ADS 2: Algorithmen und Datenstrukturen

Größe: px
Ab Seite anzeigen:

Download "ADS 2: Algorithmen und Datenstrukturen"

Transkript

1 ADS 2: Algorithmen und Datenstrukturen Teil I Prof. Peter F. Stadler & Sebastian Will Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität Leipzig 9. April 2014 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

2 Aktuelle Informationen zur Veranstaltung Teaching Current classes ADS 2 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

3 Übungsaufgaben Es sind 5 Übungsserien zu lösen Die ersten Übungsaufgaben werden am gestellt. Abgabe ist am Lösungen sind nach der Bearbeitungszeit direkt vor Beginn der Vorlesung im Hörsaal abzugeben (mit Name, Matrikelnummer und Gruppe). Lösungen werden bewertet und in der Übungsstunde zurückgegeben. Punkte gibt es für das Lösen der Aufgaben, nicht für die Abgabe (der Kopie) der Lösung Es wird daher stichprobenartig überprüft, ob die Lösung auch verstanden wurde und erklärt werden kann. Dies geschieht planmäÿig in den Übungsstunden nach der Abgabe. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

4 Seminargruppen Anmeldung bis (nächster Mittwoch) online auf Vorlesungsseite zu ADS 2: (wird erst nach der Vorlesung, 19:00, freigeschaltet) Gruppen und Termine G1 Montag 09:15 10:45 SG ,... G2 Dienstag 09:15 10:45 P ,... G3 Mittwoch 13:15 14:45 P ,... G4 Freitag 09:15 10:45 SG Übungen erst ab Mai (nach 3. Vorlesung)! P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

5 Prüfungs(vor)leistung Klausur voraussichtlich , Dauer 60 Minuten Zulassungsvoraussetzungen Erreichen von 50% der Punkte in den Übungsaufgaben Fähigkeit, abgegebene Lösungen zu erläutern. Kommen Sie also bitte zu den Übungen! unbenoteter Übungsschein (Diplom-Studiengänge) 50% der erreichbaren Punkte bei den Übungsaufgaben und die Fähigkeit, abgegebene Lösungen zu erläutern, die wir überprüfen konnten. Kommen Sie also zu den Übungsgruppen! Alternative (falls zuwenig Punkte/Übungsteilnahme): Mitschreiben der Klausur (bei Anmeldung angeben!) P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

6 Literatur Cormen, Leiserson, Rivest, Stein Introduction to Algorithms The MIT Press. Ottmann, Widmayer Algorithmen und Datenstrukturen Spektrum Akademischer Verlag. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

7 Inhaltsverzeichnis 1 Graphenalgorithmen 2 Verarbeitung von Zeichenketten: Suche, Vergleich, Kompression 3 Dynamische Programmierung P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

8 Graphen Themenübersicht 1 Ungerichtete gewichtete Graphen: Grundlegende Denitionen, minimale Spannbäume 2 Gerichtete Graphen: Denitionen, Speicherung, topologische Sortierung, transitive Hülle, starke Zusammenhangskomponenten 3 Gerichtete gewichtete Graphen: Kürzeste Pfade, Fluÿnetzwerke P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

9 Königsberger Brückenproblem (Euler, 1736) Originalartikel: P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

10 Ungerichteter Graph Ein Tupel (V, E) heiÿt (ungerichteter) Graph, genau dann wenn V eine endliche Menge und E eine Menge ungeordneter Paare von Elementen in V ist. V heiÿt Knotenmenge, die Elemente von V heiÿen Knoten. E heiÿt Kantenmenge, die Elemente von E heiÿen Kanten. Beispiel: V = {1, 2, 3, 4, 5} E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}} P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

11 Ungerichteter Graph Ein Tupel (V, E) heiÿt (ungerichteter) Graph, genau dann wenn V eine endliche Menge und E eine Menge ungeordneter Paare von Elementen in V ist. V heiÿt Knotenmenge, die Elemente von V heiÿen Knoten. E heiÿt Kantenmenge, die Elemente von E heiÿen Kanten. Beispiel: V = {1, 2, 3, 4, 5} E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}} = = P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

12 Graphen: Beispiele realer Systeme System Knoten Kanten Internet Router Datenleitungen WWW Webseiten/-dokumente Hyperlinks Gesellschaft Personen soziale Kontakte Biotop Spezies trophische Bez., Fressen Molekül Atome chem. Bindungen P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

13 Graph von Protein-Wechselwirkungen (Hefe) Jeong, Mason, Barabási & Oltvai, Nature P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

14 Netzwerk von Artikeln über Klimawandel (Okt 2012) P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

15 Social Network (Facebook, 2010) facebooks-social-network-graph.html P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

16 Friendship Paradox ewige Fragen der Menschheit;) Warum ihre Freunde mehr Freunde haben als sie selbst... P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

17 Teilgraphen Seien G = (V, E) und G = (V, E ) Graphen. G heiÿt Teilgraph von G, wenn V V und E E ist. G heiÿt aufspannender Teilgraph von G, wenn G Teilgraph von G mit V = V ist (G enthält dieselben Knoten wie G ). G heiÿt induzierter Teilgraph von G, wenn G Teilgraph von G ist und für alle e E gilt: e V e E. (Alle Kanten aus G, deren zwei Knoten in G liegen, sind auch in G enthalten.) P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

18 Pfade, Zyklen, Zusammenhang Sei G = (V, E) ein Graph, l N und k = (v 0, v 1,..., v l ) V l+1. k heiÿt Weg der Länge l, wenn für alle i {1,..., l} gilt: {v i 1, v i } E k heiÿt Pfad der Länge l, wenn k ein Weg ist und für alle i, j {0,..., l} mit i j gilt: v i v j. k heiÿt Zyklus (oder Kreis) der Länge l, wenn (v 1,..., v l ) ein Pfad der Länge l 1 ist, v 0 = v l und {v 0, v 1 } E. G heiÿt zusammenhängend, wenn für alle x, y V ein Pfad zwischen x und y existiert. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

19 Wälder und Bäume Sei G = (V, E) ein Graph. G heiÿt Wald (oder zyklenfrei), wenn kein Weg in G ein Zyklus ist. G heiÿt Baum, wenn G ein Wald ist und G zusammenhängend ist. Satz: Ist G ein Baum, so hat G genau V 1 Kanten. Satz: Ist G zusammenhängend, so hat G einen aufspannenden Teilgraphen T, so daÿ T ein Baum ist. T heiÿt dann Spannbaum von G. Wie konstruieren sie (irgend)einen Spannbaum für einen zusammenhängenden Graphen G? P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

20 Gewichteter Graph Sei (V, E) ein Graph und w : E R. Beispiel: Das Tripel G = (V, E, w) heiÿt gewichteter (oder kantenbewerteter) Graph. w(e) heiÿt Gewicht (oder Länge) der Kante e E P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

21 Minimaler Spannbaum Gegeben: Gewichteter zusammenhängender Graph G = (V, E, w). Gesucht: Spannbaum T = (V, F ) mit minimaler Kantensumme. Wähle also die Kantenmenge F E so, daÿ w(e) e F möglichst klein wird. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

22 Kruskal-Algorithmus (1956) Minimaler Spannbaum T für G = (V, E, w). Initialisiere F als leere Menge. Erzeuge Liste L der Kanten in E ; Sortiere L aufsteigend nach Gewicht. Solange L nicht leer ist: Entferne Kante e = {u, v} mit kleinstem Gewicht aus L. Falls (V, F ) keinen Pfad zwischen u und v enthält: (Sonst: tue nichts.) Ergebnis: F, bzw. T = (V, F ) F := F {e} P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

23 Beispiel-Lauf: Kruskal-Algorithmus L = [{2, 3}, {4, 5}, {1, 3}, {1, 2}, {3, 5}, {2, 4}, {2, 5}, {3, 4}] F = {} P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

24 Beispiel-Lauf: Kruskal-Algorithmus L = [{4, 5}, {1, 3}, {1, 2}, {3, 5}, {2, 4}, {2, 5}, {3, 4}] F = {{2, 3}} 5 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

25 Beispiel-Lauf: Kruskal-Algorithmus L = [{1, 3}, {1, 2}, {3, 5}, {2, 4}, {2, 5}, {3, 4}] F = {{2, 3}}, {4, 5}} P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

26 Beispiel-Lauf: Kruskal-Algorithmus L = [{1, 2}, {3, 5}, {2, 4}, {2, 5}, {3, 4}] F = {{2, 3}}, {4, 5}, {1, 3}} P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

27 Beispiel-Lauf: Kruskal-Algorithmus L = [{3, 5}, {2, 4}, {2, 5}, {3, 4}] F = {{2, 3}}, {4, 5}, {1, 3}} P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

28 Beispiel-Lauf: Kruskal-Algorithmus L = [{2, 4}, {2, 5}, {3, 4}] F = {{2, 3}}, {4, 5}, {1, 3}, {3, 5}} P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

29 Beispiel-Lauf: Kruskal-Algorithmus L = [] F = {{2, 3}}, {4, 5}, {1, 3}, {3, 5}} P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

30 Anmerkungen zum Kruskal-Algorithmus Wie berechnen sie einen maximalen Spannbaum? Korrektheit: Findet der Kruskal-Algorithmus garantiert einen minimalem Spannbaum? Ja, sehen wir später bei Greedy-Algorithmen. Laufzeit-Komplexität: O( E log E ) [= O( E log V )]. Anmerkung: dazu brauchen wir zusätzlich einen ezienten Test, d.h. in O(log V ), ob zwei Knoten jeweils für Kanten F zusammenhängen: Union-Find-Datenstruktur. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V1 9. April / 22

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 3 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 02. Mai 2017 [Letzte Aktualisierung: 10/07/2018,

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 5 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 24. April 2019 [Letzte Aktualisierung: 24/04/2019,

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

ADS 2: Algorithmen und Datenstrukturen

ADS 2: Algorithmen und Datenstrukturen ADS 2: Algorithmen und Datenstrukturen Teil 2 Prof. Peter F. Stadler & Sebastian Will Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität Leipzig 16. April

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 6 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 16. Mai 2018 [Letzte Aktualisierung: 18/05/2018,

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / Traversierung ADS: Algorithmen und Datenstrukturen Teil Prof. Peter F. Stadler & Sebastian

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 208 (Algorithmen & Datenstrukturen) Vorlesung 4 (..208) Graphenalgorithmen III Algorithmen und Komplexität Bäume Gegeben: Zusammenhängender, ungerichteter Graph G = V, E Baum: Zusammenhängender,

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 16 (2.7.2014) Graphtraversierung II, Minimale Spannbäume I Algorithmen und Komplexität Tiefensuche: Pseusocode DFS Traversal: for all u in

Mehr

Rückblick: Starke Zusammenhangskomponenten

Rückblick: Starke Zusammenhangskomponenten Rückblick: Starke Zusammenhangskomponenten Der Algorithmus von Kosaraju bestimmt die starken Zusammenhangskomponenten eines gerichteten Graphen wie folgt: Schritt 1: Bestimme den transponierten Graphen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 018/19 1. Vorlesung Minimale Spannbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Motivation ) Kantengewichte w : E R >0 ) w(e ) := e E w(e)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Graphen 9/1 Begriffsdefinitionen Ein Graph besteht aus Knoten und Kanten. Ein Knoten(Ecke) ist ein benanntes Objekt. Eine Kante verbindet zwei Knoten. Kanten haben ein Gewicht

Mehr

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012

Algorithmen und Datenstrukturen Tafelübung 14. Jens Wetzl 8. Februar 2012 Algorithmen und Datenstrukturen Tafelübung 14 Jens Wetzl 8. Februar 2012 Folien Keine Garantie für Vollständigkeit und/oder Richtigkeit Keine offizielle Informationsquelle LS2-Webseite Abrufbar unter:

Mehr

Aufgaben zur Klausurvorbereitung

Aufgaben zur Klausurvorbereitung Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt:

3. Minimale Spannbäume. Definition 99 T heißt minimaler Spannbaum (MSB, MST) von G, falls T Spannbaum von G ist und gilt: 3. Minimale Spannbäume Sei G = (V, E) ein einfacher ungerichteter Graph, der o.b.d.a. zusammenhängend ist. Sei weiter w : E R eine Gewichtsfunktion auf den Kanten von G. Wir setzen E E: w(e ) = e E w(e),

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S.

Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Lange Klausurvorbereitung Hier finden Sie alle Begriffe, Zusammenhänge und Algorithmen, die mit Blick auf die Klausur relevant sind. Um es

Mehr

Programmiertechnik II

Programmiertechnik II Graph-Algorithmen Anwendungsgebiete "Verbundene Dinge" oft Teilproblem/Abstraktion einer Aufgabenstellung Karten: Wie ist der kürzeste Weg von Sanssouci nach Kunnersdorf? Hypertext: Welche Seiten sind

Mehr

Institut für Programmierung und Reaktive Systeme 27. Mai Programmieren II. 12. Übungsblatt

Institut für Programmierung und Reaktive Systeme 27. Mai Programmieren II. 12. Übungsblatt Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 27. Mai 206 Programmieren II 2. Übungsblatt Hinweis: Auf diesem und den folgenden Übungsblättern

Mehr

3.2 Generischer minimaler Spannbaum-Algorithmus

3.2 Generischer minimaler Spannbaum-Algorithmus 3.2 Generischer minimaler Spannbaum-Algorithmus Initialisiere Wald F von Bäumen, jeder Baum ist ein singulärer Knoten (jedes v V bildet einen Baum) while Wald F mehr als einen Baum enthält do wähle einen

Mehr

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2008/2009

1. Klausur zur Vorlesung Algorithmentechnik Wintersemester 2008/2009 . Klausur zur Vorlesung Algorithmentechnik Wintersemester 008/009 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie den Aufkleber mit Ihrem

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

ADS 2: Algorithmen und Datenstrukturen

ADS 2: Algorithmen und Datenstrukturen ADS : Algorithmen und Datenstrukturen Teil 4 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind.

Definition Gerichteter Pfad. gerichteter Pfad, wenn. Ein gerichteter Pfad heißt einfach, falls alle u i paarweise verschieden sind. 3.5 Gerichteter Pfad Definition 291 Eine Folge (u 0, u 1,..., u n ) mit u i V für i = 0,..., n heißt gerichteter Pfad, wenn ( i {0,..., n 1} ) [ (u i, u i+1 ) A]. Ein gerichteter Pfad heißt einfach, falls

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 17 (8.7.2014) Minimale Spannbäume II Union Find, Prioritätswarteschlangen Algorithmen und Komplexität Minimaler Spannbaum Gegeben: Zus. hängender,

Mehr

Teil 2: Graphenalgorithmen

Teil 2: Graphenalgorithmen Teil : Graphenalgorithmen Anwendungen Definitionen Datenstrukturen für Graphen Elementare Algorithmen Topologisches Sortieren Kürzeste Wege Minimal aufspannende Bäume Problemstellung Algorithmus von Prim

Mehr

Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl. Beispiele für optimale Greedy-Lösungen

Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl. Beispiele für optimale Greedy-Lösungen Wiederholung Optimale Lösungen mit Greedy-Strategie erfordern Optimalität der Greedy-Wahl unabhängig von Subproblemen Optimalität der Subprobleme Beispiele für optimale Greedy-Lösungen Scheduling Problem

Mehr

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S

Formale Grundlagen. Graphentheorie 2008W. Vorlesung im 2008S Minimale Formale Grundlagen Graphentheorie Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt Minimale

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 13 (6.6.2018) Graphenalgorithmen II Yannic Maus Algorithmen und Komplexität Repräsentation von Graphen Zwei klassische Arten, einen Graphen

Mehr

Grundbegriffe der Informatik Tutorium 8

Grundbegriffe der Informatik Tutorium 8 Grundbegriffe der Informatik Tutorium 8 Tutorium Nr. 16 Philipp Oppermann 22. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V.

Definition Ein gerichteter Graph G = (V, E) ist ein Graph von geordneten Paaren (u, v) mit u V und v V. Kapitel 4 Graphenalgorithmen 4.1 Definitionen Definition 4.1.1. Der Graph G = (V, E) ist über die beiden Mengen V und E definiert, wobei V die Menge der Knoten und E die Menge der Kanten in dem Graph ist.

Mehr

ADS 2: Algorithmen und Datenstrukturen

ADS 2: Algorithmen und Datenstrukturen ADS : Algorithmen und Datenstrukturen Teil Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität

Mehr

Vorlesung 3: Graphenalgorithmen. Markus Püschel David Steurer Peter Widmayer. PDF download goo.gl/ym3spq

Vorlesung 3: Graphenalgorithmen. Markus Püschel David Steurer Peter Widmayer. PDF download goo.gl/ym3spq Vorlesung 3: Graphenalgorithmen Markus Püschel David Steurer Peter Widmayer PDF download goo.gl/ym3spq Algorithmen und Datenstrukturen, Herbstsemester 2017, ETH Zürich Gerichtete Graphen und Abhängigkeiten

Mehr

Name:... Vorname:... Matr.-Nr.:... Studiengang:...

Name:... Vorname:... Matr.-Nr.:... Studiengang:... Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Klausur Wichtige Hinweise: 2.7.07, Beginn 9 Uhr Bitte spätestens 8:4 Uhr vor Ort sein Sporthalle + Audimax Informationen

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Kap. 6.5: Minimale Spannbäume ff

Kap. 6.5: Minimale Spannbäume ff Kap. 6.: Minimale Spannbäume ff Professor Dr. Karsten Klein Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 20. VO 2. TEIL DAP2 SS 2009 2. Juli 2009 SS08 1 Überblick 6.:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 13. Übung minimale Spannbäume, topologische Sortierung, AVL-Bäume Clemens Lang Übungen zu AuD 4. Februar 2010 Clemens Lang (Übungen zu AuD) Algorithmen und Datenstrukturen

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil II Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig 07.

Mehr

Institut für Programmierung und Reaktive Systeme 31. Mai Programmieren II. 12. Übungsblatt

Institut für Programmierung und Reaktive Systeme 31. Mai Programmieren II. 12. Übungsblatt Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 1. Mai 01 Programmieren II 1. Übungsblatt Hinweis: Dieses Übungsblatt enthält die dritte Pflichtaufgabe.

Mehr

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Graphentheorie. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Minimale Graphentheorie Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Minimale Inhalt

Mehr

Übungsblatt 2 - Lösung

Übungsblatt 2 - Lösung Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Graphalgorithmen I. Katharina Reif Hallo Welt -Seminar - LS 2

Graphalgorithmen I. Katharina Reif Hallo Welt -Seminar - LS 2 Graphalgorithmen I Katharina Reif 14.06.2017 allo Welt -Seminar - LS 2 Überblick Einführung Speichern von Graphen Topologische Sortierung Zusammenhang und Zusammenhangskomponenten Artikulationspunkte rücken

Mehr

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar.

Richtig oder falsch? Richtig oder falsch? Richtig oder falsch? Mit dynamischer Programmierung ist das Knapsack- Problem in Polynomialzeit lösbar. Gegeben sei ein Netzwerk N = (V, A, c, s, t) wie in der Vorlesung. Ein maximaler s-t-fluss kann immer mit Hilfe einer Folge von höchstens A Augmentationsschritten gefunden werden. Wendet man den Dijkstra-Algorithmus

Mehr

Berechnung minimaler Spannbäume. Beispiel

Berechnung minimaler Spannbäume. Beispiel Minimale Spannbäume Definition Sei G pv, Eq ein ungerichteter Graph und sei w : E Ñ R eine Funktion, die jeder Kante ein Gewicht zuordnet. Ein Teilgraph T pv 1, E 1 q von G heißt Spannbaum von G genau

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22

Graphalgorithmen II. Werner Sembach Werner Sembach Graphalgorithmen II / 22 Graphalgorithmen II Werner Sembach 14.04.2014 Werner Sembach Graphalgorithmen II 14.04.2014 1 / 22 Übersicht Datenstrukturen Union-Find Fibonacci-Heap Werner Sembach Graphalgorithmen II 14.04.2014 2 /

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 5: Suchalgorithmen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 20. März 2018 1/91 WIEDERHOLUNG - BÄUME / bin etc home

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

1.Aufgabe: Minimal aufspannender Baum

1.Aufgabe: Minimal aufspannender Baum 1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) WS 2013/14 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ws/ds/uebung/ 22. Januar 2014 ZÜ DS ZÜ XIII

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Matching. Organisatorisches. VL-18: Matching. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger. Tanzabend

Matching. Organisatorisches. VL-18: Matching. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger. Tanzabend Organisatorisches VL-18: Matching (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Sprechstunde: Mittwoch 11:15 12:00 Übungen: Tim Hartmann,

Mehr

Graphen und Bäume. A.1 Graphen

Graphen und Bäume. A.1 Graphen Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt

Mehr

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman

Mehr

3. Musterlösung. Problem 1: Heapsort

3. Musterlösung. Problem 1: Heapsort Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 3. Musterlösung Problem : Heapsort ** 2 3 4 5 Algorithmus : Heapsort (A) Eingabe : Array A der Länge n Ausgabe : Aufsteigend

Mehr

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr)

Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) WS 2011/12 Zentralübung zur Vorlesung Diskrete Strukturen (Prof. Mayr) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/uebung/ 25. Januar 2012 ZÜ DS ZÜ XIII

Mehr

Algorithmen & Datenstrukturen

Algorithmen & Datenstrukturen Algorithmen & Datenstrukturen Prof. Dr. Gerd Stumme Universität Kassel FB Elektrotechnik/Informatik FG Wissensverarbeitung Sommersemester 2009 Ziele der Veranstaltung 1 Kennenlernen grundlegender Algorithmen

Mehr

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden! Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................

Mehr

Kapitel 8 Graphenalgorithmen. Minimaler Spannbaum Union-find-Problem Kürzeste Wege

Kapitel 8 Graphenalgorithmen. Minimaler Spannbaum Union-find-Problem Kürzeste Wege Kapitel 8 Graphenalgorithmen Minimaler Spannbaum Union-find-Problem Kürzeste Wege Rückblick Graphen Modelle für Objekte und Beziehungen untereinander Personen - Bekanntschaften Ereignisse - Abhängigkeiten

Mehr

Algorithmen und Datenstrukturen Kapitel 9. und

Algorithmen und Datenstrukturen Kapitel 9. und Algorithmen und Datenstrukturen Kapitel 9 Minimale Spannbäume und Kürzeste Pfade Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Dezember 01 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/13

Mehr

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung) Tutorium 3 Grundbegriffe der Informatik (7. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 5. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Wdhlg.: Dijkstra-Algorithmus I Bestimmung der

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Algorithmen und Datenstrukturen Kapitel 9. und

Algorithmen und Datenstrukturen Kapitel 9. und Algorithmen und Datenstrukturen Kapitel 9 und Kürzeste Pfade Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Dezember 0 Frank Heitmann heitmann@informatik.uni-hamburg.de / Problemstellung Definition

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

Karlsruher Institut für Technologie. Klausur Algorithmen I

Karlsruher Institut für Technologie. Klausur Algorithmen I Klausur-ID: Vorname: Matrikelnummer: Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Jörn Müller-Quade 11. April 2018 Klausur Algorithmen I Aufgabe 1. Kleinaufgaben 15 Punkte

Mehr

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Svenja Hüning, Michael Kerber, Hannah Schreiber WS 2016/2017 Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist: Hinweise: Dieses Blatt präsentiert Beispiellösungen zu

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Kürzeste Wege Maike Buchin 4. und 6.7.2017 Einführung Motivation: Bestimmung von kürzesten Wegen ist in vielen Anwendungen, z.b. Routenplanung, ein wichtiges Problem. Allgemeine

Mehr

Maximale s t-flüsse in Planaren Graphen

Maximale s t-flüsse in Planaren Graphen Maximale s t-flüsse in Planaren Graphen Vorlesung Algorithmen für planare Graphen 6. Juni 2017 Guido Brückner INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg

Mehr

Kapitel 8: Bipartite Graphen Gliederung der Vorlesung

Kapitel 8: Bipartite Graphen Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert: KAPITEL 3 Graphen Man kann als Ursprung der Graphentheorie ein Problem sehen, welches Euler 1736 von Studenten aus Königsberg gestellt bekam. Der Fluss Pregel wird von 7 Brücken überquert, und die Frage

Mehr

Einheit 11 - Graphen

Einheit 11 - Graphen Einheit - Graphen Bevor wir in medias res (eigentlich heißt es medias in res) gehen, eine Zusammenfassung der wichtigsten Definitionen und Notationen für Graphen. Graphen bestehen aus Knoten (vertex, vertices)

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 1 (29.4.2014) Organisation, Übungen, Sortieren I Algorithmen und Komplexität Allgemeines Thema der Vorlesung Letztes Semester haben Sie (die

Mehr

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME

11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen 11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Algorithmen und Datenstrukturen 11.1. BERECHNUNG MAXIMALER FLÜSSE

Mehr

Kap. 6.5: Minimale Spannbäume

Kap. 6.5: Minimale Spannbäume Kap. 6.5: Minimale Spannbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 19./20. VO DAP2 SS 2009 30.6./2.7.2009 1 Anmeldung zur Klausur 31.07.2009 um 10:15

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 00

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Stefan Thater & Michaela Regneri Universität des Saarlandes FR 4.7 Allgemeine Linguistik (Computerlinguistik) Übersicht Topologische Sortierung (einfach) Kürzeste Wege finden

Mehr