Seminar zum Praktikum Quantitative Analysen

Größe: px
Ab Seite anzeigen:

Download "Seminar zum Praktikum Quantitative Analysen"

Transkript

1 Seminar zum Praktikum Quantitative Analysen Dr. Irena Stein WS 2008/09

2 Maßanalyse Zur Erinnerung: Die zu bestimmende Substanz (A) wird mit einer Reagenzlösung (sog. Maßlösung, B) bekannter onzentration vollständig umgesetzt. Am Äquivalenzpunkt gilt: c A V A = c B V B Verbrauch und onzentration der Maßlösung Ergebnis

3 In der Analyse verwendete Größen m / g Masse der Substanz in Gramm M / g/mol Masse von 1 Mol der Substanz in Gramm pro Mol n / mol Stoffmenge der Substanz in Mol V / L Volumen der Lösung in Liter c / mol/l Stoffmengenkonzentration in Mol pro Liter Beziehungen zwischen den verwendeten Größen: n = m M und c = n V

4 Äquivalent oder Äquivalentteilchen Zur Vereinfachung von Berechnungen in der Maßanalyse werden alle Größen auf ein Äquivalent der Substanz bezogen X X* X * = z X Äquivalent (Val) der Substanz X z = wirksame Wertigkeit oder auch Äquivalentzahl genannt Die früher sehr gebräuchliche Stoffmengeneinheit des Äquivalents (1 Val) ist offiziell abgeschafft!

5 SäureBaseÄquivalent (Neutralisationsäquivalent) z ist gleich der Anzahl der H + oder OH Ionen, die das Teilchen bei vollständiger Umsetzung abgibt, z.b. HCl, H 2 SO 4, H 3 PO 4, Ba(OH) 2 Maßlösung = Säure Maßlösung = Base Acidimetrie Alkalimetrie IonenÄquivalent z ist gleich der Ionenladung der an der Reaktion beteiligten Ionen, z. B. beim Ionenaustausch (Ionentauscher) oder bei Fällungstitrationen bzw. bei der elektrolytischen Abscheidung Fällung von Silbersalzen Argentometrie in der Argentometrie ist z = 1

6 RedoxÄquivalent z ist gleich dem Betrag der Differenz der Oxidationszahlen vor und nach der Reaktion desjenigen Atoms, das dabei seine Oxidationszahl ändert, z.b. MnO4, BrO3 Maßlösung = Oxidationsmittel Oxidimetrie Maßlösung = Reduktionsmittel Reduktometrie chelatometrische Titrationen z = 1 per Definition Maßlösung = Titriplex Maßlösung = Silbernitrat Chelatometrie für die Bestimmung von Cyanid nach Liebig

7 In der Maßanalyse verwendete Größen c * = c z = z Molarität = Äquivalentkonzentration = Normalität (N) in Val pro Liter n * = n z M * = M z V = Volumen der Lösung in Liter (L) Gew. % = Gramm gelöste Substanz in 100 g Lösung ρ = Dichte der Lösung in Gramm pro Milliliter (g/ml) (!)

8 Beispiele zu Normalität und Äquivalent Welchen Wert hat die Normalität einer 0,15M (mol/l) H 3 PO 4 Lösung? c* = z c 3 0,15 (mol/l) = 0,45 (Val/L) oder 0,45 N Wieviel molar ist eine MnO 4 Lösung der Normalität 1,5 im sauren bzw. basischen Medium? MnO H e MnO OH 4 MnO e Mn H 2 O 0,5 mol/l 0,3 mol/l

9 Wieviel ml einer 1M H 3 PO 4 Lösung werden benötigt, um 30 ml einer 1M Ca(OH) 2 Lösung vollständig zu neutralisieren? Hinweis: c* = z c n* = c* V = z c V n*(ca(oh) 2 ) = 2 1 mol/l 0,03 L = 0,06 mol c*(h 3 PO 4 ) = 1 mol/l 3 = 3 mol/l 60 mval 3 N V(H 3 PO 4 ) = n*(ca(oh) 2 ) / c*(h 3 PO 4 ) 0,06 mol / 3 mol/l = 0,02 L = 20 ml

10 Herstellung von Maßlösungen 1) Die Maßlösung hat exakt die gewünschte onzentration, wenn die eingewogene Substanz eine Urtitersubstanz ist Die Maßlösung ist nach dem direkten Verfahren angesetzt worden 2) Die Maßlösung hat ungefähr die gewünschte onzentration (z. B. bei NaOH), wenn die eingewogene Substanz keine Urtitersubstanz ist c tatsächlich = f c gewünscht Bestimmung des (orrektur)faktors (oder Titers f ) durch eine Titration; d.h. die Maßlösung wird eingestellt. Die Maßlösung ist nach dem indirekten Verfahren angesetzt worden.

11 Urtitersubstanz analysenrein oder auch stöchiometrisch rein genau abwiegbar (nicht sauerstoffempfindlich oder hygroskopisch, bindet kein CO 2 aus der Luft) gut wasserlöslich eine aus ihr zubereitete Maßlösung muss unbegrenzt haltbar sein, d.h. sie darf ihre onzentration über die Zeit nicht ändern bzw. mit den im Lösemittel enthaltenen Verunreinigungen reagieren z. B.: Na 2 CO 3, NaHCO 3, Na 2 C 2 O 4, NaCl, BrO 3, IO 3, 2 Cr 2 O 7, eine Urtitersubstanzen sind: Laugen (schwankender CarbonatGehalt) Säuren (unbekannter Wassergehalt) MnO 4 und Na 2 S 2 O 3 (zersetzen sich in ihren Lösungen)

12 Ausführung von Titrationen Direkte Titration von A mit der Maßlösung M am Äquivalenzpunkt gilt: n(a) = n(m) somit kann die Menge der gesuchten Substanz bestimmt werden: m(a) = c(m) V(M) M(A)

13 Bestimmung von A durch Rücktitration Zugabe der 1. Maßlösung (1) im Überschuss und Rücktitration des Überschusses mit einer zweiten Maßlösung (2) m(a) = [c(1) V(1) c(2) V(2)] M(A) Stoffmenge der ersten Maßlösung Stoffmenge der zweiten Maßlösung Faktorbestimmung für eine ca. 0,1 N Säure: f = m(urtiter) M(Urtiter) c(säure) V(Säure) = m(urtiter) M(Urtiter) 0,1 V(Säure)

14 Beispiel Es sollen 2 L einer 0,1 N BrO 3 Maßlösung angesetzt werden. Nach welchem Verfahren wird die Maßlösung angesetzt und wieviel BrO 3 muss eingewogen werden? M(BrO 3 ) = 167 g/mol Nach dem direkten Verfahren [BrO 3 ] + 6 H + + 6e Br + 3 H 2 O z = 6 c*(bro 3 ) gewünscht = 0,1 mol/l m*(bro 3 ) = 0,1 mol/l 2 L 167 g/mol 6 V gewünscht = 2 L = 5,5667 g Es müssen 5,5667g BrO 3 eingewogen und nach dem Lösen auf 2 L verdünnt werden.

15 Beispiel Es soll 1 L einer 0,1 N MnO 4 Maßlösung angesetzt werden. Nach welchem Verfahren wird die Maßlösung angesetzt und wieviel MnO 4 muss eingewogen werden? M(MnO 4 ) = 158,033 g/mol M(Na 2 C 2 O 4 ) = 133,998 g/mol Nach dem indirekten Verfahren a) Wieviel MnO 4 muss eingewogen werden? [MnO 4 ] + 8 H + + 5e m*(mno 4 ) = 0,1 mol/l 1 L Mn H 2 O 158,033 g/mol 5 z = 5 = 3,16066 g Es müssen ca. 3,2 g MnO 4 eingewogen und nach dem Lösen auf 1 L verdünnt werden.

16 b) Wie ist die tatsächliche onzentration der dargestellten Maßlösung? Bei einer Einwaage von 0,1055 g Na 2 C 2 O 4 werden 15,52 ml der dargestellten MnO 4 Lösung verbraucht. den Titer f der ca. 0,1 N Maßlösung bestimmen aus der Masse m des Urtiters kann die tatsächliche onzentration der Maßlösung berechnet werden C 2 O CO e z = 2 0,1055 g ½ 134 g/mol = f 0,1 mol/l 0,01552 L f = 1,015

17 Voraussetzungen für die Durchführbarkeit einer Titration momentane Reaktion H + + OH H 2 O k s stöchiometrisch eindeutige Reaktion vollständige Reaktion bei der Zugabe einer äquivalenten Menge an Maßlösung sprunghafte Änderung der onzentration am Äquivalenzpunkt Möglichkeit, den onzentrationssprung zu erkennen, eventuell mit Hilfe eines Indikators Maßlösung mit ausreichender Genauigkeit herstellbar und haltbar

18 Titrationskurven Änderung des phwertes während der Titration: Graphische Auftragung des phwertes in Abhängigkeit von der Menge der zugegebenen Maßlösung urve mit phsprung am Äquivalenzpunkt Starke Säure oder Base: Vor dem Äquivalenzpunkt: Am Äquivalenzpunkt: Nach dem Äquivalenzpunkt: onzentration der Säure bzw. Base phwert ph = 7 neutral reagierendes Salz onzentration der überschüssigen Maßlösung phwert phsprung sehr deutlich

19

20 Schwache Säure oder Base: Vor dem Äquivalenzpunkt: Am Äquivalenzpunkt: Nach dem Äquivalenzpunkt: onzentration der Säure bzw. Base und des bereits gebildeten Salzes phwert ph 7, hydrolysierendes Salz onzentration der überschüssigen Maßlösung phwert phsprung um so undeutlicher je schwächer die titrierte Säure oder Base ist phsprung nimmt allgemein zu mit der Stärke der Säure bzw. Base der onzentration der Analysenlösung

21

22 Grenzen für die Titrierbarkeit einer schwachen Säure oder Base Es muss gelten: S B 10 8 wenn nicht, ist die Eigendissoziation des Wasses größer!!!! Titration von Gemischen mehrerer Säuren bzw. Basen: In der Titrationskurve erhält man prinzipiell für jede vorhandene Säure bzw. Base einen phsprung. Die einzelnen phsprünge sind getrennt beobachtbar, wenn sich die Dissoziationskonstanten der einzelnen Säuren bzw. Basen um mindestens vier Zehnerpotenzen unterscheiden. Es muss gelten: S S 4 1 B1 10 bzw Mehrbasige Säuren und mehrsäurige Basen verhalten sich wie Gemische von Säuren bzw. Basen. B 2 4

23 Eigendissoziation oder Ionenprodukt des Wassers Auch in chemisch reinem H 2 O lässt sich eine geringe Leitfähigkeit messen. Der Grund hierfür ist die Eigendissoziation (Autoprotolyse) des Wasser H 2 O + H 2 O H 3 O + + OH Das Massenwirkungsgesetz (MWG) für diese Reaktion lautet: + c(h3o ) = c(h O) 2 c(oh ) Das Gleichgewicht der Reaktion liegt auf der linken Seite, somit hat die Gleichgewichtskonstante einen sehr kleinen Wert. In einer wässrigen Lösung ist H 2 O im Überschuss vorhanden ([H 2 O] = 1000 g/l / 18 g/mol = 55,55 mol/l). Die H 2 Oonzentration bleibt deshalb konstant und der Nenner kann in die onstante mit einbezogen werden: c(h2o) = W = c(h3o ) c(oh ) = = 2 mol L mol L mol 2 L 2

24 ennt man die onzentration der H 3 O + Ionen, so lässt sich über das Ionenprodukt des Wassers die onzentration der OH Ionen berechnen und umgekehrt. Wenn z. B. in einer Messung eine H 3 O + onzentration von 10 5 mol/l ermittelt wurde, so berechnet sich folgende OH onzentration: c(oh ) = W c(h O 3 + ) = mol 2 L mol L 2 = 10 9 mol L Die onzentration der Hydroxonium bzw. der Hydroxidionen ist das Maß, ob und wie stark eine Lösung sauer, basisch oder neutral ist. Saure Lösung: c(h 3 O + ) > c(oh ) Neutrale Lösung: c(h 3 O + ) = c(oh ) Basische Lösung: c(h 3 O + ) < c(oh )

25 ph Wert Um nicht immer mit Potenzzahlen rechnen zu müssen, wurden logarithmische Größen eingeführt. Der phwert wird als negativer dekadischer Logarithmus der H 3 O + Ionenkonzentration definiert: ph = log c(h3o + ) poh = log c(oh ) W = ph + poh = 14 Auf dieser Definition basiert die phskala. Sie reicht von ph = 0 (c(h 3 O + ) = 1 mol/l = 10 0 mol/l) bis ph = 14 (c(h 3 O + ) = mol/l). Sinkt der phwert in einer Lösung um eine Einheit (um 1,0), bedeutet das aufgrund der logarithmischen Skala, dass sich die HydroxoniumIonenkonzentration um den Faktor 10 erhöht hat und umgekehrt.

26 c(h 3 O + ) (in mol/l) ph poh c(oh ) (in mol/l) 10 0 = = 1

27 ph Wert schwacher Säuren und Basen HA + BOH H 2 O + BA (schwache Säure) (starke Base) BA verhält sich wie ein Salz. Da B + die korrespondierende Säure einer starken Base ist, ist sie selbst eine sehr schwache Säure und spielt im Gleichgewicht für den phwert keine Rolle. In Wasser gilt immer: Da der phwert nur noch von A bestimmt wird: A reagiert mit H + aus dem H 2 O, also aus 1). Im GG ist H + aus 1) gleich H + aus 2) 1) H 2 O H + + OH 2) H + + A HA 3) H 2 O + A HA + OH Es entstehen also immer äquimolare Mengen HA und OH!! c(oh ) = c(ha)

28 Das Massenwirkungsgesetz (MWG) für Reaktionen 1) und 2) liefert: + c(h ) c(oh ) zu1) = mit c(h2o) c(h O) 2 mol 55 L + + W W = c(h ) c(oh ) c(h ) = c(oh ) + cs(h ) cs(a ) + S c(ha) zu 2) S = cs(h ) = c(ha) c (A ) S Da im Gleichgewicht c(h + ) aus Reaktion 1) gleich c S (H + ) aus 2) ist, folgt: + + W S c(ha) cs(h ) = c(h ) = = c(oh ) c(a )

29 c(ha) c (A S c(oh ) ) = W S = Hydrolyse = B ( B, weil nur A mit H 2 O reagiert) Mit c(ha) = c(oh ) folgt: 2 c(oh ) c S (A ) = W S = Base Entsprechend gilt für c(h + + ): = c(h ) c(oh ) W c(h c(h 2 W 2 W c(oh ) = c(oh ) = + + c(h ) 2 W W W S + 2 = = c(h ) + 2 ) c(a ) S c(a ) ) 2

30 c(h + ) = W c(a ) S = W c(a ) S 1 2 log + 1 W log c(h ) = log 2 c(a ) ph = S 1 (p W + ps + log c(a 2 )) (1) Analog erhält man für phwert einer Titration einer schwachen Base mit einer starken Säure: ph = 1 2 (p W + p S log c(b + ))

31 Zusammenfassung von Säure Base Titrationen Analyse Maßlösung Äquivalenzpunkt starke Säuren starke Basen z. B. H 2 SO 4 z. B. NaOH starke Base z. B. NaOH schwache Säure z. B. CH 3 COOH schwache Base z. B. NH 4 OH Salz einer schwachen Säure z. B. NaCH 3 COO Salz einer schwachen Base z. B. NH 4 OH ph = 7 starke Säuren z. B. H 2 SO 4 ph = 7 starke Base 1 ph = (p W + ps + log c(a )) z. B. NaOH 2 starke Säuren 1 + ph = (p W + ps log c(b )) z. B. H 2 SO starke Säuren c(h ) = S c(säure) z. B. H 2 SO 4 ph = ½ (p S log c(säure)) starke Base c(oh ) = B c(base) z. B. NaOH ph = 14 ½ (p B + log c(base))

32 Säure Base Indikatoren schwache organische Säuren (HIn) oder Basen (InOH) besitzen in der undissoziierten Form eine andere Farbe als in der dissoziierten geben den phwert (Wasserstoffstärke) einer Säure oder Base mit Hilfe eines Vergleich mit einer Farbskala an Farbänderung der Indikatoren durch eine Änderung des πelektronensystems, die parallel zur Dissoziation erfolgt

33 HIn H + + In InOH In + + OH Farbe A Farbe B S B (HIn) = 10 (InOH) 4 bis 10 9 S (HIn) = + c(h ) c(in ) c(hin) + c(hin) c(h ) = S(HIn) c(in ) c(hin) ph = ps(hin) log c(in ) Der phwert bestimmt das onzentrationsverhältnis der unterschiedlich gefärbten Substanzen, also die Farbe der Lösung!!!

34 phwert für den Farbumschlag 1) Zweifarbige Indikatoren: Farbumschlag erfolgt theoretisch bei c(hin) = c(in ) log c(hin) = 1 phumschlag = p c(in ) S (HIn) praktisch im Bereich von c(hin) = 10 c(in ) bis c(in ) = 10 c(hin) phumschlag = ps(hin) ± 1

35 2) Einfarbige Indikatoren: Farbumschlag erfolgt, wenn die gefärbte Form (z.b. In ) die Mindestkonzentration c*(in ) überschritten hat. Dann ist: c(hin) = c(hin) zugesetzt c * (In ) c(hin) zugesetzt c(hin) phumschlag = ps(hin) log c * (In ) zugesetzt Der phwert für den Farbumschlag ist bei einfarbigen Indikatoren von der Menge des zugesetzten Indikators (c(in ) min muss erreicht sein) abhängig, bei zweifarbigen Indikatoren jedoch unabhängig davon!

36 Phenolphthalein (3,3Bis(4hydroxyphenyl)phthalid) Umschlagsbereich von ph 8,2 10 Farbwechsel von Farblos nach Rosa Methylrot (Natriumsalz der 4'Dimethylaminoazobenzol2carbonsäure) Umschlagsbereich von ph 4,4 6,2 Farbwechsel von Rot nach Gelb Methylorange (Natriumsalz der 4'(Dimethylamino)azobenzol4sulfonsäure) Umschlagsbereich ph 3,0 4,4 Farbwechsel von Rot nach Gelborange

37 ph Meter der phwert wird auf elektrochemischem Wege bestimmt und nicht über Säure Base Indikatoren Das elektrische Potential bestimmter elektrochemischen Elektroden (Halbzellen) hängt vom phwert der umgebenden Lösung ab (z.b. Wasserstoffelektrode). Schaltet man eine solche Elektrode mit einer anderen, nicht phabhängigen (z.b. Ag / AgCl) zusammen, so gibt die Differenz der elektrischen Potentiale eine phabhängige Spannung. Diese wird mit einem Voltmeter gemessen.

Säuren und Basen. Der ph-wert Zur Feststellung, ob eine Lösung sauer oder basisch ist genügt es, die Konzentration der H 3 O H 3 O + + OH -

Säuren und Basen. Der ph-wert Zur Feststellung, ob eine Lösung sauer oder basisch ist genügt es, die Konzentration der H 3 O H 3 O + + OH - Der ph-wert Zur Feststellung, ob eine Lösung sauer oder basisch ist genügt es, die Konzentration der H 3 O + (aq)-ionen anzugeben. Aus der Gleichung: H 2 O + H 2 O H 3 O + + OH - c(h 3 O + ) c(oh - ) K

Mehr

Elektrolyte. (aus: Goldenberg, SOL)

Elektrolyte. (aus: Goldenberg, SOL) Elektrolyte Elektrolyte leiten in wässriger Lösung Strom. Zu den Elektrolyten zählen Säuren, Basen und Salze, denn diese alle liegen in wässriger Lösung zumindest teilweise in Ionenform vor. Das Ostwaldsche

Mehr

C Säure-Base-Reaktionen

C Säure-Base-Reaktionen -V.C1- C Säure-Base-Reaktionen 1 Autoprotolyse des Wassers und ph-wert 1.1 Stoffmengenkonzentration Die Stoffmengenkonzentration eines gelösten Stoffes ist der Quotient aus der Stoffmenge und dem Volumen

Mehr

Zusammenfassung vom

Zusammenfassung vom Zusammenfassung vom 20.10. 09 Löslichkeitsprodukt = quantitative Aussage über die Löslichkeit einer schwerlöslichen Verbindung bei gegebener Temperatur A m B n m A n+ + n B m- K L = (c A n+ ) m (c B m-

Mehr

Seminar zum Praktikum Quantitative Analysen

Seminar zum Praktikum Quantitative Analysen Seminar zum Praktikum Quantitative Analysen Dr. Irena Stein WS 2008/09 Zusammenfassung der letzten Stunde Instrumentelle Methoden Farbe, Farbstoffklassen Photometrie und das LambertBeer Gesetz I0 1 A =

Mehr

Säuren- und Basendefinition nach Arrhenius

Säuren- und Basendefinition nach Arrhenius Säuren und Basen - Definitionen - Ionenprodukt des Wassers - ph-wert - Säure- und Basenstärke / ph-wert Bestimmungen - Neutralisationen - Puffersysteme Säuren- und Basendefinition nach Arrhenius Säure:

Mehr

Säuren- und Basendefinition nach Arrhenius

Säuren- und Basendefinition nach Arrhenius Säuren und Basen - Definitionen - Ionenprodukt des Wassers - ph-wert - Säure- und Basenstärke / ph-wert Bestimmungen - Neutralisationen - Puffersysteme Säuren- und Basendefinition nach Arrhenius Säure:

Mehr

Quantitativer, selektiver, eindeutiger, stöchiometrisch einheitlicher und rascher Reaktionsverlauf.

Quantitativer, selektiver, eindeutiger, stöchiometrisch einheitlicher und rascher Reaktionsverlauf. Grundlage der Maßanalyse Quantitativer, selektiver, eindeutiger, stöchiometrisch einheitlicher und rascher Reaktionsverlauf. Was ist eine Maßlösung? Eine Lösung mit genau bekannter Konzentration mithilfe

Mehr

CHEMIE KAPITEL 4 SÄURE-BASE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2013 / 2014

CHEMIE KAPITEL 4 SÄURE-BASE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2013 / 2014 CHEMIE KAPITEL 4 SÄURE-BASE Timm Wilke Georg-August-Universität Göttingen Wintersemester 2013 / 2014 Folie 2 Aufgaben In einen Liter Wasser werden 2 g NH - 2 (starke Base) eingeleitet welchen ph-wert hat

Mehr

Säure-Base Titrationen. (Seminar zu den Übungen zur quantitativen Bestimmung von Arznei-, Hilfs- und Schadstoffen)

Säure-Base Titrationen. (Seminar zu den Übungen zur quantitativen Bestimmung von Arznei-, Hilfs- und Schadstoffen) Säure-Base Titrationen (Seminar zu den Übungen zur quantitativen Bestimmung von Arznei-, Hilfs- und Schadstoffen) 1. Gehaltsbestimmung von Salzsäure HCl ist eine starke Säure (fast zu 100% dissoziiert)

Mehr

Maßanalyse. Bestimmung einer Schwefelsäure mit einer NaOH Maßlösung: bzw. n(naoh * 1 = n(h 2 SO 4 ) * 2 V [ml] * * t * 1 = n(h 2 SO 4 ) * 2

Maßanalyse. Bestimmung einer Schwefelsäure mit einer NaOH Maßlösung: bzw. n(naoh * 1 = n(h 2 SO 4 ) * 2 V [ml] * * t * 1 = n(h 2 SO 4 ) * 2 Maßanalyse Bei der Maßanalyse (Volumetrie) wird zu der zu analysierenden Lösung unbekannten Gehaltes soviel einer Lösung bekannter Konzentration der Maßlösung zugegeben, bis ein Indikationssystem den Endpunkt

Mehr

1 Säuren und Basen. 1.1 Denitionen. 1.2 Protolyse und Autoprotolyse des Wassers

1 Säuren und Basen. 1.1 Denitionen. 1.2 Protolyse und Autoprotolyse des Wassers Praktikum Allgemeine und Analytische Chemie I WS 008/09 Seminar zum Anorganisch-chemischen Teil Säuren und Basen Praktikumsleiter: Professor Dr. U. Simon 1 Säuren und Basen 1.1 Denitionen Arrhenius denierte

Mehr

7. Chemische Reaktionen

7. Chemische Reaktionen 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen 7.2 Säure Base Gleichgewichte Grundlagen Lösung: homogene Phase aus Lösungsmittel und gelösten Stoff Lösungsmittel liegt im Überschuss vor

Mehr

Einteilung der Maßanalyse

Einteilung der Maßanalyse Einteilung der Maßanalyse Neutralisation (Säure-Base-Titration Acidimetrie Alkalimetrie Fällungstitration Redoxtitration Iodometrie Dichromatometrie Manganometrie etc. Komplexometrie Säure/Basen Theorien

Mehr

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden.

B Chemisch Wissenwertes. Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden. -I B.1- B C H E M I S C H W ISSENWERTES 1 Säuren, Laugen und Salze 1.1 Definitionen von Arrhénius Arrhénius gab 1887 Definitionen für Säuren und Laugen an, die seither öfter erneuert wurden. Eine Säure

Mehr

Dissoziation, ph-wert und Puffer

Dissoziation, ph-wert und Puffer Dissoziation, ph-wert und Puffer Die Stoffmengenkonzentration (molare Konzentration) c einer Substanz wird in diesem Text in eckigen Klammern dargestellt, z. B. [CH 3 COOH] anstelle von c CH3COOH oder

Mehr

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted Der SäureS ure-base Begriff Chem. Grundlagen Das Protonen-Donator-Akzeptor-Konzept Wasserstoff, Proton und Säure-Basen Basen-Definition nach Brønsted Wasserstoff (H 2 ) Proton H + Anion (-) H + = Säure

Mehr

Themengebiet: 1 HA + H 2 O A - + H 3 O + H 3 O + : Oxonium- oder Hydroxoniumion. Themengebiet: 2 B + H 2 O BH + + OH - OH - : Hydroxidion

Themengebiet: 1 HA + H 2 O A - + H 3 O + H 3 O + : Oxonium- oder Hydroxoniumion. Themengebiet: 2 B + H 2 O BH + + OH - OH - : Hydroxidion 1 1 Säuren sind Protonendonatoren, d.h. Stoffe, die an einen Reaktionspartner ein oder mehrere Protonen abgeben können; Säuredefinition nach Brönsted Im Falle von Wasser: HA + H 2 O A - + H 3 O + H 3 O

Mehr

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz Seminar zum anorganisch-chemischen Praktikum I Quantitative Analyse Prof. Dr. M. Scheer Patrick Schwarz Termine und Organisatorisches Immer Donnerstag, 11:00 12:00 in HS 44 Am Semesteranfang zusätzlich

Mehr

Praktikum Quantitative Analysen

Praktikum Quantitative Analysen Praktikum Quantitative Analysen Wintersemester 007/08 Ausführung von Titrationen Seminar Quantitative Analysen Direkte Titration von X A mit der Maßlösung X M m(xa ) = c (äq X M ) V(L) M (äq X A ) Bestimmung

Mehr

3. Säure-Base-Beziehungen

3. Säure-Base-Beziehungen 3.1 Das Ionenprodukt des Wassers In reinen Wasser sind nicht nur Wassermoleküle vorhanden. Ein kleiner Teil liegt als Ionenform H 3 O + und OH - vor. Bei 25 C sind in einem Liter Wasser 10-7 mol H 3 O

Mehr

Vorkurs Chemie (NF) Säuren und Basen, Puffer Ulrich Keßler

Vorkurs Chemie (NF) Säuren und Basen, Puffer Ulrich Keßler Vorkurs Chemie (NF) Säuren und Basen, Puffer Ulrich Keßler Alltagserfahrung: sauer Zitrone Essig junger Wein Welcher Stoff bewirkt saure Reaktion? http://www.simplyscience.ch/portal Data/1/Resources/Images_bis_10_

Mehr

(Atommassen: Ca = 40, O = 16, H = 1;

(Atommassen: Ca = 40, O = 16, H = 1; 1.) Welche Molarität hat eine 14,8%ige Ca(OH) 2 - Lösung? (Atommassen: Ca = 40, O = 16, H = 1; M: mol/l)! 1! 2! 2,5! 3! 4 M 2.) Wieviel (Gewichts)%ig ist eine 2-molare Salpetersäure der Dichte 1,100 g/cm

Mehr

Ein Puffer ist eine Mischung aus einer schwachen Säure/Base und ihrer Korrespondierenden Base/Säure.

Ein Puffer ist eine Mischung aus einer schwachen Säure/Base und ihrer Korrespondierenden Base/Säure. 2.8 Chemische Stoßdämpfer Puffersysteme V: ph- Messung eines Gemisches aus HAc - /AC - nach Säure- bzw Basen Zugabe; n(naac) = n(hac) > Acetat-Puffer. H2O Acetat- Puffer H2O Acetat- Puffer Die ersten beiden

Mehr

Säuren und Basen. Dr. Torsten Beweries AC I - Allgemeine Chemie LAC-CH01 WS 2016/17.

Säuren und Basen. Dr. Torsten Beweries AC I - Allgemeine Chemie LAC-CH01 WS 2016/17. Säuren und Basen Dr. Torsten Beweries AC I - Allgemeine Chemie LAC-CH01 WS 2016/17 torsten.beweries@catalysis.de http://www.catalysis.de/forschung/koordinationschemische-katalyse/koordinationschemische-wasserspaltung/

Mehr

Säure-Base-Titrationen

Säure-Base-Titrationen Martin Raiber Chemie Protokoll Nr.3 19.2.2006 Säure-Base-Titrationen 1. Titration von Salzsäure mit Natronlauge Chemikalien: Salzsäure (100ml; c(hcl)=0,1 mol/l) Natronlauge (c(naoh)=1 mol/l) Bromthymolblau

Mehr

Wasser. Flora und Fauna. Wichtigste chemische Verbindung in Lebewesen. Menschen benötigt mindestens 1kg H 2 O pro Tag

Wasser. Flora und Fauna. Wichtigste chemische Verbindung in Lebewesen. Menschen benötigt mindestens 1kg H 2 O pro Tag Wasser Flora und Fauna Wichtigste chemische Verbindung in Lebewesen Menschen benötigt mindestens 1kg H 2 O pro Tag Löslichkeit von Sauerstoff in Wasser in Abhängigkeit von der Temperatur mg/l Zustandsdiagramm

Mehr

VI Säuren und Basen (Mortimer: Kap. 17 u 18 Atkins: Kap. 14, 15)

VI Säuren und Basen (Mortimer: Kap. 17 u 18 Atkins: Kap. 14, 15) VI Säuren und Basen (Mortimer: Kap. 17 u 18 Atkins: Kap. 14, 15) 19. Säure-Base-Theorien Stichwörter: Arrhenius- u. Brönstedt-Theorie von Säuren und Basen, konjugiertes Säure- Base-Paar, Amphoterie, nivellierender

Mehr

3.2. Aufgaben zu Säure-Base-Gleichgewichten

3.2. Aufgaben zu Säure-Base-Gleichgewichten .. Aufgaben zu Säure-Base-Gleichgewichten Aufgabe : Herstellung saurer und basischer Lösungen Gib die Reaktionsgleichungen für die Herstellung der folgenden Lösungen durch Reaktion der entsprechenden Oxide

Mehr

Volumetrische Bestimmungsverfahren

Volumetrische Bestimmungsverfahren 9 Die Titrimetrie oder Maßanalyse wurde 1830 von J.L. GAY-LUSSAC in die analytische Chemie eingeführt. Hierunter versteht man ein Verfahren zur quantitativen Bestimmung eines gelösten Stoffes durch Zugabe

Mehr

Praktikum Quantitative Analysen

Praktikum Quantitative Analysen Praktikum Quantitative Analysen Wintersemester 2010/11 Systematischer Gang einer gravimetrischen Bestimmung (letzte Stunde) 1 Entnahme und Vorbereitung der Probe Durchschnittsprobe 2 Einwaage der Probe

Mehr

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 2,

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 2, Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr., 6.04.11 1. Sie legen 100 ml einer 0, mol/l Natronlauge vor. Als Titrant verwenden Sie eine 0,8 mol/l Salzsäure. Berechnen

Mehr

Das chemische Gleichgewicht, Massenwirkungsgesetz, Löslichkeit von Salzen in Flüssigkeiten, Löslichkeitsprodukt, Chemische Gleichgewichte, Säuren und

Das chemische Gleichgewicht, Massenwirkungsgesetz, Löslichkeit von Salzen in Flüssigkeiten, Löslichkeitsprodukt, Chemische Gleichgewichte, Säuren und Wiederholung der letzten Vorlesungsstunde: Das chemische Gleichgewicht, Massenwirkungsgesetz, Löslichkeit von Salzen in Flüssigkeiten, Löslichkeitsprodukt, Thema heute: Chemische Gleichgewichte, Säuren

Mehr

Säure/Base - Reaktionen. 6) Titration starker und schwacher Säuren/Basen

Säure/Base - Reaktionen. 6) Titration starker und schwacher Säuren/Basen Säure/Base - Reaktionen 1) Elektrolytische Dissoziation 2) Definitionen Säuren Basen 3) Autoprotolyse 4) ph- und poh-wert 5) Stärke von Säure/Basen 6) Titration starker und schwacher Säuren/Basen 7) Puffersysteme

Mehr

[H3O+] [A-] [M+] - [Y-] >> [HA] [OH-] [Y - ] = Menge an M + (Base) welche zur Neutralisation der starkesäure gebraucht wurde!

[H3O+] [A-] [M+] - [Y-] >> [HA] [OH-] [Y - ] = Menge an M + (Base) welche zur Neutralisation der starkesäure gebraucht wurde! Analytik 4.29 Einige wichtige Punkte der Titrationskurve: A: Beginn der Titration. Da starke Säure zur Essigsäure gegeben wurde ist f < 1. B,E: f = 0; Die starke Säure wurde titriert. Essigsäure in einer

Mehr

7. Tag: Säuren und Basen

7. Tag: Säuren und Basen 7. Tag: Säuren und Basen 1 7. Tag: Säuren und Basen 1. Definitionen für Säuren und Basen In früheren Zeiten wußte man nicht genau, was eine Säure und was eine Base ist. Damals wurde eine Säure als ein

Mehr

Praktikum Quantitative Analysen

Praktikum Quantitative Analysen Praktikum Quantitative Analysen Wintersemester 2009/10 Arbeitsmethoden der Quantitativen Analyse A: klassische Methoden vorwiegend chemische Arbeitsmethoden Bestimmung der Bestandteile durch eine chemische

Mehr

ph-wert Berechnung für starke Säuren / Basen

ph-wert Berechnung für starke Säuren / Basen ph-wert Berechnung für starke Säuren / Basen 0.1 mol/l HCl: HCl + H 2 O H 3 O + + Cl starke Säure, vollständige Dissoziation [H 3 O + ] = 10 1 mol/l; ph = 1 0.1 mol/l NaOH: NaOH + H 2 O Na + aq + OH starke

Mehr

Sommersemester 2016 Seminar Stöchiometrie

Sommersemester 2016 Seminar Stöchiometrie Sommersemester 2016 Seminar Stöchiometrie Themenüberblick Kurze Wiederholung der wichtigsten Formeln Neue Themen zur Abschlussklausur: 1. Elektrolytische Dissoziation 2. ph-wert Berechnung 3. Puffer Wiederholung

Mehr

Das Hydroxidion ist eine starke Base; der pk B -Wert beträgt. Berechnung der Ausgangskonzentration c 0 :

Das Hydroxidion ist eine starke Base; der pk B -Wert beträgt. Berechnung der Ausgangskonzentration c 0 : Aufgabe 1a) Das Hydroxidion ist eine starke Base; der pk B -Wert beträgt -1,74. Berechnung der Ausgangskonzentration c 0 : n = m/m = 2,5 g / 40 g/mol = 0,0625 mol c 0 = n/v = 0,0625 mol/l Für starke Basen

Mehr

Seminar zum Praktikum Quantitative Analyse

Seminar zum Praktikum Quantitative Analyse Seminar zum Praktikum Quantitative Analyse Dr. Dietmar Stephan Tel.: 089-289-13167 Raum: CH 57105 E-Mail: dietmar.stephan@bauchemie-tum.de Stärke von Säuren und Basen Stärke von Säuren und Basen Dissoziationskonstanten

Mehr

Bundesrealgymnasium Imst. Chemie Klasse 7. Säuren und Basen

Bundesrealgymnasium Imst. Chemie Klasse 7. Säuren und Basen Bundesrealgymnasium Imst Chemie 2010-11 Klasse 7 Säuren und Basen Dieses Skriptum dient der Unterstützung des Unterrichtes - es kann den Unterricht aber nicht ersetzen, da im Unterricht der Lehrstoff detaillierter

Mehr

Seminar zum Quantitativen Anorganischen Praktikum WS 2012/13

Seminar zum Quantitativen Anorganischen Praktikum WS 2012/13 Seminar zum Quantitativen Anorganischen Praktikum WS 2012/13 Teil des Moduls MN-C-AlC Dipl.-Chem. Corinna Hegemann Dipl.-Chem. Eva Rüttgers Inhalt Freitag, 11.01.2013, 8-10 Uhr, HS II Allgemeine Einführung

Mehr

Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2012/13 vom

Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2012/13 vom Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2012/13 vom 21.09.2012 A1 A2 A3 A4 A5 Σ Note 14 10 9 8 9 50 NAME/VORNAME:... Lösungsstichpunkte Pseudonym für Ergebnisveröffentlichung:... Schreiben

Mehr

Wintersemester 2017 Seminar Stöchiometrie

Wintersemester 2017 Seminar Stöchiometrie Wintersemester 2017 Seminar Stöchiometrie Themenüberblick Kurze Wiederholung der wichtigsten Formeln Neue Themen zur Abschlussklausur: 1. Elektrolytische Dissoziation 2. ph-wert Berechnung 3. Puffer Wiederholung

Mehr

Wiederholungen. Puffergleichung (Henderson-Hasselbalch) Ionenprodukt des Wassers. ph-wert-berechnungen. Titrationskurvenberechnung

Wiederholungen. Puffergleichung (Henderson-Hasselbalch) Ionenprodukt des Wassers. ph-wert-berechnungen. Titrationskurvenberechnung Vorlesung 22: Wiederholungen Puffergleichung (Henderson-Hasselbalch) Ionenprodukt des Wassers ph-wert-berechnungen Titrationskurvenberechnung Säuren und Basen Hydroxonium + Chlorid Ammonium + Hydroxid

Mehr

AC2 ÜB12 Säuren und Basen LÖSUNGEN Seite 1 von 7

AC2 ÜB12 Säuren und Basen LÖSUNGEN Seite 1 von 7 AC2 ÜB12 Säuren und Basen LÖSUNGEN Seite 1 von 7 1. a) CH3COOH, C0=0.125 mol/l Schwache Säure pks = 4.75 (aus Tabelle) => ph = 0.5*(4.75-Log(0.125))= 2.83 b) H24, C0=0.1 mol/l Erste Protolysestufe starke

Mehr

Wintersemester 2016 Seminar Stöchiometrie

Wintersemester 2016 Seminar Stöchiometrie Wintersemester 2016 Seminar Stöchiometrie Tutorien Raum Termin Hörsaal OSZ H5 Mo. 19.12., 18-20 Uhr Hörsaal OSZ H5 Fr. 13.1.,16-18 Uhr Hörsaal OSZ H5 Mo. 30.01., 18-20 Uhr Hörsaal OSZ H5 Mo. 06.02., 18-20

Mehr

Lösung 7. Allgemeine Chemie I Herbstsemester Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf.

Lösung 7. Allgemeine Chemie I Herbstsemester Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf. Lösung 7 Allgemeine Chemie I Herbstsemester 2012 1. Aufgabe Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf. Chlorwasserstoff ist eine starke Säure (pk a = 7),

Mehr

SS 2010. Thomas Schrader. der Universität Duisburg-Essen. (Teil 7: Säuren und Basen, Elektrolyte)

SS 2010. Thomas Schrader. der Universität Duisburg-Essen. (Teil 7: Säuren und Basen, Elektrolyte) Chemie für Biologen SS 2010 Thomas Schrader Institut t für Organische Chemie der Universität Duisburg-Essen (Teil 7: Säuren und Basen, Elektrolyte) Definition Säure/Base Konjugierte Säure/Base-Paare Konjugierte

Mehr

Säure-Base Titrationen

Säure-Base Titrationen Chemie Praktikum Säure-Base Titrationen WS 2006/2007 Verfasser: Lorenz Germann, Lukas Bischoff Versuchsteilnehmer: Lorenz Germann, Lukas Bischoff Datum: 29.11.2006 Assistent: Lera Tomasic E-mail: lukas-bischoff@student.ethz.ch

Mehr

Aufgabe 1: Geben Sie die korrespondierenden Basen zu folgenden Verbindungen an: a) H 3 PO 4 b) H 2 PO 4

Aufgabe 1: Geben Sie die korrespondierenden Basen zu folgenden Verbindungen an: a) H 3 PO 4 b) H 2 PO 4 Übungsaufgaben zum Thema Säuren, Basen und Puffer Säure/Base Definition nach Brǿnsted: Säuren sind Stoffe, die Protonen abgeben können (Protonendonatoren). Basen sind Stoffe, die Protonen aufnehmen können

Mehr

3. Seminar zum Quantitativen Anorganischen Praktikum WS 2013/14

3. Seminar zum Quantitativen Anorganischen Praktikum WS 2013/14 3. Seminar zum Quantitativen Anorganischen Praktikum WS 2013/14 Teil des Moduls MN-C-AlC S. Sahler, M. Wolberg 20.01.14 Titrimetrie (Volumetrie) Prinzip: Messung des Volumenverbrauchs einer Reagenslösung

Mehr

Lösungen zu den Übungsaufgaben zur Thematik Säure/Base (Zwei allgemeine Hinweise: aus Zeitgründen habe ich auf das Kursivsetzen bestimmter Zeichen

Lösungen zu den Übungsaufgaben zur Thematik Säure/Base (Zwei allgemeine Hinweise: aus Zeitgründen habe ich auf das Kursivsetzen bestimmter Zeichen Lösungen zu den Übungsaufgaben zur Thematik Säure/Base (Zwei allgemeine Hinweise: aus Zeitgründen habe ich auf das Kursivsetzen bestimmter Zeichen verzichtet; Reaktionsgleichungen sollten den üblichen

Mehr

Stoffe oder Teilchen, die Protonen abgeben kånnen, werden als SÄuren bezeichnet (Protonendonatoren).

Stoffe oder Teilchen, die Protonen abgeben kånnen, werden als SÄuren bezeichnet (Protonendonatoren). 5 10 15 20 25 30 35 40 45 O C 50 Chemie Technische BerufsmaturitÄt BMS AGS Basel Kapitel 6 SÄuren und Basen Baars, Kap. 12.1; 12.2; 13 Versuch 1 Ein Becherglas mit Thermometer enthält violette FarbstofflÅsung

Mehr

E3: Potentiometrische Titration

E3: Potentiometrische Titration Theoretische Grundlagen Als potentiometrische Titration bezeichnet man ein Analyseverfahren, bei dem durch Messung der Gleichgewichtsspannung einer galvanischen Kette auf die Menge des zu titrierenden

Mehr

Konzentrationsbestimmung mit Lösungen

Konzentrationsbestimmung mit Lösungen Kapitel 5 Konzentrationsbestimmung mit Lösungen Abb. 5.1: Die Farben von Universalindikatoren sind nützlich für Konzentrationsbestimmungen. Sie lernen auf den folgenden Seiten eine sehr nützliche Methode

Mehr

DEFINITIONEN REINES WASSER

DEFINITIONEN REINES WASSER SÄUREN UND BASEN 1) DEFINITIONEN REINES WASSER enthält gleich viel H + Ionen und OH Ionen aus der Reaktion H 2 O H + OH Die GGWKonstante dieser Reaktion ist K W = [H ]*[OH ] = 10 14 In die GGWKonstante

Mehr

Modul: Allgemeine Chemie

Modul: Allgemeine Chemie Modul: Allgemeine Chemie 8. Wichtige Reaktionstypen Säure Base Reaktionen Konzepte, Gleichgewichtskonstanten Säure-Base Titrationen; Indikatoren Pufferlösungen Redoxreaktionen Oxidationszahlen, Redoxgleichungen

Mehr

VL Limnochemie. Am Vorlesung im Zeuner-Bau ZEU/160/H

VL Limnochemie. Am Vorlesung im Zeuner-Bau ZEU/160/H VL Limnochemie Organisatorisches Raumänderung 19.11.10 Am 19.11.2010 Vorlesung im Zeuner-Bau ZEU/160/H 1 Praktikum Limnochemie Heute, 22.10. nach der VL letztmalig Sicherheitseinweisung Listen in der 43

Mehr

Lösungen zu den ph-berechnungen II

Lösungen zu den ph-berechnungen II Lösungen zu den ph-berechnungen II 1.) a.) Ges.: 2500 L HCl; ph 1.4 Geg.: 6000 L KOH; c(koh) = 0.017 mol/l Skizze: V tot = V HCl + V KOH = 8500 L Das Gesamtvolumen wird später während der Lösung benötigt

Mehr

ph-wert Berechnung für starke Säuren / Basen starke Säure, vollständige Dissoziation [H 3 O + ] = 10 1 mol/l; ph = 1

ph-wert Berechnung für starke Säuren / Basen starke Säure, vollständige Dissoziation [H 3 O + ] = 10 1 mol/l; ph = 1 ph-wert Berechnung für starke Säuren / Basen 0.1 mol/l HCl: HCl + H 2 O H 3 O + + Cl starke Säure, vollständige Dissoziation [H 3 O + ] = 10 1 mol/l; ph = 1 0.1 mol/l NaOH: NaOH + H 2 O Na + aq + OH starke

Mehr

Säure - Base - Theorien

Säure - Base - Theorien Säure Base Theorien S. Arrhenius (1887) Säuren sind Stoffe, die in wässriger Lösung H + (aq) Ionen bilden, während Basen OH (aq) Ionen bilden. H 2 SO 4, HNO 3, HCl, NaOH, Ba(OH) 2, aber: NH 3, CH 3, OCH

Mehr

+ - H3O(aq) + OH(aq) H2O(l) + H2O(l) 1/19. Autoprotolyse des Wassers

+ - H3O(aq) + OH(aq) H2O(l) + H2O(l) 1/19. Autoprotolyse des Wassers Autoprotolyse des Wassers 1/19 Autoprotolyse des Wassers 2/19 c(h3o + ) = 10-7 mol/l c(h2o) = 55,4 mol/l c(oh - ) = 10-7 mol/l Autoprotolyse des Wassers 3/19 K = [H 3 O+ ][OH ] [H 2 O][H 2 O] Autoprotolyse

Mehr

Säuren und Basen nach Brönsted

Säuren und Basen nach Brönsted Säuren und Basen nach Brönsted Es gibt versch. Definitionen von Säuren und Basen. Nach Brönsted ist eine Säure (HA) ein Protonendonator und eine Base (B) ein Protonenakzeptor, d.h. eine Säure reagiert

Mehr

Wasserchemie und Wasseranalytik SS 2015

Wasserchemie und Wasseranalytik SS 2015 Wasserchemie und Wasseranalytik SS 015 Übung zum Vorlesungsblock II Wasserchemie Dr.-Ing. Katrin Bauerfeld 5,5 6,5 7,5 8,5 9,5 10,5 11,5 1,5 13,5 Anteile [%] Übungsaufgaben zu Block II Wasserchemie 1.

Mehr

Einführungskurs 3. Seminar

Einführungskurs 3. Seminar ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG Einführungskurs 3. Seminar Prof. Dr. Christoph Janiak Literatur: Riedel, Anorganische Chemie Inhalt Reaktionstypen Gleichgewicht bei Säure/Base-Reaktionen ph-berechnungen

Mehr

Chemie für Studierende der Biologie I

Chemie für Studierende der Biologie I SäureBaseGleichgewichte Es gibt verschiedene Definitionen für SäureBaseReaktionen, an dieser Stelle ist die Definition nach BrønstedLowry, die Übertragung eines H + Ions ( Proton ), gemeint. Nach BrønstedLowry

Mehr

4. Wässrige Lösungen schwacher Säuren und Basen

4. Wässrige Lösungen schwacher Säuren und Basen 4. Wässrige Lösungen schwacher Säuren und Basen Ziel dieses Kapitels ist es, das Vorgehenskonzept zur Berechnung von ph-werten weiter zu entwickeln und ph-werte von wässrigen Lösungen einprotoniger, schwacher

Mehr

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen Chemie für Biologen Vorlesung im WS 2004/05 V2, Mi 10-12, S04 T01 A02 Paul Rademacher Institut für rganische Chemie der Universität Duisburg-Essen (Teil 5: 10.11.2004) MILESS: Chemie für Biologen 78 Beispiele

Mehr

Säuren und Basen. Definition nach Brönsted

Säuren und Basen. Definition nach Brönsted Säuren und Basen Folie129 Leitung von Strom in wässrigen Lösungen Elektrolyse Beim Lösen in H 2 Dissoziation von kovalenten oder ionischen Bindungen Beispiele: Chlorwasserstoff H H Cl (g) 2 H + (aq) +

Mehr

Vorkurs Allgemeine Chemie für Ingenieure und Biologen 22. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie

Vorkurs Allgemeine Chemie für Ingenieure und Biologen 22. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie Vorkurs Allgemeine Chemie für Ingenieure und Biologen 22. Oktober 2015 Dr. Helmut Sitzmann, Apl.-Professor für Anorganische Chemie DAS CHEMISCHE GLEICHGEWICHT Schwefel schmilzt bei 119 C. Bei dieser Temperatur

Mehr

CHEMIE KAPITEL 4 SÄURE- BASE. Timm Wilke. Georg- August- Universität Göttingen. Wintersemester 2013 / 2014

CHEMIE KAPITEL 4 SÄURE- BASE. Timm Wilke. Georg- August- Universität Göttingen. Wintersemester 2013 / 2014 CHEMIE KAPITEL 4 SÄURE- BASE Timm Wilke Georg- August- Universität Göttingen Wintersemester 2013 / 2014 Folie 2 Historisches Im 17. Jahrhundert wurden von Robert Boyle Gemeinsamkeiten verschiedener Verbindungen

Mehr

Grundwissen Chemie 9. Jahrgangsstufe G8

Grundwissen Chemie 9. Jahrgangsstufe G8 Grundwissen Chemie 9. Jahrgangsstufe G8 Ionennachweise Man nutzt die Schwerlöslichkeit vieler Salze (z. B. AgCl) zum Nachweis und zur quantitativen Bestimmung der Ionen. Nachweis molekular gebauter Stoffe

Mehr

Physikalische Chemie Praktikum. Elektrolyte: Dissoziationskonstante von Essigsäure λ von NaCl ist zu ermitteln

Physikalische Chemie Praktikum. Elektrolyte: Dissoziationskonstante von Essigsäure λ von NaCl ist zu ermitteln Hochschule Emden/Leer Physikalische Chemie Praktikum Vers. Nr. 16 April 2017 Elektrolyte: Dissoziationskonstante von Essigsäure λ von NaCl ist zu ermitteln In diesem Versuch soll die Dissoziationskonstante

Mehr

Säure/Base - Reaktionen. 6) Titration starker und schwacher Säuren/Basen. Elektrolytische Dissoziation. AB(aq)

Säure/Base - Reaktionen. 6) Titration starker und schwacher Säuren/Basen. Elektrolytische Dissoziation. AB(aq) Säure/Base - Reaktionen 1) Elektrolytische Dissoziation ) Definitionen Säuren Basen ) Autoprotolyse 4) p- und po-wert 5) Stärke von Säure/Basen 6) Titration starker und schwacher Säuren/Basen 7) Puffersysteme

Mehr

Komplex: Säure-Base-Titration. 1 Aufgabenstellung. 2 Theoretische Grundlagen. Chemisches Praktikum: Energietechnik

Komplex: Säure-Base-Titration. 1 Aufgabenstellung. 2 Theoretische Grundlagen. Chemisches Praktikum: Energietechnik Hochschule für Technik, Wirtschaft und Kultur Leipzig (FH) Fb Informatik, Mathematik und Naturwissenschaften - Chemie - Chemisches Praktikum: Energietechnik Komplex: Säure-Base-Titration 1 Aufgabenstellung

Mehr

Analytische Chemie. B. Sc. Chemieingenieurwesen. 11. Februar Prof. Dr. T. Jüstel, Stephanie Möller M.Sc. Matrikelnummer: Geburtsdatum:

Analytische Chemie. B. Sc. Chemieingenieurwesen. 11. Februar Prof. Dr. T. Jüstel, Stephanie Möller M.Sc. Matrikelnummer: Geburtsdatum: Analytische Chemie B. Sc. Chemieingenieurwesen 11. Februar 2014 Prof. Dr. T. Jüstel, Stephanie Möller M.Sc. Name: Matrikelnummer: Geburtsdatum: Denken Sie an eine korrekte Angabe des Lösungsweges und der

Mehr

Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2011/12 vom

Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2011/12 vom Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2011/12 vom 23.09.2011 A1 A2 A3 A4 A5 Σ Note 8 8 10 10 14 50 NAME/VORNAME:... Matrikelnummer: STICHPUNKTE ZU DEN LÖSUNGEN Pseudonym für Ergebnisveröffentlichung:...

Mehr

Analytische Chemie. B. Sc. Chemieingenieurwesen. 07. Februar Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum:

Analytische Chemie. B. Sc. Chemieingenieurwesen. 07. Februar Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum: Analytische Chemie B. Sc. Chemieingenieurwesen 07. Februar 2008 Prof. Dr. T. Jüstel Name: Matrikelnummer: Geburtsdatum: Denken Sie an eine korrekte Angabe des Lösungsweges und der Endergebnisse. Versehen

Mehr

Kurstag 2 Maßanalyse 2. Teil

Kurstag 2 Maßanalyse 2. Teil Kurstag 2 Maßanalyse 2. Teil Titration von starken und schwachen Säuren Stichworte zur Vorbereitung: Massenwirkungsgesetz, Prinzip von Le Chatelier, Broenstedt, korrespondierendes Säure-Base-Paar, ph-wert-berechnung

Mehr

Mehrprotonige Säuren (z.b. H 2 SO 4 )

Mehrprotonige Säuren (z.b. H 2 SO 4 ) Mehrprotonige Säuren (z.b. H SO 4 ) Mehrprotonige Säuren protolysieren stufenweise. Jede Stufe hat eine eigene Säurekonstante, deren Werte von Stufe zu Stufe kleiner werden (die Protolyse wird immer unvollständiger).

Mehr

Übung zu den Vorlesungen Organische und Anorganische Chemie

Übung zu den Vorlesungen Organische und Anorganische Chemie Übung zu den Vorlesungen Organische und Anorganische Chemie für Biologen und Humanbiologen 07.11.08 - Lösungen - 1. Vervollständigen Sie die Reaktionsgleichungen und benennen Sie alle Verbindungen und

Mehr

LF - Leitfähigkeit / Überführung

LF - Leitfähigkeit / Überführung Verfasser: Matthias Ernst, Tobias Schabel Gruppe: A 11 Betreuer: G. Heusel Datum: 18.11.2005 Aufgabenstellung LF - Leitfähigkeit / Überführung 1) Es sind die Leitfähigkeiten von zwei unbekanten Elektrolyten

Mehr

Titration von Aminosäuren, Lösung. 1. Aufnahme der Titrationskurve

Titration von Aminosäuren, Lösung. 1. Aufnahme der Titrationskurve 1. Aufnahme der Titrationskurve Beobachtung: Zu Beginn hat die Lösung einen ph-wert von etwa 2. Der ph-wert steigt nur langsam. Nach Zugabe von etwa 9 ml Natronlauge steigt der ph-wert sprunghaft an. Anschießend

Mehr

Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2015/16 vom

Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2015/16 vom Klausur zum Vorkurs des Chemischen Grundpraktikums WS 2015/16 vom 18.09.2015 A1 A2 A3 A4 A5 Note 15 5 9 11 10 NAME:... VORNAME:...LÖSUNGSSTICHPUNKTE... Pseudonym für Ergebnisveröffentlichung:... Schreiben

Mehr

Formelsammlung Chemie

Formelsammlung Chemie 1 Formelsammlung Chemie Joachim Jakob, Kronberg-Gymnasium Aschaffenburg chemie-lernprogramme.de/daten/programme/js/formelsammlung/ Inhaltsverzeichnis 1 Avogadro Konstante N A 2 2 Molare Masse M 2 3 Molares

Mehr

Analytische Chemie. B. Sc. Chemieingenieurwesen. 02. Februar Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum:

Analytische Chemie. B. Sc. Chemieingenieurwesen. 02. Februar Prof. Dr. T. Jüstel. Name: Matrikelnummer: Geburtsdatum: Analytische Chemie B. Sc. Chemieingenieurwesen 02. Februar 2011 Prof. Dr. T. Jüstel Name: Matrikelnummer: Geburtsdatum: Denken Sie an eine korrekte Angabe des Lösungsweges und der Endergebnisse. Versehen

Mehr

Teil 2. Puffersysteme. Puffersysteme. Puffersysteme. MTA-Schule

Teil 2. Puffersysteme. Puffersysteme. Puffersysteme. MTA-Schule Puffersysteme Säure-Basen-Haushalt Teil 2 MTA-Schule Lösungen, die die Fähigkeit besitzen, ihren -Wert trotz Zugabe von H + oder OH Ionen weitgehend konstant zu halten, nennt man Pufferlösungen. Puffersysteme:

Mehr

3. Säure-Base-Titration

3. Säure-Base-Titration äure-base 15 3. äure-base-titration Einleitung chon früh wurde im Rahmen des Umweltschutzes die Problematik des auren Regens und die damit verbundene Übersäuerung der Böden und Gewässer erkannt. eitdem

Mehr

b) Berechnen Sie den Verbrauch an Maßlösung und den Massenanteil der Essigsäure.

b) Berechnen Sie den Verbrauch an Maßlösung und den Massenanteil der Essigsäure. Prüfungsvorbereitung Säure-Base-Titrationen und ph-werte 1. ph-werte und Puffer 1.1 Eine Natronlauge hat die Dichte ρ = 1,7 g/m und einen Massenanteil von w(naoh) = %. Berechnen Sie den ph-wert der ösung.

Mehr

Crashkurs Säure-Base

Crashkurs Säure-Base Crashkurs Säure-Base Was sind Säuren und Basen? Welche Eigenschaften haben sie?` Wie reagieren sie mit Wasser? Wie reagieren sie miteinander? Wie sind die Unterschiede in der Stärke definiert? Was ist

Mehr

Chemisches Praktikum für Biologen

Chemisches Praktikum für Biologen Chemisches Praktikum für Biologen Klausur am 13.02.2015 Name: Vorname: Matrikelnummer: Aufgabe Maximale Punktzahl Erreichte Punktzahl 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 Gesamt 24 Bestanden: Die Klausur besteht

Mehr

Titrationskurve einer starken Säure (HCl) mit einer starken Base (NaOH)

Titrationskurve einer starken Säure (HCl) mit einer starken Base (NaOH) Titrationskurve einer starken Säure (HCl) mit einer starken Base (NaOH) Material 250 mlbecherglas 100 ml Messzylinder 50 mlbürette, Magnetrührer, Magnetfisch, Stativmaterial phmeter Chemikalien Natronlauge

Mehr

Studienbegleitende Prüfung Anorganisch-Chemisches Grundpraktikum WS 2004/

Studienbegleitende Prüfung Anorganisch-Chemisches Grundpraktikum WS 2004/ Klausur zum Anorganisch-Chemischen Grundpraktikum vom 08.04.05 Seite 1 von 10 Punkte: von 84 Studienbegleitende Prüfung Anorganisch-Chemisches Grundpraktikum WS 2004/2005 08.04.2005 Matrikelnummer: Name:

Mehr

Säuren und Basen. Säure-Base- Definition n. Arrhenius

Säuren und Basen. Säure-Base- Definition n. Arrhenius Säuren und Basen Säure-Base- Definition n. Arrhenius Säuren sind Verbindungen, die in Wasser in Protonen (H +, positiv geladene Wasserstoffionen) und in negativ geladene Säurerestionen dissoziieren (zerfallen).

Mehr

Das chemische Gleichgewicht

Das chemische Gleichgewicht Das chemische Gleichgewicht Reversible Reaktionen können in beiden Richtungen verlaufen z.b. N 2 + 3H 2 2NH 3 2NH 3 N 2 + 3H 2 In einer Gleichung: N 2 + 3H 2 2NH 3 p p Zeit N 2 H 2 NH 3 H 2 N 2 NH 3 idő

Mehr

Bestimmung der Stoffmenge eines gelösten Stoffes mit Hilfe einer Lösung bekannter Konzentration (Titer, Maßlösung).

Bestimmung der Stoffmenge eines gelösten Stoffes mit Hilfe einer Lösung bekannter Konzentration (Titer, Maßlösung). Zusammenfassung: Titration, Maßanalyse, Volumetrie: Bestimmung der Stoffmenge eines gelösten Stoffes mit Hilfe einer Lösung bekannter Konzentration (Titer, Maßlösung). Bei der Titration lässt man so lange

Mehr

Übungsaufgaben zum Kapitel Protolysegleichgewichte mit Hilfe des Lernprogramms Titrierer 1/9

Übungsaufgaben zum Kapitel Protolysegleichgewichte mit Hilfe des Lernprogramms Titrierer 1/9 Lernprogramms Titrierer 1/9 Vorher sollten die Übungsaufgaben zu den drei Lernprogrammen Protonierer, Acidbaser und Wert vollständig bearbeitet und möglichst auch verstanden worden sein! 1 Neutralisation

Mehr