren
- Abrufe
Transkript
1 Algorithmen - Eine Einführung von Prof. Dr.Thomas H. Cormen, Prof. Dr. Charles E. Leiserson, Prof. Dr. Ronald Rivest, Prof. Dr. Clifford Stein Aus dem Englischen von Prof. Dr. rer. nat. habil. Paul Molitor, Martin-Luther-Universität Halle-Wittenberg 3., überarbeitete und erweiterte Auflage Oldenbourg Verlag München
2 Inhaltsverzeichnis Vorwort XIII I Grundlagen 1 1 Die Rolle von Algorithmen in der elektronischen Datenverarbeitung Algorithmen Algorithmen als Technologie 11 2 Ein einführendes Beispiel Sortieren durch Einfügen Analyse von Algorithmen Entwurf von Algorithmen 30 3 Wachstum von Funktionen Asymptotische Notation Standardnotationen und Standardfunktionen 55 4 Teile-und-Beherrsche Das Max-Teilfeld-Problem Strassens Algorithmus zur Matrizenmultiplikation Die Substitutionsmethode zum Lösen von Rekursionsgleichungen Die Rekursionsbaum-Metliode zum Lösen von Rekursionsgleichungen Die Mastermethode zum Lösen von Rekursionsgleichungen *Beweis des Mastertheorems 99 5 Probabilistische Analyse und randomisierte Algorithmen Das Bewerberproblem Indikatorfunktionen 118
3 VI Inhaltsverzeichnis 5.3 Randomisierte Algorithmen * Probabilistische Analyse und mehr zur Verwendung der Indikatorfunktion 130 II Sortieren und Ranggrößen Heapsort Heaps Die Heap-Eigenschaft aufrechterhalten Einen Heap bauen Der Heapsort-Algorithmus Prioritätswarteschlangen Quicksort Beschreibung von Quicksort Die Performanz von Quicksort Eine randomisierte Version von Quicksort Analyse von Quicksort Sortieren in linearer Zeit Untere Schranken für das Sortieren Countingsort Radixsort Bucketsort Mediane und Ranggrößen Minimum und Maximum Auswahl in linearer erwarteter Zeit Auswahl in linearer Zeit im schlechtesten Fall 219 III Datenstrukturen Elementare Datenstrukturen Stapel und Warteschlangen Verkettete Listen 237
4 Inhaltsverzeichnis VII 10.3 Implementierung von Zeigern und Objekten Darstellung von gerichteten Bäumen Hashtabeilen Adresstabellen mit direktem Zugriff Hashtabeilen Hashfunktionen Offene Adressierung * Perfektes Hashing Binäre Suchbäume Was ist ein binärer Suchbaum? Abfragen in einem binären Suchbaum Einfügen und Löschen * Zufällig erzeugte binäre Suchbäume Rot-Schwarz-Bäume Eigenschaften von Rot-Schwarz-Bäumen Rotationen Einfügen eines Knotens Löschen eines Knotens Erweitern von Datenstrukturen Dynamische Ranggröße Wie man eine Datenstruktur erweitert Intervallbäume 350 IV Fortgeschrittene Entwurfs- und Analysetechniken Dynamische Programmierung Schneiden von Eisenstangen Matrizen-Kettenmultiplikation Elemente dynamischer Programmierung Längste gemeinsame Teilsequenz Optimale binäre Suchbäume 399
5 VIII Inhaltsverzeichnis 16 Greedy-Algorithmen Ein Aktivitäten-Auswahl-Problem Elemente der Greedy-Strategie Huffman-Codierungen * Matroiden und Greedy-Methoden * Ein Task-Scheduling-Problem als Matroid Amortisierte Analyse Aggregat-Analyse Account-Methode Die Potentialmethode Dynamische Tabellen 466 V Höhere Datenstrukturen B-Bäume Die Definition von B-Bäumen Grundoperationen auf B-Bäumen Löschen eines Schlüssels aus einem B-Baum Fibonacci-Heaps Die Struktur von Fibonacci-Heaps Operationen der fusionierbaren Heaps Verringern eines Schlüssels und Entfernen eines Knotens Beschränkung des maximalen Grades van-emde-boas-bäume Vorbereitende Ansätze Eine rekursive Datenstruktur Die van-emde-boas-bäume Datenstrukturen disjunkter Mengen Operationen auf disjunkten Mengen Darstellung disjunkter Mengen mithilfe verketteter Listen 572
6 Inhaltsverzeichnis IX 21.3 Wälder disjunkter Mengen * Analyse der Vereinigung nach dem Rang mit Pfadverkürzung 580 VI Graphenalgorithmen Elementare Graphenalgorithmen Darstellungen von Graphen Breitensuche Tiefensuche Topologisches Sortieren Starke Zusammenhangskomponenten Minimale Spannbäume Aufbau eines minimalen Spannbaums Die Algorithmen von Kruskal und Prim Kürzeste Pfade von einem Startknoten aus Der Bellman-Ford-Algorithmus Kürzeste Pfade von einem Startknoten aus in DAGs Dijkstras Algorithmus Differenzbedingungen und kürzeste Pfade Beweise der Eigenschaften kürzester Pfade Kürzeste Pfade für alle Knotenpaare Kürzeste Pfade und Matrizenmultiplikation Der Floyd-Warshall-Algorithmus Johnsons Algorithmus für dünn besetzte Graphen Maximaler Fluss Flussnetzwerke Die Ford-Fulkerson-Methode Maximales bipartites Matching * Push/Relabel-Algorithmen * Der Relabel-to-Front-Algorithmus 762
7 X Inhaltsverzeichnis VII Ausgewählte Themen Mehrfädige Algorithmen Grundlagen von dynamischem Multithreading Mehrfädige Matrizenmultiplikation Mehrfädiges Sortieren durch Mischen Operationen auf Matrizen Lösen linearer Gleichungssysteme Matrixinversion Symmetrische positiv definite Matrizen, Summe der quadratischen Fehler Lineare Programmierung Standard- und Schlupfform Darstellung von Problemen als lineare Programme Der Simplexalgorithmus Dualität Die initiale zulässige Basislösung Polynome und die FFT Darstellung von Polynomen Die DFT und FFT Effiziente Implementierung der FFT Zahlentheoretische Algorithmen Elementare zahlentheoretische Begriffe Größter gemeinsamer Teiler Modulare Arithmetik Lösen modularer linearer Gleichungen Der chinesische Restsatz Potenzen eines Elements Das RSA-Kryptosystem * Primzahltests * Primfaktorzerlegung 987
8 Inhaltsverzeichnis XI 32 String-Matching Der naive String-Matching-Algorithmus Der Rabin-Karp-Algorithmus String-Matching mit endlichen Automaten * Der Knuth-Morris-Pratt-Algorithmus Algorithmische Geometrie Eigenschaften von Strecken Bestimmung von Schnittpunkten in einer Menge von Strecken Bestimmen der konvexen Hülle Berechnung des dichtesten Punktepaares NP-Vollständigkeit Polynomielle Zeit Verifikation in polynomieller Zeit NP-Vollständigkeit und Reduktion NP-Vollständigkeitsbeweise NP-vollständige Probleme Approximationsalgorithmen Das Knotenüberdeckungsproblem Das Problem des Handelsreisenden Das Mengenüberdeckungsproblem Randomisierung und lineare Programmierung Das Teilsummenproblem 1139 VIII Anhang 1151 A Summen 1155 A.l Summenformeln und Eigenschaften 1155 A.2 Abschätzungen für Summen 1159 B Mengen usw B.l Mengen 1169 B.2 Relationen 1174
9 XII Inhaltsverzeichnis B.3 Funktionen 1176 B.4 Graphen 1178 B.5 Bäume 1183 C Kombinatorik und Wahrscheinlichkeitstheorie 1193 C.l Kombinatorik 1193 C.2 Wahrscheinlichkeiten 1199 C.3 Diskrete Zufallsvariablen 1205 C.4 Die geometrische Verteilung und die Binomialverteilung 1211 C.5 * Die Ränder der Binomialverteilung 1217 D Matrizen 1227 D.l Matrizen und Ma.trizenoperationen 1227 D.2 Elementare Matrizeneigenschaften 1232 Literaturverzeichnis 1241 Index 1265
Algorithmen - Eine Einführung
Algorithmen - Eine Einführung von Prof. Dr. Thomas H. Cormen Prof. Dr. Charles E. Leiserson Prof. Dr. Ronald Rivest Prof. Dr. Clifford Stein 2., korrigierte Auflage Oldenbourg Verlag München Wien Inhaltsverzeichnis
Algorithmen - Eine Einführung
Algorithmen - Eine Einführung Eine Einführung von Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, Clifford Stein, Paul Molitor 3., überarb. und akt. Aufl. De Gruyter Oldenbourg 2004 Verlag C.H.
4.4.2 Virtuelles Hashing Erweiterbares Hashing Das Gridfile Implementation von Hashverfahren in Java
Inhaltsverzeichnis 1 Grundlagen 1 1.1 Algorithmen und ihre formalen Eigenschaften 1 1.2 Beispiele arithmetischer Algorithmen 5 1.2.1 Ein Multiplikationsverfahren 5 1.2.2 Polynomprodukt 8 1.2.3 Schnelle
Inhaltsverzeichnis. Teil 1 Grundlagen 21. Teil 2 Datenstrukturen 85
Inhaltsverzeichnis Vorwort 13 Umfang 14 Einsatz als Unterrichtsmittel 14 Algorithmen mit Praxisbezug 15 Programmiersprache 16 Danksagung 17 Vorwort des Java-Beraters 18 Hinweise zu den Übungen 19 Teil
Inhaltsverzeichnis. Teil 1 Grundlagen 23
Inhaltsverzeichnis Vorwort 11 Umfang 12 Einsatz als Unterrichtsmittel 12 Algorithmen mit Praxisbezug 13 Programmiersprache 14 Danksagung 15 Vorwort des C++-Beraters 16 Hinweise zu den Übungen 21 Teil 1
Robert Sedgewick. Algorithmen in Java. Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen. Java-Beratung durch Michael Schidlowsky
Robert Sedgewick Algorithmen in Java Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen Java-Beratung durch Michael Schidlowsky 3., überarbeitete Auflage \ PEARSON ein Imprint von Pearson Education München
Robert Sedgewick. Algorithmen in Java. »il 1-4 Grundlagen Datenstrykturen Sortleren Suchen. java-beratung durch Michael Schidlowsky
Robert Sedgewick Algorithmen in Java»il 1-4 Grundlagen Datenstrykturen Sortleren Suchen java-beratung durch Michael Schidlowsky 3., überarbeitete Auflage PEARSON ein Imprint von Pearson Education München
Wie wird ein Graph dargestellt?
Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern
Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47
Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Graphen 9/1 Begriffsdefinitionen Ein Graph besteht aus Knoten und Kanten. Ein Knoten(Ecke) ist ein benanntes Objekt. Eine Kante verbindet zwei Knoten. Kanten haben ein Gewicht
1.Aufgabe: Minimal aufspannender Baum
1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus
Algorithmen und Datenstrukturen
Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe
Grundlegende Algorithmen mit Java
Doina Logofätu Grundlegende Algorithmen mit Java Vom Algorithmus zum fertigen Programm Lern- und Arbeitsbuch für Informatiker und Mathematiker Mit 115 Abbildungen '-^~, v :^i yr:,',v.t&i- I " vieweg Inhaltsverzeichnis
Aufgaben zur Klausurvorbereitung
Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014
Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor
Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 9:45 11:15 Raum 1200 (Vorlesung) Do 8:00
Datenstrukturen und Algorithmen D-INFK
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Pro Informatik 2009: Objektorientierte Programmierung Tag 18. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik
Tag 18 Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik 09.09.2009 Agenda Tag 16 Datenstrukturen Abstrakte Datentypen, ADT Folge: Stack, Queue, Liste, ADT Menge: Bäume:
Informatik II Prüfungsvorbereitungskurs
Informatik II Prüfungsvorbereitungskurs Tag 4, 9.6.2017 Giuseppe Accaputo [email protected] 1 Aufbau des PVK Tag 1: Java Teil 1 Tag 2: Java Teil 2 Tag 3: Algorithmen & Komplexität Tag 4: Dynamische Datenstrukturen,
Algorithmen und Datenstrukturen. Organisatorisches. Christian Komusiewicz Ernst-Abbe-Platz 2, R3315
Algorithmen und Datenstrukturen Christian Komusiewicz Ernst-Abbe-Platz 2, R3315 [email protected] Friedrich-Schiller-Universität Jena Institut für Informatik http://users.fmi.uni-jena.de/
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 217 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Graphen und Bäume 2. Binäre Suchbäume 3. AVL-Bäume 4. Algorithmen und Datenstrukturen 2 Agenda
Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!
Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................
Algorithmen und Datenstrukturen
Gunter Saake Kai-Uwe Sattler Algorithmen und Datenstrukturen Eine Einführung mit Java 4., überarbeitete Auflage dpunkt.verlag XI Inhaltsverzeichnis I Grundlegende Konzepte 1 1 Vorbemerkungen und Überblick
NAME, VORNAME: Studiennummer: Matrikel:
TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.
Inhaltsverzeichnis. Grundlagen
Grundlagen 1 Logik und Mengen... 1 1.1 Elementare Logik... 1 1.2 Elementare Mengenlehre... 10 1.3 Schaltalgebra... 15 1.3.1 Anwendung: Entwurf von Schaltkreisen... 21 1.4 Mit dem digitalen Rechenmeister...
Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510
Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),
Algorithmen & Datenstrukturen 2 Praktikum 3
Algorithmen & Datenstrukturen 2 Praktikum 3 Thema: Graphalgorithmen Sommersemester 2016 Prof. Dr. Christoph Karg Hochschule Aalen Dieses Praktikum widmet sich dem Thema Graphalgorithmen. Ziel ist die Implementierung
entheoretische Konzepte und Algorithmen
Sven Oliver Krumke, Hartmut Noitemeier entheoretische Konzepte und Algorithmen Teubner Inhaltsverzeichnis 1 Einleitung 1 1.1 Routenplanung 1 1.2 Frequenzplanung im Mobilfunk I 1.3 Museumswärter 3 1.4 Das
Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe
Inhaltsverzeichnis Einführende Bemerkungen 11 Das Fach Informatik 11 Zielsetzung der Vorlesung 12 1. Grundbegriffe 1 3 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Information und Nachricht 1.1.1 Information 1.1.2 Nachricht
Logistik: Transport. Grundlagen, lineare Transportund Umladeprobleme. Von Dr. Wolfgang Domschke. o. Professor für Betriebswirtschaftslehre
Logistik: Transport Grundlagen, lineare Transportund Umladeprobleme Von Dr. Wolfgang Domschke o. Professor für Betriebswirtschaftslehre Zweite, ergänzte Auflage TECHNISCH!: MOC cchule DARiviSTAOT j P e
Logistik: Transport. Grundlagen, lineare Transport- und Umladeprobleme. von Prof. Dr. Wolfgang Domschke. TU Darmstadt. 5.,.überarbeitete Auflage
Logistik: Transport Grundlagen, lineare Transport- und Umladeprobleme von Prof. Dr. Wolfgang Domschke TU Darmstadt 5.,.überarbeitete Auflage R. Oldenböurg Verlag München Wien Inhaltsverzeichnis Vorwort
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen 13. Übung minimale Spannbäume, topologische Sortierung, AVL-Bäume Clemens Lang Übungen zu AuD 4. Februar 2010 Clemens Lang (Übungen zu AuD) Algorithmen und Datenstrukturen
Inhaltsverzeichnis. I Grundlegende Konzepte 1. xiii
D3kjd3Di38lk323nnm xiii I Grundlegende Konzepte 1 1 Vorbemerkungen und Überblick... 3 1.1 Informatik, Algorithmen und Datenstrukturen....... 3 1.2 Historischer Überblick: Algorithmen................. 5
Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.
3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls
Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.
Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten
Methoden für den Entwurf von Algorithmen
Methoden für den Entwurf von Algorithmen Greedy Algorithmen: - Löse ein einfaches Optimierungsproblem durch eine Folge vernünftiger Entscheidungen. - Eine getroffene Entscheidung wird nie zurückgenommen.
INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS
Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales
Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert
Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 10:30-12:00 Raum 1200 (Vorlesung) Do 8:15-9:45 Raum 1200 (Vorlesung)
Mathematica kompakt. Einführung-Funktionsumfang-Praxisbeispiele von Dipl.-Math.Christian H.Weiß. Oldenbourg Verlag München
Mathematica kompakt Einführung-Funktionsumfang-Praxisbeispiele von Dipl.-Math.Christian H.Weiß Oldenbourg Verlag München Inhaltsverzeichnis Vorwort Tabellenverzeichnis VII XVII 1 Einleitung 1 1 Grundlagen
Proseminar Online Algorithmen, Prof. Dr. Rolf Klein
Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des
Keller, Schlangen und Listen. Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14
Keller, Schlangen und Listen Elementare Datenstrukturen Keller, Schlangen und Listen 1 / 14 Listen Listen unterstützen die Operationen Lookup, Insert, Remove. + Listen passen sich der Größe der zu speichernden
Muster. Informatik 3 (Februar 2004) Name: Matrikelnummer: Betrachten Sie den folgenden Suchbaum. A G H J K M N
2 von 15 Aufgabe 1: Suchbäume (14 ) Betrachten Sie den folgenden Suchbaum. A B C D E F G H I J K L M N O P R (a) (1 Punkt ) Geben Sie die Höhe des Knotens F an. (b) (1 Punkt ) Geben Sie die Tiefe des Knotens
Institut für Programmierung und Reaktive Systeme 27. Mai Programmieren II. 12. Übungsblatt
Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 27. Mai 206 Programmieren II 2. Übungsblatt Hinweis: Auf diesem und den folgenden Übungsblättern
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:
2. November Gradfolgen Zusammenhang Kürzeste Wege. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37
2. November 2011 Gradfolgen Zusammenhang Kürzeste Wege H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 37 Satz von Erdős und Gallai Eine Partition einer natürlichen Zahl ist genau dann die Gradfolge
Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.
Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.
Relationen und DAGs, starker Zusammenhang
Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind
Basiswissen Mathematik, Statistik. und Operations Research für. Wirtschaftswissenschaftler. von. Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen
Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler von Prof. Dr. Gert Heinrich DHBW Villingen-Schwenningen 5., korrigierte Auflage Oldenbourg Verlag München Inhaltsverzeichnis
Klausur Algorithmen und Datenstrukturen SS August Arbeitszeit 90 min
TU Ilmenau, Fakultät für Informatik und Automatisierung FG Komplexitätstheorie und Effiziente Algorithmen Univ.-Prof. Dr. M. Dietzfelbinger, Dipl.-Ing. C. Mattern Klausur Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00
Fibonacci-Heaps und deren Anwendung
Fibonacci-Heaps und deren Anwendung Alexander Schiffel und Stefan Hurtz 24. Juli 2005 Inhaltsverzeichnis 1 Einleitung und Motivation 2 2 Die Datenstruktur 2 3 Amortisierte Laufzeitanalyse 3 4 Grundoperationen
Algorithmen und Problemlösungen mit C++
Doina Logofätu Algorithmen und Problemlösungen mit C++ Von der Diskreten Mathematik zum fertigen Programm - Lern- und Arbeitsbuch für Informatiker und Mathematiker Mit 160 Abbildungen, mehr als 390 und
GELEITWORT von Dr. Eric Müller VORWORT DANKSAGUNG
Inhaltsverzeichnis GELEITWORT von Dr. Eric Müller VORWORT DANKSAGUNG VII IX XI 1 KOMPLEXE KODIERUNG 1 Komplexe Zahlen Kurze Einführung 1 Kodierungsproblem komplexer Zahlen 2 Problemanalyse und Entwurf
Willkommen zur Vorlesung. Algorithmen und Datenstrukturen
Willkommen zur Vorlesung Algorithmen und Datenstrukturen Mein Name: Andreas Berndt Zum Dozenten Diplom-Informatiker (TU Darmstadt) Derzeit Software-Entwickler für Web- Applikationen Derzeitige Sprachen:
9 Minimum Spanning Trees
Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne
Datenstrukturen und Algorithmen SS07
Datenstrukturen und Algorithmen SS0 Datum:.6.200 Michael Belfrage [email protected] belfrage.net/eth Programm von Heute Minimaler Spannbaum (MST) Challenge der Woche Fibonacci Heap Minimaler Spannbaum
Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps
Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer
A Z. Sachverzeichnis. Ω-Notation, 14 Θ-Notation, 14
Sachverzeichnis A Z Ω-Notation, 14 Θ-Notation, 14 NP, 337 NPO, 354 O-Notation, 14 P, 337 ω-notation, 14 -Notation, 14 o-notation, 14 Abstrakter Datentyp, 26 Ackermann-Funktion, 106 adjazent, 69, 70 Adjazenzmatrix,
Vorwort Abbildungsverzeichnis Teil I Mathematik 1
Inhaltsverzeichnis Vorwort Abbildungsverzeichnis V XIII Teil I Mathematik 1 1 Elementare Grundlagen 3 1.1 Grundzüge der Mengenlehre... 3 1.1.1 Darstellungsmöglichkeiten von Mengen... 4 1.1.2 Mengenverknüpfungen...
FLÜSSE, SCHNITTE UND - TEIL 2 - BIPARTITE GRAPHEN. Vortrag im Seminar Hallo Welt Für Fortgeschrittene Dozenten: Werth, T. & Brinkers, D.
FLÜSSE, SCHNITTE UND BIPARTITE GRAPHEN - TEIL 2 - Vortrag im Seminar Hallo Welt Für Fortgeschrittene Dozenten: Werth, T. & Brinkers, D. Lukas Dresel 17. Juni 215 Inhalt Problemstellung Lösungsmethode 1
Algorithmen & Komplexität
Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik [email protected] Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg
Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.
Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen
Übungsklausur Algorithmen I
Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) Nennen Sie zwei Konzepte, die Algorithm Engineering im Gegensatz zu theoretischer
Graphalgorithmen 2. Oleksiy Rybakov. 3. Juni Betreuer: Tobias Werth, Daniel Brinkers
Graphalgorithmen 2 Oleksiy Rybakov 3. Juni 2015 Betreuer: Tobias Werth, Daniel Brinkers 1 / 40 Inhaltsverzeichnis 1 Minimale Spannbäume und Datenstrukturen 2 Kürzeste Wege 3 Spezielle Graphen 2 / 40 Minimale
Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete
Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung
Grundlagen Algorithmen und Datenstrukturen TUM Sommersemester 2011 (2) Dozent: Hanjo Täubig
Grundlagen Algorithmen und Datenstrukturen TUM Sommersemester 2011 (2) Dozent: Hanjo Täubig Janosch Maier 3. August 2011 Inhaltsverzeichnis 1 Sortieren 3 1.1 Externes Sortieren..........................
Algorithmen und Datenstrukturen Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor
Klausur WS 2006/07 Software-Engineering und Technische Informatik Bachelor Die Klausur besteht aus 6 Aufgaben und umfasst 60 Punkte. Bitte schreiben Sie die Lösungen auf die Aufgabenblätter. Vergessen
Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler
Grundlagen der Mathematik, der Statistik und des Operations Research für Wirtschaftswissenschaftler Von Professor Dr. Gert Heinrich 3., durchgesehene Auflage R.Oldenbourg Verlag München Wien T Inhaltsverzeichnis
Theoretische Informatik 1
Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP
Flüsse, Schnitte, bipartite Graphen
Flüsse, chnitte, bipartite Graphen Matthias Hoffmann 5.5.009 Matthias Hoffmann Flüsse, chnitte, bipartite Graphen 5.5.009 / 48 Übersicht Einführung Beispiel Definitionen Ford-Fulkerson-Methode Beispiel
Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012
Algorithmen und Datenstrukturen Tafelübung 14 Jens Wetzl 8. Februar 2012 Folien Keine Garantie für Vollständigkeit und/oder Richtigkeit Keine offizielle Informationsquelle LS2-Webseite Abrufbar unter:
Inhaltsverzeichnis. I Lineare Gleichungssysteme und Matrizen 1. Vorwort
Vorwort V I Lineare Gleichungssysteme und Matrizen 1 1 Der Begriff des Körpers 3 1.1 Mengen 3 1.2 Köiperaxiome 3 1.3 Grundlegende Eigenschaften von Körpern 5 1.4 Teilkörper 7 1.5 Aufgaben 8 1.5.1 Grundlegende
Datenstrukturen und Algorithmen
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/54 Datenstrukturen und Algorithmen Vorlesung 1: Algorithmische Komplexität Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification
Lösungen zu Kapitel 5
Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V
Musterlösung Datenstrukturen und Algorithmen
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Vorlesung 2 KÜRZESTE WEGE
Vorlesung 2 KÜRZESTE WEGE 34 Kürzeste Wege im Graphen Motivation! Heute:! Kürzeste Wege von einem Knoten (SSSP)! Kürzeste Wege zwischen allen Knotenpaaren (APSP)! Viele Anwendungen:! Navigationssysteme!
Wie komme ich von hier zum Hauptbahnhof?
NP-Vollständigkeit Wie komme ich von hier zum Hauptbahnhof? P Wie komme ich von hier zum Hauptbahnhof? kann ich verwende für reduzieren auf Finde jemand, der den Weg kennt! Alternativ: Finde eine Stadtkarte!
Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen
Algorithmen und Datenstrukturen 2 Dynamische Datenstrukturen Algorithmen für dynamische Datenstrukturen Zugriff auf Variable und Felder durch einen Ausdruck: Namen durch feste Adressen referenziert Anzahl
I. Zahlen, Rechenregeln & Kombinatorik
XIV. Wiederholung Seite 1 I. Zahlen, Rechenregeln & Kombinatorik 1 Zahlentypen 2 Rechenregeln Brüche, Wurzeln & Potenzen, Logarithmen 3 Prozentrechnung 4 Kombinatorik Möglichkeiten, k Elemente anzuordnen
Informatik II Prüfungsvorbereitungskurs
Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo [email protected] 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest
Vorlesung Datenstrukturen
Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Algorithmen und Datenstrukturen 22.08.2013
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /
Ralf Kirsch Uwe Schmitt. Programmieren inc. Eine mathematikorientierte Einführung. Mit 24 Abbildungen und 13 Tabellen. Springer
Ralf Kirsch Uwe Schmitt Programmieren inc Eine mathematikorientierte Einführung Mit 24 Abbildungen und 13 Tabellen Springer Inhaltsverzeichnis Eine Einleitung in Frage und Antwort V 1 Vorbereitungen 1
Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler
Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler Bearbeitet von Gert Heinrich 5., korr. Aufl. 2013. Taschenbuch. XV, 399 S. Paperback ISBN 978 3 486 75491 9 Format
Andre Krischke. Helge Röpcke. Graphen und. Netzwerktheorie. Grundlagen - Methoden - Anwendungen. Mit 137 Bildern und zahlreichen Beispielen
Andre Krischke Helge Röpcke Graphen und Netzwerktheorie Grundlagen - Methoden - Anwendungen Mit 137 Bildern und zahlreichen Beispielen Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis I
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Dynamische Programmierung Einführung Ablaufkoordination von Montagebändern Längste gemeinsame Teilsequenz Optimale
