Algorithmen - Eine Einführung
|
|
|
- Ursula Hoch
- vor 9 Jahren
- Abrufe
Transkript
1 Algorithmen - Eine Einführung von Prof. Dr. Thomas H. Cormen Prof. Dr. Charles E. Leiserson Prof. Dr. Ronald Rivest Prof. Dr. Clifford Stein 2., korrigierte Auflage Oldenbourg Verlag München Wien
2 Inhaltsverzeichnis Vorwort V I Grundlagen 1 1 Die Rolle von Algorithmen in der elektronischen Datenverarbeitung Algorithmen Algorithmen als Technologie 10 2 Ein einführendes Beispiel Sortieren durch Einfügen Analyse von Algorithmen Entwurf von Algorithmen 27 3 Wachstum von Funktionen Asymptotische Notation Standardnotationen und Standardfunktionen 51 4 Rekursionsgleichungen Die Substitutionsmethode Die Rekursionsbaum-Methode Die Mastermethode * Beweis des Mastertheorems 75 5 Probabilistische Analyse und randomisierte Algorithmen Bewerberproblem Indikatorfunktionen Randomisierte Algorithmen * Probabilistische Analyse und mehr zur Verwendung der Indikatorfunktion 103
3 XVI Inhaltsverzeichnis II Sortieren und Ranggrößen Heapsort Heaps Aufrechterhaltung der Heap-Eigenschaft Konstruktion eines Heap Der Heapsort-Algorithmus Prioritätswarteschlangen Quicksort Beschreibung von Quicksort Die Performanz von Quicksort Eine randomisierte Version von Quicksort Analyse von Quicksort Sortieren in linearer Zeit Untere Schranken für das Sortieren Countingsort Radixsort Bucketsort Mediane und Ranggrößen Minimum und Maximum Auswahl in linearer erwarteter Zeit Auswahl in linearer Zeit für den schlechtesten Fall 187 III Datenstrukturen Elementare Datenstrukturen Stapel und Warteschlangen Verkettete Listen Implementierung von Zeigern und Objekten Darstellung von gerichteten Bäumen Hashtabellen Adresstabellen mit direktem Zugriff 222
4 Inhaltsverzeichnis XVII 11.2 Hashtabeilen Hashfunktionen Offene Adressierung * Perfektes Hashing Binäre Suchbäume Was ist ein binärer Suchbaum? Abfragen in einem binären Suchbaum Einfügen und Löschen * Zufällig erzeugte binäre Suchbäume Rot-Schwarz-Bäume Eigenschaften von Rot-Schwarz-Bäumen Rotationen Einfügen Entfernen Erweitern von Datenstrukturen Dynamische Ranggröße Wie man eine Datenstruktur erweitert Intervallbäume 312 IV Fortgeschrittene Entwurfs- und Analysetechniken Dynamische Programmierung Ablaufkoordination von Montagebändern Matrix-Kettenmultiplikation Elemente dynamischer Programmierung Längste gemeinsame Teilsequenz Optimale binäre Suchbäume Greedy-Algorithmen Ein Aktivitäten-Auswahl-Problem Elemente der Greedy-Strategie 380
5 XVIII Inhaltsverzeichnis 16.3 Huffman-Codierungen * Theoretische Grundlagen der Greedy-Methoden * Ein Task-Scheduling-Problem Amortisierte Analyse Aggregat-Analyse Account-Methode Die Potentialmethode Dynamische Tabellen 418 V Höhere Datenstrukturen B-Bäume Die Definition von B-Bäumen Grundoperationen auf B-Bäumen Entfernen eines Schlüssels aus einem B-Baum Binomiale Heaps Binomiale Bäume und binomiale Heaps Operationen auf binomialen Heaps Fibonacci-Heaps Die Struktur von Fibonacci-Heaps Operationen der fusionierbaren Heaps Verringern eines Schlüssels und Entfernen eines Knotens Beschränkung des maximalen Grades Datenstrukturen disjunkter Mengen Operationen auf disjunkten Mengen Darstellung disjunkter Mengen mithilfe verketteter Listen Wälder disjunkter Mengen * Analyse der Vereinigung nach dem Rang mit Pfadverkürzung 514
6 Inhaltsverzeichnis XIX VI Graphenalgorithmen Elementare Graphenalgorithmen Darstellungen von Graphen Breitensuche Tiefensuche Topologisches Sortieren Starke Zusammenhangskomponenten Minimale Spannbäume Aufbau eines minimalen Spannbaums Die Algorithmen von Kruskal und Prim Das Problem der kürzesten Pfade bei einem einzigen Startknoten Der Bellman-Ford-Algorithmus Kürzeste Pfade von einem einzigen Startknoten aus in ger. azykl. Graphen Der Dijkstra-Algorithmus Differenzbedingungen und kürzeste Pfade Beweise der Eigenschaften kürzester Pfade Das Problem der kürzesten Pfade für alle Knotenpaare Kürzeste Pfade und Matrixmultiplikation Der Floyd-Warshall-Algorithmus Johnsons Algorithmus für dünn besetzte Graphen Maximaler Fluss Flussnetzwerke Die Ford-Fulkerson-Methode Maximales bipartites Matching * Push/Relabel-Algorithmen * Der Relabel-to-Front-Algorithmus 685
7 XX Inhaltsverzeichnis VII Ausgewählte Themen Sortiernetzwerke Vergleichsnetzwerke Das Null-Eins-Prinzip Ein bitonisches Sortiernetzwerk Ein Mischnetzwerk Ein Sortiernetzwerk Matrixoperationen Eigenschaften von Matrizen Strassens Algorithmus zur Matrixmultiplikation Lösung linearer Gleichungssysteme Matrixinversion Symmetrische, positiv definite Matrizen, Methode der kleinsten Quadrate Lineare Programmierung Standard- und Schlupfformen Die Darstellung von Problemen durch lineare Programme Der Simplexalgorithmus Dualität Die initiale zulässige Basislösung Polynome und die FFT Darstellung von Polynomen DFT und FFT Effiziente Implementierung der FFT Zahlentheoretische Algorithmen Elementare zahlentheoretische Begriffe Größter gemeinsamer Teiler Modulare Arithmetik Lösen modularer linearer Gleichungen Der chinesische Restsatz Potenzen eines Elements 878
8 Inhaltsverzeichnis XXI 31.7 Das RSA-Verschlüsselungssystem * Primzahltests * Primfaktorzerlegung String-Matching Der naive String-Matching-Algorithmus Der Rabin-Karp-Algorithmus String-Matching mit endlichen Automaten * Der Knuth-Morris-Pratt-Algorithmus Algorithmische Geometrie Eigenschaften von Strecken Schnittpunkt eines beliebigen Streckenpaares Bestimmen der konvexen Hülle Berechnung des dichtesten Punktepaares NP-Vollständigkeit Polynomiale Zeit Verifikation in polynomialer Zeit NP-Vollständigkeit und Reduktion NP-Vollständigkeitsbeweise NP-vollständige Probleme Approximationsalgorithmen Das Knotenüberdeckungsproblem Das Problem des Handelsreisenden Das Mengenüberdeckungsproblem Randomisierung und lineare Programmierung Das Teilsummenproblem 1046 VIII Anhang: 1057 A Summen 1061 A.l Summenformeln und Eigenschaften 1061 A.2 Abschätzungen für Summen 1065
9 XXII Inhaltsverzeichnis B Mengen usw B.l Mengen 1073 B.2 Relationen 1078 B.3 Funktionen 1080 B.4 Graphen 1082 B.5 Bäume 1087 C Kombinatorik und Wahrscheinlichkeitstheorie 1097 C.l Zähltheorie 1097 C.2 Wahrscheinlichkeit 1102 C.3 Diskrete Zufallsvariablen 1109 C.4 Die geometrische Verteilung und die Binomialverteilung 1114 C.5 * Die Ränder der Binomialverteilung 1120 Literaturverzeichnis 1131 Index 1151
Algorithmen - Eine Einführung
Algorithmen - Eine Einführung von Prof. Dr.Thomas H. Cormen, Prof. Dr. Charles E. Leiserson, Prof. Dr. Ronald Rivest, Prof. Dr. Clifford Stein Aus dem Englischen von Prof. Dr. rer. nat. habil. Paul Molitor,
Algorithmen - Eine Einführung
Algorithmen - Eine Einführung Eine Einführung von Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, Clifford Stein, Paul Molitor 3., überarb. und akt. Aufl. De Gruyter Oldenbourg 2004 Verlag C.H.
4.4.2 Virtuelles Hashing Erweiterbares Hashing Das Gridfile Implementation von Hashverfahren in Java
Inhaltsverzeichnis 1 Grundlagen 1 1.1 Algorithmen und ihre formalen Eigenschaften 1 1.2 Beispiele arithmetischer Algorithmen 5 1.2.1 Ein Multiplikationsverfahren 5 1.2.2 Polynomprodukt 8 1.2.3 Schnelle
Algorithmen und Datenstrukturen
Thomas Ottmann / Peter Widmayer Algorithmen und Datenstrukturen 4. Auflage Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis 1 Grundlagen 1.1 Algorithmen und ihre formalen Eigenschaften
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen von Prof. Dr. Thomas Ottmann, Universität Freiburg und Prof. Dr. Dr. Peter Widmayer, Eidgenössische Technische Hochschule Zürich 2., vollständig überarbeitete und erweiterte
Algorithmen und Datenstrukturen
Martin Dietzfelbinger Kurt Mehlhorn Peter Sanders Algorithmen und Datenstrukturen Die Grundwerkzeuge Springer Vieweg 1 Vorspeise: Arithmetik für ganze Zahlen 1 1.1 Addition 2 1.2 Multiplikation: Die Schulmethode
Grundlegende Algorithmen
ST 430k HEUH (ä.) Volker Heun Grundlegende Algorithmen Einführung in den Entwurf und die Analyse effizienter Algorithmen 2., verbesserte und erweiterte Auflage >( "4.? Einleitung und Grundlagen 1 1.1 Ziele
Carlos Camino Grundlagen: Algorithmen und Datenstrukturen SS 2015
Themenüberblick Dieses Dokument stellt eine Art Checkliste für eure Klausurvorbereitung dar. Zu jedem Thema im Skript sind hier ein paar Leitfragen aufgelistet. Ab Seite 4 findet ihr alle Zusammenfassungen,
Inhaltsverzeichnis. Teil 1 Grundlagen 21. Teil 2 Datenstrukturen 85
Inhaltsverzeichnis Vorwort 13 Umfang 14 Einsatz als Unterrichtsmittel 14 Algorithmen mit Praxisbezug 15 Programmiersprache 16 Danksagung 17 Vorwort des Java-Beraters 18 Hinweise zu den Übungen 19 Teil
Inhaltsverzeichnis. Teil 1 Grundlagen 23
Inhaltsverzeichnis Vorwort 11 Umfang 12 Einsatz als Unterrichtsmittel 12 Algorithmen mit Praxisbezug 13 Programmiersprache 14 Danksagung 15 Vorwort des C++-Beraters 16 Hinweise zu den Übungen 21 Teil 1
Robert Sedgewick. Algorithmen in Java. Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen. Java-Beratung durch Michael Schidlowsky
Robert Sedgewick Algorithmen in Java Teil 1-4 Grundlagen Datenstrukturen Sortieren Suchen Java-Beratung durch Michael Schidlowsky 3., überarbeitete Auflage \ PEARSON ein Imprint von Pearson Education München
Robert Sedgewick. Algorithmen in Java. »il 1-4 Grundlagen Datenstrykturen Sortleren Suchen. java-beratung durch Michael Schidlowsky
Robert Sedgewick Algorithmen in Java»il 1-4 Grundlagen Datenstrykturen Sortleren Suchen java-beratung durch Michael Schidlowsky 3., überarbeitete Auflage PEARSON ein Imprint von Pearson Education München
Uwe Schöning. Algorithmik. Spektrum Akademischer Verlag Heidelberg Berlin
Uwe Schöning Algorithmik Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Überblick 11 1 Grundlegende Konzepte 17 1.1 Elementare Programm-und Datenstrukturen 17 1.2 Einiges zur Algorithmentheorie
Algorithmen und Datenstrukturen
Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl für Informatik VI Algorithmen und Datenstrukturen Vorlesungsmitschrift zur Vorlesung im SS 2004 Prof. Dr.-Ing. H. Ney Letzte Überarbeitung:
Wie wird ein Graph dargestellt?
Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 16 P Instruktionen: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern
2. Klausur Datenstrukturen und Algorithmen SS 2014
Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder 2. Klausur Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik
Fragenkatalog 1. Kurseinheit
katalog 1. Kurseinheit 1. Wie sind Algorithmen und Datenstrukturen untrennbar miteinander verknüpft? 2. Worin besteht das Ziel einer Beschreibung auf algorithmischer Ebene? 3. Welche Kriterien gibt es
NAME, VORNAME: Studiennummer: Matrikel:
TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.
Pro Informatik 2009: Objektorientierte Programmierung Tag 18. Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik
Tag 18 Marco Block-Berlitz, Miao Wang Freie Universität Berlin, Institut für Informatik 09.09.2009 Agenda Tag 16 Datenstrukturen Abstrakte Datentypen, ADT Folge: Stack, Queue, Liste, ADT Menge: Bäume:
Algorithmen und Datenstrukturen. Organisatorisches. Christian Komusiewicz Ernst-Abbe-Platz 2, R3315
Algorithmen und Datenstrukturen Christian Komusiewicz Ernst-Abbe-Platz 2, R3315 [email protected] Friedrich-Schiller-Universität Jena Institut für Informatik http://users.fmi.uni-jena.de/
Algorithmen und Datenstrukturen
Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe
Algorithmen. Robert Sedgewick Princeton University ADDISON-WESLEY
Algorithmen Robert Sedgewick Princeton University ADDISON-WESLEY München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort 5 Inhaltsverzeichnis
Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor
Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert und Dr. Thomas Stibor Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 9:45 11:15 Raum 1200 (Vorlesung) Do 8:00
Datenstrukturen und Algorithmen D-INFK
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Informatik II Prüfungsvorbereitungskurs
Informatik II Prüfungsvorbereitungskurs Tag 4, 9.6.2017 Giuseppe Accaputo [email protected] 1 Aufbau des PVK Tag 1: Java Teil 1 Tag 2: Java Teil 2 Tag 3: Algorithmen & Komplexität Tag 4: Dynamische Datenstrukturen,
Datenstrukturen und Algorithmen
Datenstrukturen und Algorithmen Jedes Programm verwendet Datenstrukturen und Algorithmen um seine Aufgabe zu erfüllen Diese müssen offenbar zunächst sorgfältig dem speziellen Problem entsprechend ausgewählt
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Sortieralgorithmen Einleitung Heapsort Quicksort 2 Motivation Sortieren ist Voraussetzung für viele Anwendungen Nach
Karlsruher Institut für Technologie. Klausur Algorithmen I
Klausur-ID: Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 11. April 2018 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte
Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S.
Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Lange Klausurvorbereitung Hier finden Sie alle Begriffe, Zusammenhänge und Algorithmen, die mit Blick auf die Klausur relevant sind. Um es
Proseminar Online Algorithmen, Prof. Dr. Rolf Klein
Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Untere Schranken für Sortieren Sortieren mit linearem Aufwand Mediane und Ranggrössen 2 Wie schnell können wir sortieren?
entheoretische Konzepte und Algorithmen
Sven Oliver Krumke, Hartmut Noitemeier entheoretische Konzepte und Algorithmen Teubner Inhaltsverzeichnis 1 Einleitung 1 1.1 Routenplanung 1 1.2 Frequenzplanung im Mobilfunk I 1.3 Museumswärter 3 1.4 Das
Algorithmen 1 Tutorium
Algorithmen 1 Tutorium Tutorium 13 Misch Sadler 18. Juli 2011 INHALT: VIELES Übersicht 1 Dynamische Programmierung 2 Wiederholung 3 Klausuraufgaben 4 Ende Misch Sadler Algo 1 Tut 18. Juli 2011 2/21 Übersicht
Algorithmen & Datenstrukturen 2 Praktikum 3
Algorithmen & Datenstrukturen 2 Praktikum 3 Thema: Graphalgorithmen Sommersemester 2016 Prof. Dr. Christoph Karg Hochschule Aalen Dieses Praktikum widmet sich dem Thema Graphalgorithmen. Ziel ist die Implementierung
Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510
Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),
Übungsklausur Algorithmen I
Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) Nennen Sie zwei Konzepte, die Algorithm Engineering im Gegensatz zu theoretischer
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen 13. Übung minimale Spannbäume, topologische Sortierung, AVL-Bäume Clemens Lang Übungen zu AuD 4. Februar 2010 Clemens Lang (Übungen zu AuD) Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen
Übung Algorithmen und Datenstrukturen Sommersemester 217 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Graphen und Bäume 2. Binäre Suchbäume 3. AVL-Bäume 4. Algorithmen und Datenstrukturen 2 Agenda
Logistik: Transport. Grundlagen, lineare Transportund Umladeprobleme. Von Dr. Wolfgang Domschke. o. Professor für Betriebswirtschaftslehre
Logistik: Transport Grundlagen, lineare Transportund Umladeprobleme Von Dr. Wolfgang Domschke o. Professor für Betriebswirtschaftslehre Zweite, ergänzte Auflage TECHNISCH!: MOC cchule DARiviSTAOT j P e
Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!
Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Graphen 9/1 Begriffsdefinitionen Ein Graph besteht aus Knoten und Kanten. Ein Knoten(Ecke) ist ein benanntes Objekt. Eine Kante verbindet zwei Knoten. Kanten haben ein Gewicht
Entwurf und Analyse von Datenstrukturen
Entwurf und Analyse von Datenstrukturen Sommersemester 2013 1. Termin: 17. April 2013 Jan-Henrik Haunert ehem. Mathebau, Raum E27 [email protected] Alexander Wolff ehem. Mathebau, Raum E29 [email protected]
Aufgaben zur Klausurvorbereitung
Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014
Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.813 Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS 2014 22. Oktober
Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert
Algorithmen und Datenstrukturen (AuD) Prof. Dr. Claudia Eckert Organisatorisches: Vorlesung 4 SWS, Zentralübung 2 SWS: 6 Credit Points Mi 10:30-12:00 Raum 1200 (Vorlesung) Do 8:15-9:45 Raum 1200 (Vorlesung)
Klausur Algorithmen und Datenstrukturen
Technische Universität Braunschweig Sommersemester 2018 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Christian Rieck Arne Schmidt Klausur Algorithmen
Name:... Vorname:... Matr.-Nr.:... Studiengang:...
Technische Universität Braunschweig Sommersemester 2011 IBR - Abteilung Algorithmik Prof. Dr. Sándor Fekete Christiane Schmidt Klausur Algorithmen und Datenstrukturen 01.09.2011 Name:.....................................
Grundlegende Algorithmen mit Java
Doina Logofätu Grundlegende Algorithmen mit Java Vom Algorithmus zum fertigen Programm Lern- und Arbeitsbuch für Informatiker und Mathematiker Mit 115 Abbildungen '-^~, v :^i yr:,',v.t&i- I " vieweg Inhaltsverzeichnis
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung
Datenstrukturen und Algorithmen
Joost-Pieter Katoen Datenstrukturen und Algorithmen 1/54 Datenstrukturen und Algorithmen Vorlesung 1: Algorithmische Komplexität Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification
Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.
Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.
INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS
Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales
Datenstrukturen und Algorithmen (SS 2013)
Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes
Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität
Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Klausur Wichtige Hinweise: 2.7.07, Beginn 9 Uhr Bitte spätestens 8:4 Uhr vor Ort sein Sporthalle + Audimax Informationen
Mathematica kompakt. Einführung-Funktionsumfang-Praxisbeispiele von Dipl.-Math.Christian H.Weiß. Oldenbourg Verlag München
Mathematica kompakt Einführung-Funktionsumfang-Praxisbeispiele von Dipl.-Math.Christian H.Weiß Oldenbourg Verlag München Inhaltsverzeichnis Vorwort Tabellenverzeichnis VII XVII 1 Einleitung 1 1 Grundlagen
Mathemathik für Informatiker Band 1: Diskrete Mathematik und Lineare Algebra
Gerald Teschl Susanne Teschl Mathemathik für Informatiker Band 1: Diskrete Mathematik und Lineare Algebra Springer Inhaltsverzeichnis Grundlagen 1 Logik und Mengen 1 1.1 Elementare Logik 1 1.2 Elementare
Lösungen zu Kapitel 5
Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V
Algorithmen und Datenstrukturen 1 VL Übungstest SS Juni 2009
Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 2. Übungstest SS 2009 09. Juni
Klausur Algorithmen und Datenstrukturen SS August Arbeitszeit 90 min
TU Ilmenau, Fakultät für Informatik und Automatisierung FG Komplexitätstheorie und Effiziente Algorithmen Univ.-Prof. Dr. M. Dietzfelbinger, Dipl.-Ing. C. Mattern Klausur Algorithmen und Datenstrukturen
Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47
Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford
Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.
Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet
Institut für Programmierung und Reaktive Systeme 27. Mai Programmieren II. 12. Übungsblatt
Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 27. Mai 206 Programmieren II 2. Übungsblatt Hinweis: Auf diesem und den folgenden Übungsblättern
Fibonacci-Heaps und deren Anwendung
Fibonacci-Heaps und deren Anwendung Alexander Schiffel und Stefan Hurtz 24. Juli 2005 Inhaltsverzeichnis 1 Einleitung und Motivation 2 2 Die Datenstruktur 2 3 Amortisierte Laufzeitanalyse 3 4 Grundoperationen
1. Klausur Datenstrukturen und Algorithmen SS 2014
Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder 1. Klausur Datenstrukturen und lgorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik
1.Aufgabe: Minimal aufspannender Baum
1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus
Inhaltsverzeichnis. Grundlagen
Grundlagen 1 Logik und Mengen... 1 1.1 Elementare Logik... 1 1.2 Elementare Mengenlehre... 10 1.3 Schaltalgebra... 15 1.3.1 Anwendung: Entwurf von Schaltkreisen... 21 1.4 Mit dem digitalen Rechenmeister...
Logistik: Transport. Grundlagen, lineare Transport- und Umladeprobleme. von Prof. Dr. Wolfgang Domschke. TU Darmstadt. 5.,.überarbeitete Auflage
Logistik: Transport Grundlagen, lineare Transport- und Umladeprobleme von Prof. Dr. Wolfgang Domschke TU Darmstadt 5.,.überarbeitete Auflage R. Oldenböurg Verlag München Wien Inhaltsverzeichnis Vorwort
Karlsruher Institut für Technologie Institut für Theoretische Informatik. Übungsklausur Algorithmen I
Vorname: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 21.06.2017 Übungsklausur Algorithmen I Aufgabe 1. Kleinaufgaben 8 Punkte Aufgabe 2. Hashing 6 Punkte
5. Vorrangwarteschlangen (priority queues)
5. Vorrangwarteschlangen (priority queues) Definition 200 Eine Vorrangwarteschlange (priority queue) ist eine Datenstruktur, die die folgenden Operationen effizient unterstützt: 1 Insert 2 ExtractMin Extrahieren
Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph
Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen
Beispielprüfung Datenstrukturen und Algorithmen D-INFK
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer
Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut für Simulation und Graphik Prof. Dr. Holger Theisel
Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut für Simulation und Graphik Prof. Dr. Holger Theisel Magdeburg, 26.07.2011 Klausur Algorithmen und Datenstrukturen Matrikelnummer:
2. Präsenzübung Datenstrukturen und Algorithmen SS 2014
Prof. aa Dr. E. Ábrahám F. orzilius, S. Schupp, T. Ströder 2. Präsenzübung Datenstrukturen und lgorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1
Stud.-Nummer: Datenstrukturen & Algorithmen Seite 1 Aufgabe 1. / 15 P Hinweise: 1) In dieser Aufgabe sollen Sie nur die Ergebnisse angeben. Diese können Sie direkt bei den Aufgaben notieren. 2) Sofern
Algorithmen & Komplexität
Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik [email protected] Breitensuche, Tiefensuche Wir besprechen nun zwei grundlegende Verfahren, alle Knoten eines Graphen zu
Abgabe: (vor der Vorlesung) Aufgabe 7.1 (P) Binomial Heap
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 7 Prof. Dr. Helmut Seidl, S. Pott,
Zum Buch Hinweise Handhabung des Buchs Website In eigener Sache... 19
Vorwort 13 Zum Buch.................................................... 15 Hinweise..................................................... 17 Handhabung des Buchs.........................................
