Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S.

Größe: px
Ab Seite anzeigen:

Download "Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S."

Transkript

1 Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Lange Klausurvorbereitung Hier finden Sie alle Begriffe, Zusammenhänge und Algorithmen, die mit Blick auf die Klausur relevant sind. Um es Ihnen und mir leichter zu machen, ist fast alles kapitelweise strukturiert. Damit kommt es natürlich zu Überschneidungen. 1 Zentrale Begriffe diese Begriffe beziehen sich jeweils auf gerichtete und ungerichtete Graphen Adjazenzliste und Adjazenzmatrix Pfad Zyklus, Zyklenfreiheit Erreichbarkeit, Zusammenhangskomponente Erreichbarkeitsmatrix 2 Bipartite Graphen 2.1 Begriffe diese Begriffe beziehen sich auf ungerichtete Graphen bipartiter Graph k-regulärer bipartiter Graph Matching, maximales Matching Eckenüberdeckung, minimale Eckenüberdeckung erweiterbarer Pfad, erweiterte Kantenmenge Teilmengensystem Kantenfärbung, chromatische Zahl 1

2 2.2 Zusammenhänge maximale Matchings und minimale Eckenüberdeckung (/* allgemein */) Satz von König Satz von Hall Eigenschaften, die garantieren, dass man ein maximales Matching inkrementell erzeugen kann 2.3 Algorithmen Algorithmus zum Finden der Zerlegung der Knotenmenge eines bipartiten Graphen Ungarischer Algorithmus Anwendungen: Lateinische Quadrate, Stundenplanproblem 3 Elementare Graphalgorithmen 3.1 Begriffe diese Begriffe beziehen sich auf gerichtete Graphen topologische Sortierung 3.2 Zusammenhänge topologische Sortierung und Zyklenfreiheit (/* nur gerichtete Graphen */) 3.3 Algorithmen Tiefensuche, Breitensuche Anwendung: Topologische Sortierung (/* nur gerichtete Graphen */), Zyklenfreiheit, Zusammenhangskomponenten 4 Minimal spannende Bäume 4.1 Begriffe diese Begriffe beziehen sich auf ungerichtete (kantengewichtete) Graphen spannende Bäume, minimal spannende Bäume Schnitt kreuzende Kante, leichte Kante Kanten, die einen Schnitt respektieren sichere Kante 2

3 4.2 Zusammenhänge Eigenschaften spannender Bäume Eigenschaften, die garantieren, dass man einen minimal spannenden Baum inkrementell erzeugen kann 4.3 Algorithmen Algorithmus von Kruskal Algorithmus von Prim 4.4 Datenstrukturen Union-Find-Strukturen 5 Kürzeste Pfade 5.1 Begriffe diese Begriffe beziehen sich auf gerichtete (kantengewichtete) Graphen Enfernung vom Knoten u zum Knoten v Gewicht eines Zyklus zulässige Schätzungen zulässige Heuristiken 5.2 Zusammenhänge Eigenschaften, die sicherstellen, dass durch das inkrementelle Verbessern von Schätzwerten die Gewichte von kürzesten Pfaden korrekt bestimmt werden negative Kantengewichte und die korrekte Bestimmung der Gewichte von kürzesten Pfaden 5.3 Algorithmen Spezialfall: zyklenfreie Graphen Algorithmus von Bellmann und Ford Algorithmus von Floyd und Warshall Algorithmus von Dijsktra und der A*-Algorithmus (/* Graphen ohne Kanten mit negativen Gewichten */) 3

4 5.4 Datenstrukturen Binäre Min-Heaps 6 Traveling Salesmann Problem 6.1 Begriffe diese Begriffe beziehen sich auf ungerichtete (kantengewichtete) Graphen Eulerkreise Hamiltonsche Kreise effizient lösbare Probleme Approximationsgüte einer Lösung Dreiecksungleichung 6.2 Zusammenhänge Spannende Bäume und Hamiltonsche Kreise Eulerkreise und Hamiltonsche Kreise Wissen, dass für bestimmte Varianten des Traveling Salesmann Problem keine effizienten Lösungsalgorthmen bekannt sind 6.3 Algorithmen Heuristiken für das metrische Traveling Salesmann Problem 7 Flüsse 7.1 Begriffe diese Begriffe beziehen sich auf gerichtete (kantengewichtete) Graphen mit einer Quelle und einer Senke Flussnetzwerk zulässiger Fluss, maximaler Fluss Restflussnetzwerk, Erweiterungspfad (s, t)-schnitte und deren Kapazität 7.2 Zusammenhänge Beziehungen zwischen der Größe eines Flusses und der Kapazität eines (s, t)-schnitts MaxFlow-MinCut-Theorem 4

5 7.3 Algorithmen Algorithmus von Ford und Fulkerson 5

Aufgaben zur Klausurvorbereitung

Aufgaben zur Klausurvorbereitung Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Effiziente Algorithmen

Effiziente Algorithmen Effiziente Algorithmen Martin Hofmann und Jan Johannsen Institut für Informatik LMU München Sommersemester 2002 Graphalgorithmen Grundlegendes Repräsentation von Graphen Breiten- und Tiefensuche Minimale

Mehr

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal spannende Bäume 5. Kürzeste Pfade 6. Traveling Salesman Problem 7. Flüsse

Mehr

Kapitel 1: Fallstudie Bipartite Graphen Gliederung der Vorlesung

Kapitel 1: Fallstudie Bipartite Graphen Gliederung der Vorlesung Kapitel : Fallstudie Bipartite Graphen Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und. Minimal spannende Bäume. Kürzeste Wege 6. Traveling Salesman

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Graphen 9/1 Begriffsdefinitionen Ein Graph besteht aus Knoten und Kanten. Ein Knoten(Ecke) ist ein benanntes Objekt. Eine Kante verbindet zwei Knoten. Kanten haben ein Gewicht

Mehr

Diskrete Mathematik Graphentheorie (Übersicht)

Diskrete Mathematik Graphentheorie (Übersicht) Diskrete Mathematik Graphentheorie (Übersicht) Dr. C. Löh 2. Februar 2010 0 Graphentheorie Grundlagen Definition (Graph, gerichteter Graph). Ein Graph ist ein Paar G = (V, E), wobei V eine Menge ist (die

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

Kapitel 8: Bipartite Graphen Gliederung der Vorlesung

Kapitel 8: Bipartite Graphen Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung

Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman

Mehr

Flüsse, Schnitte, Bipartite Graphen

Flüsse, Schnitte, Bipartite Graphen Flüsse, Schnitte, Bipartite Graphen Sebastian Hahn 4. Juni 2013 Sebastian Hahn Flüsse, Schnitte, Bipartite Graphen 4. Juni 2013 1 / 48 Überblick Flussnetzwerke Ford-Fulkerson-Methode Edmonds-Karp-Strategie

Mehr

Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22

Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22 Graphalgorithmen II Werner Sembach 14.04.2014 Werner Sembach Graphalgorithmen II 14.04.2014 1 / 22 Übersicht Datenstrukturen Union-Find Fibonacci-Heap Werner Sembach Graphalgorithmen II 14.04.2014 2 /

Mehr

Name:... Vorname:... Matr.-Nr.:... Studiengang:...

Name:... Vorname:... Matr.-Nr.:... Studiengang:... Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................

Mehr

entheoretische Konzepte und Algorithmen

entheoretische Konzepte und Algorithmen Sven Oliver Krumke, Hartmut Noitemeier entheoretische Konzepte und Algorithmen Teubner Inhaltsverzeichnis 1 Einleitung 1 1.1 Routenplanung 1 1.2 Frequenzplanung im Mobilfunk I 1.3 Museumswärter 3 1.4 Das

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

Algorithmen und Datenstrukturen Kapitel 9. und

Algorithmen und Datenstrukturen Kapitel 9. und Algorithmen und Datenstrukturen Kapitel 9 und Kürzeste Pfade Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Dezember 0 Frank Heitmann heitmann@informatik.uni-hamburg.de / Problemstellung Definition

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen

Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen . Graphen viele praktische (Optimierungs-)Probleme sind als graphentheoretische Probleme formulierbar z.b. in Produktionsplanung, Personaleinsatzplanung,.... Grundlagen gerichteter, ungerichteter und gewichteter

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 02. Mai 2017 [Letzte Aktualisierung: 10/07/2018,

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar.

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar. Gegeben sei ein Netzwerk N = (V, A, c, s, t) wie in der Vorlesung. Ein maximaler s-t-fluss kann immer mit Hilfe einer Folge von höchstens A Augmentationsschritten gefunden werden. Wendet man den Dijkstra-Algorithmus

Mehr

Algorithmen & Datenstrukturen 2 Praktikum 3

Algorithmen & Datenstrukturen 2 Praktikum 3 Algorithmen & Datenstrukturen 2 Praktikum 3 Thema: Graphalgorithmen Sommersemester 2016 Prof. Dr. Christoph Karg Hochschule Aalen Dieses Praktikum widmet sich dem Thema Graphalgorithmen. Ziel ist die Implementierung

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Algorithmen und Datenstrukturen Kapitel 9. und

Algorithmen und Datenstrukturen Kapitel 9. und Algorithmen und Datenstrukturen Kapitel 9 Minimale Spannbäume und Kürzeste Pfade Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Dezember 01 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/13

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

7. Der Entwurf von Algorithmen (Fortsetzung)

7. Der Entwurf von Algorithmen (Fortsetzung) Prof. Dr. Norbert Blum M.Sc. Adrian Schmitz Informatik V BA-INF 041 - Algorithmen und Berechnungskomplexität II SS 2015 Mögliche Klausuraufgaben Stand 1. Juli 2015 Bitte beachten Sie, dass die tatsächlichen

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 3 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012 Algorithmen und Datenstrukturen Tafelübung 14 Jens Wetzl 8. Februar 2012 Folien Keine Garantie für Vollständigkeit und/oder Richtigkeit Keine offizielle Informationsquelle LS2-Webseite Abrufbar unter:

Mehr

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität.

Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Netzwerkalgorithmen Bipartites Matching (Folie 90, Seite 80 im Skript) Gegeben: Ein bipartiter, ungerichteter Graph (V, V, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Ein Matching ist eine

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Matching. Organisatorisches. VL-18: Matching. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger. Tanzabend

Matching. Organisatorisches. VL-18: Matching. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger. Tanzabend Organisatorisches VL-18: Matching (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Sprechstunde: Mittwoch 11:15 12:00 Übungen: Tim Hartmann,

Mehr

Wir nennen einen Pfad in einem gerichteten Graphen Zyklus, wenn der Pfad im gleichen Knoten beginnt und endet, d. h.

Wir nennen einen Pfad in einem gerichteten Graphen Zyklus, wenn der Pfad im gleichen Knoten beginnt und endet, d. h. aaacmxicdvdlsgmxfl1t3/vv69jntaiuyowubbdcwy1lbfuqwkomtwuyzgri7ltgwa9wa7/cr+lo3potpq2c9xegcdjnxu7j8wmpdlru2mktlc4tr6yu5dc3nre2czvfhlgjzrzolfs65vpdpyh4hqvk3oo1p6evedmpzid+c8i1esq6xjtmnzaoitexjkkvbozdl5yrytfofkpu+bhacu+q5dfxyu4updp+pkobwgv3xyne9hrlqh4hk9sytufg2mmorsekf8zfjobhlav0wnuwrjtkppnnez+sq6v0sf9p+yiku/x7rkzdy9lqt5mhxtvz05uif3q+ugfs38zdz1aedznlwqtwndwpjarvvfmrfpuvtiaioeeesvnqfiijkjkpj/se5gxlagllwti/enzhnwvos87bfr+qiv+txnhzc8velveqvwcgvdidazgcd06hbhdwcxvgemitpmpiexhgzqvznhvnoz87uzah5/0djy+sia==

Mehr

4. Welchen Zusammenhang gibt es zwischen den Eckengraden und der Anzahl der Kanten eines ungerichteten Graphen?

4. Welchen Zusammenhang gibt es zwischen den Eckengraden und der Anzahl der Kanten eines ungerichteten Graphen? Kapitel 7 Graphentheorie Verständnisfragen Sachfragen 1. Was ist ein ungerichteter Graph? 2. Erläutern Sie den Begriff Adjazenz! 3. Erläutern Sie den Eckengrad in einem Graphen! 4. Welchen Zusammenhang

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, chnitte, bipartite Graphen Matthias Hoffmann 5.5.009 Matthias Hoffmann Flüsse, chnitte, bipartite Graphen 5.5.009 / 48 Übersicht Einführung Beispiel Definitionen Ford-Fulkerson-Methode Beispiel

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Klausur Wichtige Hinweise: 2.7.07, Beginn 9 Uhr Bitte spätestens 8:4 Uhr vor Ort sein Sporthalle + Audimax Informationen

Mehr

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung) Tutorium 3 Grundbegriffe der Informatik (7. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

Graphalgorithmen 2. Oleksiy Rybakov. 3. Juni Betreuer: Tobias Werth, Daniel Brinkers

Graphalgorithmen 2. Oleksiy Rybakov. 3. Juni Betreuer: Tobias Werth, Daniel Brinkers Graphalgorithmen 2 Oleksiy Rybakov 3. Juni 2015 Betreuer: Tobias Werth, Daniel Brinkers 1 / 40 Inhaltsverzeichnis 1 Minimale Spannbäume und Datenstrukturen 2 Kürzeste Wege 3 Spezielle Graphen 2 / 40 Minimale

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 13. Übung minimale Spannbäume, topologische Sortierung, AVL-Bäume Clemens Lang Übungen zu AuD 4. Februar 2010 Clemens Lang (Übungen zu AuD) Algorithmen und Datenstrukturen

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

Statistik und Graphentheorie

Statistik und Graphentheorie Statistik und Graphentheorie Sommersemester 2014 24. März 2015 Teil Graphentheorie Matrikelnummer: 1 (12) 2 (12) 3 (12) 4 (12) 5 (12) (60) Aufgabe 1 (12 Punkte) Gegeben sei das folgende Netzwerk: (a) Berechnen

Mehr

Übung 5 Algorithmen II

Übung 5 Algorithmen II Michael Axtmann michael.axtmann@kit.edu http://algo.iti.kit.edu/algorithmenii_ws6.php - 0 Axtmann: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 13: Flüsse und Zuordnungen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 9. Juni 2017 DURCHSATZ D(e) ist die maximale Flussmenge,

Mehr

ADS 2: Algorithmen und Datenstrukturen

ADS 2: Algorithmen und Datenstrukturen ADS 2: Algorithmen und Datenstrukturen Teil I Prof. Peter F. Stadler & Sebastian Will Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität Leipzig 9. April

Mehr

Algorithmische Mathematik I

Algorithmische Mathematik I Algorithmische Mathematik I Wintersemester 2011 / 2012 Prof. Dr. Sven Beuchler Peter Zaspel Übungsblatt zur Wiederholung Teil 1. Abgabe am -. Aufgabe 1. a) Was ist eine B-adische Darstellung mit fixer

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode.

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Effiziente Algorithmen Flußprobleme 81 Laufzeit Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{ V 1, V 2 }.

Mehr

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich

Vorlesungstermin 2: Graphentheorie II. Markus Püschel David Steurer. Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Vorlesungstermin 2: Graphentheorie II Markus Püschel David Steurer Algorithmen und Datenstrukturen, Herbstsemester 2018, ETH Zürich Wiederholung: Vollständige Induktion Ziel: zeige n N. A(n) für eine Aussage

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University

Mehr

Vorlesung 3: Graphenalgorithmen. Markus Püschel David Steurer Peter Widmayer. PDF download goo.gl/ym3spq

Vorlesung 3: Graphenalgorithmen. Markus Püschel David Steurer Peter Widmayer. PDF download goo.gl/ym3spq Vorlesung 3: Graphenalgorithmen Markus Püschel David Steurer Peter Widmayer PDF download goo.gl/ym3spq Algorithmen und Datenstrukturen, Herbstsemester 2017, ETH Zürich Gerichtete Graphen und Abhängigkeiten

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil II Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig 07.

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 16 (2.7.2014) Graphtraversierung II, Minimale Spannbäume I Algorithmen und Komplexität Tiefensuche: Pseusocode DFS Traversal: for all u in

Mehr

Flüsse, Schnitte, bipartite Graphen. Martin Oettinger

Flüsse, Schnitte, bipartite Graphen. Martin Oettinger Flüsse, Schnitte, bipartite Graphen Martin Oettinger Übersicht Einführung Algorithmen für maximalen Fluss Preflow-Push Ford-Fulkerson Spezialfall: Maximaler Fluss bei minimalen Kosten Reduktionen Bipartites

Mehr

Flüsse, Schnitte, bipartite Graphen

Flüsse, Schnitte, bipartite Graphen Flüsse, Schnitte, bipartite Graphen Thomas Fersch mail@t-fersch.de 11.06.2010 Seminar "Hallo Welt!" für Fortgeschrittene 1 Übersicht Maximale Flüsse in Netzwerken Worum geht s? Lösung nach Ford-Fulkerson

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 24. April 2019 [Letzte Aktualisierung: 24/04/2019,

Mehr

Effiziente Algorithmen I 11. Übungsblatt, Wintersemester 2015/16 Abgabetermin:

Effiziente Algorithmen I 11. Übungsblatt, Wintersemester 2015/16 Abgabetermin: 11 11. Übungsblatt, Wintersemester 2015/16 Abgabetermin: 19.01.2016 Aufgabe 29 Bestimmen Sie mit der Stepping-Stone-ethode einen Transportplan mit minimalen Kosten für das klassische Transportproblem mit

Mehr

Abgabe: (vor der Vorlesung)

Abgabe: (vor der Vorlesung) TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 0 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 11 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 11 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 14. Mai

Mehr

Graphalgorithmen II. Sebastian Ehrenfels Sebastian Ehrenfels Graphalgorithmen II / 44

Graphalgorithmen II. Sebastian Ehrenfels Sebastian Ehrenfels Graphalgorithmen II / 44 Graphalgorithmen II Sebastian Ehrenfels 4.6.2013 Sebastian Ehrenfels Graphalgorithmen II 4.6.2013 1 / 44 Inhalt 1 Datenstrukturen Union-Find Fibonacci-Heap 2 Kürzeste wege Dijkstra Erweiterungen Bellman-Ford

Mehr

Helmut Schauer Educational Engineering Lab Department for Information Technology University of Zurich. Graphen (2)

Helmut Schauer Educational Engineering Lab Department for Information Technology University of Zurich. Graphen (2) Graphen (2) 1 Topologisches Sortieren (1) Die Kanten eines gerichteten zyklenfreien Graphen bilden eine Halbordnung (die Ordnungsrelation ist nur für solche Knoten definiert die am gleichen Pfad liegen).

Mehr

Kapitel 4: Netzplantechnik Gliederung der Vorlesung

Kapitel 4: Netzplantechnik Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Netzplantechnik 5. Minimal spannende Bäume 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist.

Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Graphen Definition: Ein Graph ist ein Paar (V,E), wobei V eine Menge von Knoten und E eine Menge von Kanten (v,w) mit v,w in V ist. Begriffe: Gerichteter Graph: Alle Kanten haben eine Richtung vom Anfangsknoten

Mehr

Rückblick: Starke Zusammenhangskomponenten

Rückblick: Starke Zusammenhangskomponenten Rückblick: Starke Zusammenhangskomponenten Der Algorithmus von Kosaraju bestimmt die starken Zusammenhangskomponenten eines gerichteten Graphen wie folgt: Schritt 1: Bestimme den transponierten Graphen

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 13 (6.6.2018) Graphenalgorithmen II Yannic Maus Algorithmen und Komplexität Repräsentation von Graphen Zwei klassische Arten, einen Graphen

Mehr

Bipartite Graphen. Beispiele

Bipartite Graphen. Beispiele Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 4: Flüsse

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 4: Flüsse Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 4: Flüsse Dipl-Math. Wolfgang Kinzner 3.4.2012 Kapitel 4: Flüsse Flüsse Netzwerk, Fluss, s,t-schnitt, Kapazität MaxFlow-MinCut-Theorem Restnetzwerk

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 208 (Algorithmen & Datenstrukturen) Vorlesung 4 (..208) Graphenalgorithmen III Algorithmen und Komplexität Bäume Gegeben: Zusammenhängender, ungerichteter Graph G = V, E Baum: Zusammenhängender,

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

Carlos Camino Grundlagen: Algorithmen und Datenstrukturen SS 2015

Carlos Camino Grundlagen: Algorithmen und Datenstrukturen SS 2015 Themenüberblick Dieses Dokument stellt eine Art Checkliste für eure Klausurvorbereitung dar. Zu jedem Thema im Skript sind hier ein paar Leitfragen aufgelistet. Ab Seite 4 findet ihr alle Zusammenfassungen,

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 17 (8.7.2014) Minimale Spannbäume II Union Find, Prioritätswarteschlangen Algorithmen und Komplexität Minimaler Spannbaum Gegeben: Zus. hängender,

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Institut für Statistik und OR Uni Graz Joachim Schauer ( Institut für Statistik und OR Uni Graz Betriebliche ) Optimierung 1 / 21 1 Approximationsalgorithmen auf

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie 1 Algorithmische Graphentheorie Sommersemester 2014 5. Vorlesung Matchings / Paarungen II Kombinatorischer Algorithmus, Anwendung für Handlungsreisende, LP-Runden Dr. Joachim Spoerhase Prof. Dr. Alexander

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

Was bisher geschah. gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen

Was bisher geschah. gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen Was bisher geschah gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen Spezielle Graphen: I n, K n, P n, C n, K m,n, K 1,n, K n1,...,n m Beziehungen zwischen Graphen: Isomorphie, Teilgraph,

Mehr

ADS 2: Algorithmen und Datenstrukturen

ADS 2: Algorithmen und Datenstrukturen ADS 2: Algorithmen und Datenstrukturen Teil 2 Prof. Peter F. Stadler & Sebastian Will Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität Leipzig 16. April

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Berechnung minimaler Spannbäume. Beispiel

Berechnung minimaler Spannbäume. Beispiel Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme 10 Matching-Probleme 10.1 Definition von Matching-Probleme Definition 21 [2-dimensionales Matching] Sei G = (V, E) ein ungerichteter Graph und E E. E ist ein Matching, wenn für alle Kantenpaare e 1, e

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (2) Spannbäume Kürzeste Wege Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 455 Wiederholung Traversierung eines Graphen via Tiefendurchlaufs

Mehr

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009

Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 Algorithmentechnik - U bung 3 4. Sitzung Tanja Hartmann 03. Dezember 2009 I NSTITUT F U R T HEORETISCHE I NFORMATIK, P ROF. D R. D OROTHEA WAGNER KIT Universita t des Landes Baden-Wu rttemberg und nationales

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 6 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 16. Mai 2018 [Letzte Aktualisierung: 18/05/2018,

Mehr

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013

12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 12. Graphen Programmieren / Algorithmen und Datenstrukturen 2 Prof. Dr. Bernhard Humm FB Informatik, Hochschule Darmstadt Wintersemester 2012 / 2013 1 Agenda Kontrollfragen Graphen Graphenalgorithmen 2

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2008/2009

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2008/2009 . Klausur zur Vorlesung Algorithmentechnik Wintersemester 008/009 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber mit Ihrem

Mehr

Folien aus der Vorlesung Optimierung I SS2013

Folien aus der Vorlesung Optimierung I SS2013 Folien aus der Vorlesung Optimierung I SS2013 Dr. Jens Maßberg Institut für Optimierung und Operations Research, Universität Ulm July 10, 2013 Datenstrukturen für Graphen und Digraphen Graph Scanning Algorithmus

Mehr

Betriebswirtschaftliche Optimierung

Betriebswirtschaftliche Optimierung Institut für Statistik und OR Uni Graz 1 Approximationsalgorithmen auf metrischen Instanzen Minimum Spanning Tree Definition (Spannbaum) Ein Spannbaum in einem Graphen G = (V,E) ist ein kreisfreier Teilgraph

Mehr

Strukturelle Modelle in der Bildverarbeitung Binäre MinSum Probleme

Strukturelle Modelle in der Bildverarbeitung Binäre MinSum Probleme Strukturelle Modelle in der Bildverarbeitung Binäre MinSum Probleme TUD/INF/KI/IS Äquivalente Transformationen (Reparametrisierung) Binäre MinSum Probleme kanonische Form MinCut Binäre MinSum Probleme

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr