Brownsche Bewegung (BB)
|
|
|
- Friederike Fiedler
- vor 7 Jahren
- Abrufe
Transkript
1 Brownsche Bewegung (BB) Betreuer: Dipl. Phys. R. Stübner Raum: phy D 115 Beginn: 11:10 Uhr 1 Ziel und Aufgabenstellung Infolge von naturgesetzlichen Schwankungserscheinungen besteht für jede physikalische Größe auch bei Ausschaltung jeglicher äußerer Störungen bei vorgegebener Messzeit eine untere Grenze für die kleinste noch nachweisbare Änderung. Am Beispiel der Brownschen Bewegung sollen Ursachen solcher Schwankungen erkannt und die resultierenden Bewegungen quantitativ untersucht werden. Ziel dieses Versuches ist die Bestimmung des Diffusionskoeffizienten der gegebenen Kombination Kügelchen Flüssigkeit und des Radius der verwendeten Kügelchen. Die Konstanz des von der Theorie gegebenen Diffusionskoeffizienten für verschiedene Zeitintervalle ist nachzuweisen. 2 Theorie Machen Sie sich mit der zugrundeliegenden Theorie vertraut! Einige Literaturhinweise finden Sie weiter unten, weitere sind in der SLUB sowie im Internet vorhanden. Versuchen Sie zu verstehen, was der Diffusionskoeffizient ist. 3 Experimente Beim Mikroskopieren sind unbedingt folgende Hinweise zu beachten! Um beim Scharfstellen Objektiv und Objekt nicht zu beschädigen oder zu zerstören, muß man das Objektiv stets vom Objekt wegbewegen! Wird das Objektiv auf das Objekt zubewegt, so muß deren gegenseitiger Abstand beobachtet werden! (Nur wenige Objektive sind durch einen Federmechanismus in gewissen Grenzen gegen solche Beschädigungen geschützt.) Wie bei allen optischen Geräten dürfen die vergüteten optischen Flächen nicht mit bloßen Fingern berührt werden. Raum: phy C 209, Telefon: (0351) , [email protected] 1
2 Linsensysteme (Objektive, Okulare) dürfen nicht auseinandergenommen werden. Arbeiten mit hoher Vergrößerung und Dunkelfeldbeleuchtung erfordern eine sehr gute Justierung des Beleuchtungsstrahlengangs. Die sorgfältige Befolgung der am Arbeitsplatz ausliegenden Anleitung zum Einrichten des Mikroskops unter Beachtung der Reihenfolge ist Voraussetzung für das Gelingen des Versuches. 3.1 Präparation Das Präparat besteht aus einer dünnen Schicht einer Suspension mikroskopischer Kügelchen (Latex), die zwischen einen Objektträger und ein Deckgläschen gebracht wird. 3.2 Vergrößerung V M Da die direkte Messung der Verschiebung X sehr schwierig ist, setzt man in der Regel vergrößernde optische Hilfsmittel ein. Deren Vergrößerung muss berücksichtigt werden, um aus der gemessenen vergrößerten Verschiebung die reale Verschiebung zu berechnen. Die Vergrößerung der Anordnung wird zweckmäßig bei Hellfeldbeleuchtung bestimmt. Dazu wird eine Strichplatte (Strichabstand 0,01 mm) in den Strahlengang gebracht und mit dem Objektiv mit der größtmöglichen Vergrößerung scharf eingestellt. Anschließend wird die Videokamera so über dem Okular justiert, dass auf dem Bildschirm ein deutliches Abbild der vergrößerten Strichplatte erscheint. Mit einer Millimeterfolie wird der Strichabstand gemessen und die Vergrößerung V M bestimmt. 3.3 Beobachtung der Brownschen Bewegung Das Licht einer Mikroskopierleuchte fällt in den Dunkelfeldkondensor des Mikroskops ein. Die Brownsche Bewegung der kleinen Kügelchen wird mit Hilfe eines hochvergrößernden Mikroskops mit Immersionsobjektiv beobachtet. Nachdem man die Videokamera wieder justiert hat und auf dem Fernsehschirm die Brownsche Bewegung deutlich zu erkennen ist, legt man eine Millimeterfolie auf. Von den sich bewegenden Teilchen wählt man ein gut sichtbares etwa aus der Mitte des Sichtfeldes aus und markiert dessen Position in gleichen Zeitabständen mit einem Stift. Alle derart ermittelten Punkte sind sofort fortlaufend zu numerieren. (Es sind mehrere solcher Meßreihen aufzunehmen!) In jedem Zeitintervall τ hat das Teilchenbild eine statistisch unterschiedliche Strecke zurückgelegt. Die Projektionen dieser Strecken auf die beiden Achsenrichtungen sollen x τ bzw. y τ genannt werden. Daraus bildet man die Mittelwerte x 2 τ und y 2 τ der Quadrate der Projektionen aller in den Zeitintervallen τ zurückgelegten Teilstrecken. Die Bewegung des Teilchens erscheint zunächst völlig regellos. Die Theorie der statistischen Schwankungen nach A. Einstein und M. von Smoluchowski zeigt jedoch, dass die Größe D = 1 ( ) 2 x 2τ V M (1) 2
3 der sogenannte Diffusionskoeffizient, bei konstanter Temperatur für die vorhandene Kombination Kügelchen Flüssigkeit eine Konstante ist. (Da die Lage der Achsen x und y völlig willkürlich ist es gibt in der x y-ebene keine Vorzugsrichtung, kann für die x 2 der Mittelwert aus allen x 2 τ und y 2 τ eingesetzt werden.) D hängt nicht von der willkürlichen Wahl von τ ab, der Ausdruck x 2 τ /τ muß bei Variationen von τ konstant bleiben (siehe Theorieteil). Diese Tatsache läßt sich zur Kontrolle der durchgeführten Messreihen benutzen. Dazu bildet man aus den Messpunkten die Größen x 2 2τ, x2 3τ,..., x2 nτ. Bei hinreichend genauer und umfangreicher Ausmessung der statistischen Bewegung der herausgegriffenen Teilchen (alle Kugeln besitzen den gleichen Radius) muß dann der Zusammenhang x 2 τ τ = x2 2τ 2τ = x2 3τ 3τ =... = x2 nτ nτ erfüllt sein. Bei den hier durchgeführten Untersuchungen ist es ausreichend, wenn man die Konstanz bis n = 3 überprüft. 3.4 Teilchenradius Bestimmen Sie mit Hilfe der Einstein-Smoluchowski-Gleichung (Gleichung 2) den Radius der Latex-Kügelchen. D = kt 6πηr = X2 2τ (2) 4 Fragen zum Experiment Erklären Sie die Brownsche Bewegung. Überlegen Sie sich, wieso die Brownsche Bewegung die Steigerung der Empfindlichkeit einer Waage bzw. eines Galvanometers beschränkt. Wie ist ein Mikroskop aufgebaut? Zeichnen Sie den Strahlengang. Wie ist die Vergrößerung eines Mikroskops definiert? 3
4 Abbildung 1: Spalt zwischen Glasplatten Wie wirkt ein Dunkelfeldkondensor? Überlegen Sie sich den Strahlenverlauf für den Fall n sin α > 1, wenn sich a) Luft oder b) Immersionsflüssigkeit (n I 1,5) zwischen zwei Glasplatten (n = 1,5) befindet (siehe Abb. 1). Ein Objekt wird zuerst ohne, dann mit Immersionsflüssigkeit zwischen Objekt und Objektiv betrachtet. Ändert sich die Vergrößerung? (Objektiv besitzt eine Planfläche an der Eintrittsseite). Weshalb verwendet man bei der Beobachtung der Brownschen Bewegung Dunkelfeldbeleuchtung? Kann man die Teilchen auch sehen, wenn sich 1. zwischen Kondensor und Präparat oder 2. zwischen Präparat und Objektiv keine Immersionsflüssigkeit befindet? Unter welchen Bedingungen lassen sich zwei Messreihen, die nicht von dem selben Teilchen aufgenommen wurden, miteinander kombinieren? Im Experiment werden mehrere Kügelchen verfolgt. Welchen Einfluß hat eine Streuung des Durchmessers dieser Kügelchen? Wie wirkt sich eine Strömung der Einbettungsflüssigkeit auf die Bestimmung der Boltzmannkonstanten aus? Wodurch kann eine solche Strömung zustande kommen? Warum stören im Präparat eingeschlossene Luftblasen? Warum soll die Wärmestrahlung vor Eintritt in das Präparat absorbiert werden? Wie könnte man experimentell feststellen, ob die verbleibende Wärmestrahlung noch stört? Was versteht man unter Suspension und Sedimentation? Welcher Zusammenhang besteht zwischen Molekülzahldichte und potentieller Energie der Teilchen in einem Sedimentationsgleichgewicht? Was besagt das Boltzmannsche Theorem? Literatur [1] G. Joos: Lehrbuch der Theoretischen Physik, Akademische Verlagsgesellschaft Geest & Portig KG, Leipzig (1959). [2] B. M. Jaworski, Detlaf, A. A.: Physik griffbereit, Akademie-Verlag, Berlin (1973). 4
5 [3] A. Einstein: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik 322, Seiten (1905) Weiterführend [4] E. Nelson: Dynamical Theories of Brownian Motion, nelson/books/bmotion.pdf 5
Protokoll zum Versuch Brownsche Bewegung (BB) im Fortgeschrittenenpraktikum
5. ezember 2008 Protokoll zum Versuch Brownsche Bewegung (BB) im Fortgeschrittenenpraktikum Klaus Steiniger, Alexander Wagner, Gruppe 850 [email protected], [email protected]
Optisches Institut der TU Berlin Technische Optik. Optisches Praktikum, Aufgabe 15: Mikroprojektion
Optisches Institut der TU Berlin Technische Optik Optisches Praktikum, Aufgabe 15: Mikroprojektion 1. Ziel der Aufgabe Kennenlernen der Grundlagen von Abbildungs- und Beleuchtungsstrahlengängen und deren
Praktikum MI Mikroskop
Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen
FK Ex 4 - Musterlösung Dienstag
FK Ex 4 - Musterlösung Dienstag Snellius Tarzan wird in einem ruhigen See am Punkt J von einem Krokodil angegriffen. Jane, die sich an Land mit gezücktem Buschmesser am Punkt T befindet, möchte ihm zu
Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009
Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite
Mikrobiologisches Praktikum. Mikroskopie I. Tag 1. Mikroskopieren im Hellfeld. C. Linkenheld
Mikrobiologisches Praktikum Mikroskopie I Tag 1 Mikroskopieren im Hellfeld C. Linkenheld C. Linkenheld H. Petry-Hansen Lichtmikroskopie: Hellfeld Hellfeld-Mikroskopie: Für kontrastreiche Präparate Objekte
Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009
Versuch P1-31,40,41 Geometrische Optik Auswertung Von Ingo Medebach und Jan Oertlin 9. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung
Versuch O02: Fernrohr, Mikroskop und Teleobjektiv
Versuch O02: Fernrohr, Mikroskop und Teleobjektiv 5. März 2014 I Lernziele Strahlengang beim Refraktor ( Linsenfernrohr ) Strahlengang beim Mikroskop Strahlengang beim Teleobjektiv sowie Einblick in dessen
Vorbereitung zur geometrischen Optik
Vorbereitung zur geometrischen Optik Armin Burgmeier (347488) Gruppe 5 9. November 2007 Brennweitenbestimmungen. Kontrollieren der Brennweite Die angegebene Brennweite einer Sammellinse lässt sich überprüfen,
Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum
Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1
Auswertung P2-10 Auflösungsvermögen
Auswertung P2-10 Auflösungsvermögen Michael Prim & Tobias Volkenandt 22 Mai 2006 Aufgabe 11 Bestimmung des Auflösungsvermögens des Auges In diesem Versuch sollten wir experimentell das Auflösungsvermögen
Mikroskopische Aufgaben
Mikroskopische Aufgaben 1. Die Benutzung des Lichtmikroskops Schauen Sie sich die Bauteile des Praktikumsmikroskops an und üben Sie ihre Benutzung! - Okular, Tubus - Großtrieb, Feintrieb - Objektivrevolver,
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen
Experimente Lehrerinformation
Lehrerinformation 1/9 Arbeitsauftrag Durchführung der gem. Anleitung Ziel Erleben der Theorie in der Praxis Material en Material gemäss Beschreibung der. Sozialform Plenum und je nach Experiment in GA
O9a Interferenzen gleicher Dicke
Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O9a Interferenzen gleicher Dicke Aufgaben 1. Bestimmen Sie den Krümmungsradius einer konvexen Linsenfläche durch Ausmessen Newtonscher
Optik. Was ist ein Modell? Strahlenoptik. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl
Modelle in der Physik Optik Strahlenoptik vereinfachte Darstellungen der Wirklichkeit dienen der besseren Veranschaulichung Wesentliches wird hervorgehoben Unwesentliches wird vernachlässigt Was ist ein
Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.
Versuche P1-31,40,41 Vorbereitung Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.2010 1 1 Vorwort Für den Versuch der geometrischen Optik gibt es eine Fülle
M0 BIO - Reaktionszeit
M0 BIO - Reaktionszeit 1 Ziel des Versuches In diesem Versuch haben Sie die Möglichkeit, sich mit Messunsicherheiten vertraut zu machen. Die Analyse von Messunsicherheiten erfolgt hierbei an zwei Beispielen.
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I Name: Bestimmung der Gravitationskonstanten mit der Gravitations-Drehwaage Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer:
Physikalisches Praktikum 3. Semester
Torsten Leddig 30.November 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Newtonsche Ringe - 1 1 Newtonsche Ringe: Aufgaben: Bestimmen Sie den Krümmungsradius R sowie den
Gitter. Schriftliche VORbereitung:
D06a In diesem Versuch untersuchen Sie die physikalischen Eigenschaften eines optischen s. Zu diesen za hlen insbesondere die konstante und das Auflo sungsvermo gen. Schriftliche VORbereitung: Wie entsteht
PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe
1.9.08 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: O 2 - Linsensysteme Literatur Eichler, Krohnfeld, Sahm: Das neue physikalische Grundpraktikum, Kap. Linsen, aus dem Netz der Universität http://dx.doi.org/10.1007/3-540-29968-8_33
Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.
Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)
Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011
Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 ([email protected]) ([email protected]) Betreuerin: Wir bestätigen hiermit, dass wir das
T8 Brownsche Molekularbewegung
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum T8 Brownsche Molekularbewegung 6/2017 Ziel des Versuches Die Brownsche Bewegung wurde 1826 von R. Brown entdeckt, konnte aber erst
Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1
Protokoll zum Physikpraktikum Versuch Nr.: 8 Mikroskop Gruppe Nr.: 1 Andreas Bott (Protokollant) Marco Schäfer Theoretische Grundlagen Das menschliche Auge: Durch ein Linsensystem wird im menschlichen
Vorbereitung: Bestimmung von e/m des Elektrons
Vorbereitung: Bestimmung von e/m des Elektrons Carsten Röttele 21. November 2011 Inhaltsverzeichnis 1 Allgemeine Linsen 2 2 Bestimmung der Brennweite 3 2.1 Kontrolle einer Brennweite...........................
Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.
Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um
Brownsche Bewegung (BB)
Brownsche Bewegung (BB) Betreuer: Dr. E. Lavrov e-mail: [email protected] Tel.: 463 33637 Raum: D115 Beginn: 8:00 Uhr 1 Einleitung Die Brownsche Bewegung (Brownsche Molekularbewegung)
Geometrische Optik Versuch P1-31,40,41
Auswertung Geometrische Optik Versuch P1-31,40,41 Iris Conradi, Melanie Hauck Gruppe Mo-02 20. November 2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Brennweiten Bestimmung 3 1.1 Brennweiten Bestimmung
Beugung am Spalt und Gitter
Demonstrationspraktikum für Lehramtskandidaten Versuch O1 Beugung am Spalt und Gitter Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: [email protected] Gruppe: 4 Durchgeführt
Lichtbeugung Ultraschall an Schallwellen
O 7 Lichtbeugung Ultraschall an challwellen. Aufgabenstellung - Bestimmen ie die challgeschwindigkeit in vorgegebenen Flüssigkeiten a) mit Hilfe des DEBYE-EAR-Effekts b) durch Zentralprojektion (Zusatzaufgabe)
Physikalisches Praktikum 3. Semester
Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache
PN 2 Einführung in die Experimentalphysik für Chemiker
PN 2 Einführung in die Experimentalphysik für Chemiker. Vorlesung 27.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität
Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes
PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.
Gekoppelte Schwingung
Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009
Praktikum Optische Technologien Anleitung zum Versuch Brennweitenbestimmung
Fachbereich Energietechnik Lehrgebiet für Lasertechnik und Optische Technologien Prof. Dr. F.-M. Rateike Praktikum Optische Technologien Anleitung zum Versuch Brennweitenbestimmung August 204 Brennweitenbestimmung
Elke Peter: Mikroskopieren lernen. In: lernchancen Nr.42 (2004), S (Auszug) MATERIAL 1
Elke Peter: Mikroskopieren lernen. In: lernchancen Nr.42 (2004), S. 22-29 (Auszug) MATERIAL 1 24 lernchancen 42/2004 MATERIAL 2 Das Mikroskop SicherLich hast du schon einmal durch eine Lupe-ein VergrößerungsgLas-geschaut.
G<B G=B G>B Gegenstandweite g g < 2f g=f g > 2f Bildweite b >g =g <g
Protokoll D01 2.2. Aufgaben 1. eweisen Sie die Abbildungsgleichung mit den Strahlensätzen. G b g b f 1 f b 1 g 1 f 2. ei welcher Gegenstandsweite einer Konvexlinse gilt: G ? Wie groß ist jeweils
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
O10 Linsensysteme. Physikalische Grundlagen. Grundbegriffe Hauptebenen Abbildungsgleichung Abbildungsmaßstab Bildkonstruktion
Physikalische Grundlagen Grundbegriffe Hauptebenen Abbildungsgleichung Abbildungsmaßstab Bildkonstruktion 1. Definition der Hauptebenen Bei dünnen Linsen kann die zweifache Brechung (Vorder- und Rückseite
Physikalisches Anfaengerpraktikum. Optische Abbildung
Physikalisches Anfaengerpraktikum Optische Abbildung Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Mittwoch, 02. März 2005 email: [email protected] [email protected] Versuchsaufbau
Protokoll: Grundpraktikum II O2 - Mikroskop
Protokoll: Grundpraktikum II O2 - Mikroskop Sebastian Pfitzner 12. März 2014 Durchführung: Anna Andrle (550727), Sebastian Pfitzner (553983) Arbeitsplatz: Platz 1 Betreuer: Gerd Schneider Versuchsdatum:
Physikalisches Praktikum
Physikalisches Praktikum Viskosität von Flüssigkeiten Laborbericht Korrigierte Version 9.Juni 2002 Andreas Hettler Inhalt Kapitel I Begriffserklärungen 5 Viskosität 5 Stokes sches
Praktikum Optische Technologien Anleitung zum Versuch Dicke Linsen
Fachbereich Energietechnik Lehrgebiet für Lasertechnik und Optische Technologien Prof. Dr. F.-M. Rateike Praktikum Optische Technologien Anleitung zum Versuch Dicke Linsen August 204 Praktikum Optische
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #22 01/12/2010 Vladimir Dyakonov [email protected] Sammellinse Hauptstrahlen durch einen Sammellinse: Achsenparallele Strahlen verlaufen nach der
Brechung des Lichts Arbeitsblatt
Brechung des Lichts Arbeitsblatt Bei den dargestellten Strahlenverläufen sind einige so nicht möglich. Zur Erklärung kannst du deine Kenntnisse über Brechung sowie über optisch dichtere bzw. optisch dünnere
O2 PhysikalischesGrundpraktikum
O2 PhysikalischesGrundpraktikum Abteilung Optik Mikroskop 1 Lernziele Bauteile und Funktionsweise eines Mikroskops, Linsenfunktion und Abbildungsgesetze, Bestimmung des Brechungsindex, Limitierungen in
Mikroskopie: Theoretische Grundlagen
Mikroskopie: Theoretische Grundlagen Ein Mikroskop ist ein Präzisionsinstrument, der richtige Umgang damit erfordert zuerst theoretisches Grundwissen, damit es richtig bedient werden kann. Für jeden Einstellknopf
Versuch 12 : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops
Testat Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops Mo Di Mi Do Fr Datum: Versuch: 12 Abgabe: Fachrichtung Sem. : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops In diesem Versuch
PROTOKOLL ZUM VERSUCH: NEWTONSCHE RINGE
PROTOKOLL ZUM VERSUCH: NEWTONSCHE RINGE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel: 1 1.2. Aufgabe: 1 1.3. Verwendete Geräte: 1 2. Versuchsdurchführung 1
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgabe ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.
Versuch C: Auflösungsvermögen Einleitung
Versuch C: svermögen Einleitung Das AV wird üblicherweise in Linienpaaren pro mm (Lp/mm) angegeben und ist diejenige Anzahl von Linienpaaren, bei der ein normalsichtiges Auge keinen Kontrastunterschied
3. Kapitel Der Compton Effekt
3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen
Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073)
Aufgaben 13 Optische Instrumente Mikroskop, Teleskop Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt
Versuch O08: Polarisation des Lichtes
Versuch O08: Polarisation des Lichtes 5. März 2014 I Lernziele Wellenoptik Longitudinal- und Transversalwellen Elektromagnetische Wellen II Physikalische Grundlagen Nachweismethode Elektromagnetische Wellen
Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2
Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am 01.12.2011 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll
120 Gekoppelte Pendel
120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei
Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis
Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgaben ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.
Spezielle Relativität
Spezielle Relativität Gleichzeitigkeit und Bezugssysteme Thomas Schwarz 31. Mai 2007 Inhalt 1 Einführung 2 Raum und Zeit Bezugssysteme 3 Relativitätstheorie Beginn der Entwicklung Relativitätsprinzip Lichtausbreitung
Wie hängen beim Kreis Durchmesser und Umfang zusammen?
Euro-Münzen und die Kreiszahl Ulla Schmidt, Freiherr-vom-Stein-Gymnasium Lünen Steckbrief der Aufgabe Sekundarstufe I (Kreisberechnungen) Dauer: 2 Unterrichtsstunden Notwendige Voraussetzungen: Schülerinnen
Physikalisches Anfängerpraktikum Teil 1. Protokollant: Versuch 10/1 Dünne Linsen und Linsen-System. Sebastian Helgert, Sven Köppel
Physikalisches Anfängerpraktikum Teil Protokoll Versuch 0/ Dünne Linsen und Linsen-System Sebastian Helgert Meterologie Bachelor 3. Semester Physik Bachelor 3. Semester Versuchsdurchführung: Do. 26..2009,
Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen.
1 Optik 1.1 Brechung des Lichtes Ein Lichtstrahl fällt aus der Luft ins Wasser. Man hat den Einfallswinkel α und den Brechungswinkel β gemessen und in folgende Tabelle eingetragen. α β 0 0 10 8 17 13 20
1.1 Auflösungsvermögen von Spektralapparaten
Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen
Das Mikroskopieren am Olympus CH20 Mikroskop
Das Mikroskopieren am Olympus CH20 Mikroskop - Weißer Punkt auf dem Stellrings des linken Okulars (Dioptrienausgleichsring) auf Ziffer 0 der Skala einstellen - Lichteinstellung Nr. 2-3 - Objekttisch mit
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov [email protected] Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter
M1 Maxwellsches Rad. 1. Grundlagen
M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten
Labor für Technische Akustik
Labor für Technische Akustik Kraus Abbildung 1: Experimenteller Aufbau zur optischen Ermittlung der Schallgeschwindigkeit. 1. Versuchsziel In einer mit einer Flüssigkeit gefüllten Küvette ist eine stehende
Bestimmung der Brechzahl von Glas wartikelnr.: P )
Lehrer-/Dozentenblatt Gedruckt: 30.03.207 6:3:28 P064400 Bestimmung der Brechzahl von Glas wartikelnr.: P064400) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema:
Geometrische Optik Versuchsauswertung
Versuche P-3,40,4 Geometrische Optik Versuchsauswertung Marco A. Harrendorf, Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 08..200 Inhaltsverzeichnis Versuch
PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis
PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 2 1.3. Amplituden- und Phasenobjekte 2 1.3.1. Amplitudenobjekte
Ann. Phys. (Leipzig) 14, Supplement, (2005)
Ann. Phys. (Leipzig) 14, Supplement, 517 571 (2005) 518 A. Einstein, Annalen der Physik, Band 49, 1916 Ann. Phys. (Leipzig) 14, Supplement (2005) / www.ann-phys.org 519 520 A. Einstein, Annalen der Physik,
Auflösungsvermögen bei dunkelen Objekten
Version: 27. Juli 2004 Auflösungsvermögen bei dunkelen Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie
Optische Systeme. Physikalisches Grundpraktikum III
Physikalisches Grundpraktikum III Universität Rostock :: Fachbereich Physik 11 Optische Systeme Name: Daniel Schick BetreuerIn: Dr. Enenkel Versuch ausgeführt: 01.12.04 Protokoll erstellt: 02.12.04 1 Ziel:
A. Versuchsanleitung: Seite
1Albert-Ludwigs-Universität Freiburg Fakultät für Physik Fortgeschrittenenpraktikum II FP II Dynamische Lichtstreuung Inhalt A. Versuchsanleitung: Seite 1. Kurzbeschreibung... 2 2. Vorkenntnisse... 2 3.
Lösung III Veröentlicht:
1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition
Versuch 3: Beugung am Spalt und Kreisblende
Versuch 3: Beugung am Spalt und Kreisblende Dieser Versuch soll der Einführung der allgemeinen Beugungstheorie dienen. Beugungsphänomene werden in verschiedenen Erscheinungsformen zunächst nur beobachtet.
Brownsche Bewegung Seminar - Weiche Materie
Brownsche Bewegung Seminar - Weiche Materie Simon Schnyder 11. Februar 2008 Übersicht Abbildung: 3 Realisationen des Weges eines Brownschen Teilchens mit gl. Startort Struktur des Vortrags Brownsches Teilchen
Die Brownsche Molekularbewegung
Die Brownsche Molekularbewegung Ziel des Versuches ist es, aus der Untersuchung der Brownschen Molekularbewegung die vogadro Konstante N zu bestimmen. Vorbereitung: Brownsche Molekularbewegung Diffusion,
Bildkonstruktion an Konkavlinsen (Artikelnr.: P )
Lehrer-/Dozentenblatt Bildkonstruktion an Konkavlinsen (Artikelnr.: P065600) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Optik Unterthema: Linsengesetze Experiment:
Bildkonstruktion an Konvexlinsen (Artikelnr.: P )
Lehrer-/Dozentenblatt Bildkonstruktion an Konvexlinsen (Artikelnr.: P065400) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Optik Unterthema: Linsengesetze Experiment:
Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 2. Das reale Gas. Das reale Gas
Prof. Dr. Norbert Hampp 1/9 2. Das reale Gas Das reale Gas Für die Beschreibung des realen Gases werden die Gasteilchen betrachtet als - massebehaftet - kugelförmig mit Durchmesser d - Wechselwirkungen
Versuch Nr. 22. Fresnelformeln
Grundpraktikum der Physik Versuch Nr. 22 Fresnelformeln Versuchsziel: Die Fresnelformeln beschreiben, in welcher Weise sich ein polarisierter oder unpolarisierter Lichtstrahl verhält, wenn er auf die Grenzfläche
Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres
Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Historisches und Grundlagen: Generell wird zwischen zwei unterschiedlichen Typen von Fernrohren unterschieden. Auf der einen Seite gibt es das
Linsen und Linsensysteme
1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden
Zoom-Stereo-Mikroskop, 10-40x
Zoom-Stereo-Mikroskop, 10-40x Seite 1 von 5 Ein Stereomikroskop ist ein spezielles Lichtmikroskop, bei dem für beide Augen ein getrennter Strahlengang bereitgestellt wird. Beide Augen sehen das Präparat
Teilchenbahnen im Magnetfeld
Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke 2011 1 Teilchenbahnen im Magnetfeld 1) Protonen im Kreisverkehr: Protonen bewegen sich von unten kommend in einem Magnetfeld, das in
Versuch Nr. 18 BEUGUNG
Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der
Schüler-Mikroskop Best.- Nr. MD03507
Schüler-Mikroskop Best.- Nr. MD03507 I. Produktbeschreibung 1. Monokular-Tubus, Durchmesser 130 mm 2. Objektrevolver (4x, 10x, 40x) 3. Befestigungsklemme 4. Objekttisch 90 x 90 mm mit zirkulärer Blende
22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)
22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche
Optische Instrumente: Das Auge
Optische Instrumente: Das Auge Das menschliche Auge ist ein höchst komplexes Gebilde, welches wohl auf elementaren optischen Prin- S P H N zipien beruht, aber durch die Ausführung besticht. S: M Sklera
2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell
2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell Mit den drei Zustandsgrößen Druck, Temperatur und Volumen konnte der Zustand von Gasen makroskopisch beschrieben werden. So kann zum Beispiel
Laserstrahlung und vergrößernde optische Instrumente
Laserstrahlung und vergrößernde optische Instrumente Vor der Gefährlichkeit von Laserstrahlung bei Betrachtung durch vergrößernde optische Instrumenten wird vielfach gewarnt. Aber ist die Exposition bei
Wärmeleitung und thermoelektrische Effekte Versuchsauswertung
Versuch P2-32 Wärmeleitung und thermoelektrische Effekte Versuchsauswertung Marco A., Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 30.05.2011 1 Inhaltsverzeichnis 1 Bestimmung
Institut für Fachdidaktik der Naturwissenschaften Abteilung Physik und Physikdidaktik
MECHANIK I SCHWERPUNKT & GLEICHGEWICHT, IMPULS- & ENERGIEERHALTUNG MITTWOCH 25.10.17 UND 01.11.17 GRUPPE A (DEMO) Schwerpunkt (stabiles, labiles und indifferentes Gleichgewicht), Hebelgesetze, Drehmoment,
