Mathematik Formeln 1. und 2. Semester von Gerald Meier

Größe: px
Ab Seite anzeigen:

Download "Mathematik Formeln 1. und 2. Semester von Gerald Meier"

Transkript

1 Mthemti Fomel. ud. Semeste vo Geld Meie Gudlge. Ailduge.. Sujetive Ailduge f( X) y Y X: y f.. Ijetive Ailduge Y, X ud f f Jedes Bild y f( X) ht geu ei Uild X..3 Bijetive Ailduge Die Aildug ist sujetiv ud ijetiv... Polyome ( + ) + ( + ) ( + ) ( + ) ( + ) ( ) ( ) + 3 ( ) ( ) ( ) Komplee Zhle. Betg Z: + j Z c+ jd c + + d. EULER sche Fomel e e jϕ jϕ cosϕ+ jsi ϕ cosϕ jsi ϕ jϕ jϕ jϕ Re jϕ jϕ jϕ j( e e ) Im( e ) cosϕ e + e e siϕ - Seite -

2 - Geld Meie: Mthemti Fomel -.3 Agumet ct fü >, Z: + j g( Z) ct + Π fü <, > ct < Π fü <, Z g g( Z) g( N) N.4 Wuzel ϕ + Π j jϕ Z z e Z z e,,..., 3 Vetoe 3. Podute vo Vetoe 3.. Ds Stdd Slpodut y, : y y, : y cosα 3.. Ds Vetopodut y y y 3 3 y y y y : y3 y y y: y siα 3..3 Ds Tesopodut y y L y y y L y T y: y ( y y L y) M M M O M y y L y m m m m 3. SCHMIDT sches Othoomlisieugsvefhe w : u w : u u, v v,,3,..., j j j wj vj:, w j j,,..., - Seite -

3 - Geld Meie: Mthemti Fomel HESSE sche Nomlfom Eie Eee sei gegee i de Fom de llgemeie Eeegleichug + y + cz d heiße de Nomleveto (e steht seecht uf de Eee). De Nomleeiheitsveto (Eiheitsomle) wid eechet duch De Veto : (,, ) : ± c T Dmit ommt m zu HESSE sche Nomlfom, d, E 4 Mtize 4. Mti-Multiplitio Rg De Rg de Mti A g A ist die Dimesio des vo de Zeilevetoe (zw. Spltevetoe) ufgespte Uteums. A ud A T he de gleiche Rg: g A g A T. 4.3 Detemite 4.3. Detemite zweite Odug 4.3. Detemite ditte Odug (Regel vo SARRUS) Detemite -te Odug (Etwiclugsstz vo LAPLACE) z.b. Etwiclug ch de 3-te Zeile Die Vozeiche egee sich gemäß des Tleus Seite 3 -

4 - Geld Meie: Mthemti Fomel M M M L L L Elemete Umfomuge Elemete Umfomuge eie Mti wie sich folgedemße uf die Detemite us:. Vetuscht m zwei Zeile (Splte), so ädet sich ds Vozeiche de Detemite.. Multipliziet m eie Zeile (Splte) mit de Zhl, so multipliziet sich die Detemite mit. 3. Additio eies Vielfche eie Zeile (Splte) zu eie dee Zeile (Splte) ädet de Wet de Detemite icht. 4.4 Bsis- ud Kooditetsfomtio Es seie A ( L ) B L mit F A die Bsis A uf die Bsis B : B F A. ud Bse eies Vetoums. Die Mti F ildet Bsiswechsel Mti de Bsistsfomtio Mti de Kooditetsfomtio A B F B A B A F A B 4.5 Ke ud Bild 4.5. Ke (Nullum) vo f Ke f: v V: f( v ) V { } 4.5. Bild (Bildum) vo f Bild f : w W: w f( v) ud v V W { } Dimesiosfomel dim Bild A + dim Ke A dim V fü edlich dimesiole Vetoäume: dim Bild f + dim Ke f dim V Sätze L(V,W) f ijetiv dim V dim Bild f f sujetiv dim W dim Bild f f ijetiv dim V dim W T B A S T A B - Seite 4 -

5 - Geld Meie: Mthemti Fomel - 5 Folge ud Reihe 5. Kovegeziteie vo Reihe 5.. Quotieteiteium vo D ALEMBERT + oveget < q < K+ + K ist uestimm + diveget > q > 5.. Wuzeliteium vo CAUCHY oveget < q < + + K+ + K ist uestimm diveget > q > 5..3 Iteglvegleichsiteium vo CAUCHY f: [ m,+) R stetige, mooto fllede, positive Futio ud : f ud fd m + he dssele Kovegezvehlte. m Fehleeischließug des Reiheestes 5..4 LEIBNIZ-Kiteium Eie lteieede Reihe ( ) : fd + fd N N N N N, ( > ), ist oveget, we 5..5 Kovegezvehlte vo Potezeihe Gegee eie Potezeihe vo de Fom P : ρ lim ρ lim + eie mootoe Nullfolge ist. <ρ : Die Reihe ist solut oveget >ρ : Die Reihe ist diveget 5. Wichtige Folge ud Reihe 5.. Wichtige Folge + e! + e!! + e > fest - Seite 5 -

6 - Geld Meie: Mthemti Fomel -! e e < < fest 5.. Wichtige Reihe 5... Geometische Reihe Die geometische Reihe q q < q q Die edliche geometische Reihe ovegiet gemäß ovegiet geu d, we q < ist, gege de Gezwet + q q q 5... Hmoische Reihe Die hmoische Reihe ovegiet geu, we > ist. 6 Diffeetilechug 6. Aleitugsegel 6.. Summeegel ( f ± g)( ) f ( ) ± g ( ) 6.. Podutegel f g f g + f g 6..3 Quotieteegel f f g f g ( ) g g ( ) ( ) ( ) ( ) 6..4 Ketteegel gof g f f [ ] 6..5 Aleitug de Umehfutio ( f )( y) f f f y [ ] ( ) 6..6 Logithmisches Diffeeziee f f l f q. - Seite 6 -

7 - Geld Meie: Mthemti Fomel - 6. Mittelwetstz de Diffeetilechug ( ζ)( ) ζ (, ) [ + ( )]( ) θ θ, f f f f f f 6.3 L HOSPITAL-Regel f f lim lim g g lim f ( ) g ( ) f g Stttdesse: lim ode lim g f lim f ( ) g ( ) Stttdesse: lim f ( g ) f g lim ( f ) g Umfomug: ( ) g l[ f ] lim f lim e e g lim ( f ) lim g lim lim g lim [ ] Umfomug: g l f f e e g lim ( f ) Umfomug: g l f f e e 6.4 TAYLOR-Polyome 6.4. TAYLOR-Polyom TAYLOR-Polyom -te Gdes de Futio f( ) im Etwiclugsput mit de Dstellug ( T ) f! 6.4. LAGRANGE-Restglied Flls die (+)-te Aleitug im Etwiclugsput eistiet so ht ds Restglied die LAGRANGE-Dstellug R ( ; ) Itegl-Restglied ( ) + ( + )! [ ] ( + ) ( ζ) ζ: θ θ (, ) f + Flls die (+)-te Aleitug im Etwiclugsput eistiet so ht ds Restglied die Itegl-Dstellug R! ( + ( ; ) ) () t f t dt - Seite 7 -

8 - Geld Meie: Mthemti Fomel Wichtige TAYLOR-Reihe mit LAGRANGE-Restgliede + θ e + e! ( + )! θ (, ) + ( ) ( ) ( ) + + l + ( + ) ζ ζ: + θ ( -) θ (, ) + ( ) si cos θ ( + )! ( + 3)! θ (, ) ( ) cos cos θ! ( + )! θ (, ) 6.5 Wichtige Aleituge ( l ) ( ) + e ct H + p p pl e pl p p l log log e l l ( ) ( e ) l l ( ) ( e ) l ( + l ) ( csi H ) ( ccos ) H ccot H + 7 Iteglechug 7. Itegtiosegel 7.. Lieität λ f + µ g d λ fd+ µ gd 7.. Ptielle Itegtio f g ( d ) f g f gd 7..3 Sustitutiosegel g g g [ ] () fudu fgt gtdt [ ] () f( u) du f g( t) g t dt g [ ] () fd fgt gtdt g isesodee: f d f f d - Seite 8 -

9 - Geld Meie: Mthemti Fomel Itegtio de Umehfutio ( y) f y dy y f y f d f 7..5 Aleitug des Nees im Zähle f + f d l f C 7..6 Symmetie Putsymmetie: f( ) f fd Spiegelsymmetie: f f f d f d 7. Mittelwetstz de Iteglechug m fd M m f M, ( ) ( ) [ ] fd f ( ζ) ζ [, ] ( ζ) ζ [, ] f g d f g d 7.3 Fläche- ud Volumemomete, Schwepute 7.3. Flächemomet M : ( f g ) d M [ f g ][ f g ] d ( f g y: + ) d 7.3. Schweput i R T :, ( y ) s s s Volumemomet s M y A Vq d q: Queschittsfläche M : q d Alog M y ud M z Schweput i R 3 T :,, ( y z ) s s s s s M y V s s M A y A:Flächeihlt de Fläche My z V M V z s V:Volume des Köpes - Seite 9 -

10 - Geld Meie: Mthemti Fomel Wichtige Itegle f + f d l f C d l csi H ccos H ct + H c cot + H 8 Ahg tigoometische Futioe Hypeelfutioe i i sih ( e e ) ( i i ) cosh ( e e + ) si e e cos e + e - Seite -

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN Mekhilfe Mthemtik m Gymsium Ihlte de Mittelstufe Lösugsfomel fü qudtische Gleichuge c / 4c Poteze m m s s s s s s Logithme logc log logc log

Mehr

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN Ihlte de Mittelstufe Lösugsfomel fü qudtische Gleichuge c / 4c Poteze m m s s s s s s Logithme logc log logc log log logc c log log Sthlesätze

Mehr

Formelsammlung Höhere Mathematik

Formelsammlung Höhere Mathematik Fomelsmmlug Höhee Mthemtik usmmegestellt vo Wilhelm Göhle Beeitet vo Dipl.-Mth. B Rlle 7. Auflge VERLAG EUROPA-LEHRMITTEL Noue, Vollme GmH & Co. KG Düsselege Stße 3 478 H-Guite Euop-N.: 554 Geometie 3

Mehr

Mathematik Geometrie. Inhalt. Berner Fachhochschule. Hochschule für Technik und Informatik Burgdorf. Autor: Niklaus Burren Datum: 7.

Mathematik Geometrie. Inhalt. Berner Fachhochschule. Hochschule für Technik und Informatik Burgdorf. Autor: Niklaus Burren Datum: 7. Bee Fchhochschule Hochschule fü Techik ud Ifomtik Bugdof Mthemtik Geometie Auto: Niklus Bue Dtum: 7. Septeme 4 Ihlt. Mtize ud Detemite..... Defiitio..... Detemite..... Ivese eie Mti....4. Cmeegel... 4.5.

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mthemti fü Igeieue Numeische Itegtio ud Aweduge Mthemti THE SERVICES fü Igeieue PROVIDER Numeische DIE Itegtio PERSONALDIENSTLEISTER ud Aweduge Idee de umeische Itegtio Mthemti THE SERVICES fü Igeieue

Mehr

Menge der natürlichen Zahlen. ℕ = ℕ {0} Menge der ganzen Zahlen ℤ = ℤ {0} ℝ. Menge der reellen Zahlen. ℝ = ℝ {0} ℝ+ = { x ℝ x 0}

Menge der natürlichen Zahlen. ℕ = ℕ {0} Menge der ganzen Zahlen ℤ = ℤ {0} ℝ. Menge der reellen Zahlen. ℝ = ℝ {0} ℝ+ = { x ℝ x 0} Mekhilfe Mthemtik fü Bildugsgäge die zu FHSR fühe Zhlemege ℕ = { ; ; ; ;...} Mege de tüliche Zhle ℕ = ℕ {} ℤ = {... ; ; ; ; ; ;...} Mege de gze Zhle ℤ = ℤ {} ℝ Mege de eelle Zhle ℝ = ℝ {} ℝ+ = { ℝ } Mege

Mehr

1 + m m. Parabelgleichung f (x) = ax² + bx + c. Logarithmen. log u z log u. b b. Allgemeines Dreieck Sinussatz: a : b : c = sin α : sin β : sin γ

1 + m m. Parabelgleichung f (x) = ax² + bx + c. Logarithmen. log u z log u. b b. Allgemeines Dreieck Sinussatz: a : b : c = sin α : sin β : sin γ Mekhile MthemtikTechik Septeme Teil I: Stogeiete de Mittelstue Schittwikel zweie Gede Biomische Fomel ( + ) + + ( + ) + + + m m t ϕ + m m ( ) + ( + ) ( ) ( ) + ( ) ( + + ) Pelgleichug () ² + + c (llgemeie

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n Mthemti für VIW - Prof. Dr. M. Ludwig 6. Zhlefolge ud Reihe 6. Zhlefolge 6.. Grudbegriffe Def. 6. Eie (reelle Zhlefolge ist eie uedliche Mege vo (reelle Zhle,,,, i eier bestimmte Reihefolge geordet sid.

Mehr

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II

Cristian Rosca & Timm Kruse: Ungleichungen II (Proseminar Mathematisches Problemlösen SS 2006: Dozent - Natalia Grinberg) UNGLEICHUNGEN II Cisti Ros & Timm Kuse: Ugleihuge II (Posemi Mthemtishes Polemlöse SS 006: Dozet - tli Gieg) Posemi Mthemtishes Polemlöse Uivesität Klsuhe SS 006 UGLEICHUGE II Youg-Ugleihug... Hölde-Ugleihug...6 Miowsi-Ugleihug...0

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie KIT) Istitut für Aalysis Prof. Dr. Tobias Lamm Dr. Patric Breuig SS 3.9.3 Klausur Höhere Mathemati I für die Fachrichtug Physi Aufgabe 4+3+3) Pute) a) Sei a ) N eie reelle

Mehr

Kapitel I Zahlenfolgen und -reihen

Kapitel I Zahlenfolgen und -reihen Kpitel I Zhlefolge ud -reihe D (Zhlefolge) Ist jeder Zhl geu eie Zhl R,,,, eie (reelle) Zhlefolge bilde M schrieb: Die heiße Glieder der Zhlefolge zugeordet, so sgt m, dss die Zhle B Eie Zhlefolge ist

Mehr

Merkhilfe Mathematik. Teil I: Stoffgebiete der Mittelstufe

Merkhilfe Mathematik. Teil I: Stoffgebiete der Mittelstufe Mekilfe Mtemtik Dies ist keie Fomelsmmlug im klssisce Si - die vewedete Bezeicuge wede ict eklät ud Voussetzuge fü die Gültigkeit de Fomel wede i de Regel ict gegee. Teil I: Stoffgeiete de Mittelstufe

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

Gymnasium Hilpoltstein Grundwissen 9. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 9. Jahrgangsstufe ymium Hilpolttei udwie 9. Jhggtufe Wie / Köe. Reche mit Wuzel Qudtwuzel Wuzel u it diejeige Zhl göße ode gleich Null, die mit ich elt multipliziet egit. Dei mu 0 ei. Reelle Zhle Jede uedliche, icht peiodiche

Mehr

2.3 Determinanten. linear in jeder Spalte: det(a 1... λa i... a n ) = λ det(a 1... a i... a n )

2.3 Determinanten. linear in jeder Spalte: det(a 1... λa i... a n ) = λ det(a 1... a i... a n ) Kreuzprodukt λ b = λ( b) = λb ( + b) c = c + b c ud (b + c) = b + c b = b 4 (b c) =, c b, b c 5 ( b) c =, c b b, c 6 ( b) (c d) = det(bd)c det(bc)d 7 ( b), c = det(bc) =, (b c) Liere Algebr Regel Es seie:

Mehr

Vorkurs - WS 2016/17 Torsten Schreiber

Vorkurs - WS 2016/17 Torsten Schreiber Vokus - WS 6/7 Toste Scheie 7 Wiedeholug Diese Fge sollte Sie ohe Skipt etwote köe: Ws vesteht m ute eiem liee Gleichugssstem? Wie fuktioiet ds Eisetzugsvefhe? Wouf ist eim Gleichsetzugsvefhe zu chte?

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

Merkhilfe Mathematik (FOS/BOS) Nichttechnische Ausbildungsrichtungen

Merkhilfe Mathematik (FOS/BOS) Nichttechnische Ausbildungsrichtungen Mekhilfe Mthemtik (FOSBOS) Nichttechische Ausildugsichtuge Algeische Gudlge Bimische Fmel Aslutetg (+ ) + + (- ) - + (+ ) (- ) - Ï fü Ì Ó fü < (+ ) + + + (- ) + - ( ) ( + + ) Wuzel ud Pteze... - Fkte (

Mehr

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =?

Beispiele: (1) (x k ) = (1, 2, 3,...) (s n ) = (1, 1 + 2, ,...) s n 2 = Also: ( s n ) = (2) (x k ) = 1. (s n ) =? Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati - W 8/9 57 Pof. D. Fiedel Bolle L fü Volswitschaftslehe isb. Witschaftstheoie (Mioöoomie) Volesug Mathemati

Mehr

w k = r e n i ( ϕ n +k 2 π Rechenregeln (Determinanten): A T = A, A B = A B, A 1 A = E =1 A 1 = 1 A gx 1+hy 1+iz 1 ax 2 dx 1+ey 1+ fz dx 2 +by 2

w k = r e n i ( ϕ n +k 2 π Rechenregeln (Determinanten): A T = A, A B = A B, A 1 A = E =1 A 1 = 1 A gx 1+hy 1+iz 1 ax 2 dx 1+ey 1+ fz dx 2 +by 2 Zsmmefssg: Mthe Formel z komplee Zhle Schreiweise: z = + yi = r e i ϕ =r (cos(ϕ )+i si(ϕ)) Polrform r =z= + y = z z ; ϕ =rccos ( r ) für y ; ϕ = rccos ( r ) Kojgtio: z =z +iy z = iy Ist z die komplee Lösg

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr R Köig Dr M Prähofer Zetralüug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati Z Archimedische Aordug i R Mathemati für Physier (Aalysis ) MA90 Witersem 07/8 Lösugslatt http://www-m5matumde/allgemeies/ma90

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

Lösungen zum Aufgabenblatt 9

Lösungen zum Aufgabenblatt 9 Lösuge zum Aufgbebltt 9 Aufgbe Es gilt ( ) x ( ( + x) ) ( + x) x Zwei Polyome sid geu d gleich, we lle ihre Koeffiziete gleich sid. Wir betrchte die Koeffiziete für x. Der x -Koeffiziet der vordere Summe

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo Polyome 9 Für Experte Komplexe

Mehr

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

Glossar zum Brückenkurs "Mathematik für Wirtschaftswissenschaftler" 1

Glossar zum Brückenkurs Mathematik für Wirtschaftswissenschaftler 1 Glossr zum Brückekurs "Mthemtik für Wirtschftswisseschftler" GLOSSAR Abbildug Eie eideutige Zuordug f zwische zwei Mege X ud Y heißt Abbildug oder Fuktio us X i Y. M schreibt: f: X Y. f heißt Abbildug

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt.

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt. . Kovergez.. Eiführug i ds Prizip der Folge Eie Folge ist eie durchummerierte (Idex) Abfolge vo Zhle die eie Abbildug der türliche Zhle uf eie dere Zhlemege drstellt. Beispiel: : = k uch ls Abbildug: f

Mehr

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung

Die g-adische Bruchdarstellung. 1 Die g-adische Bruchdarstellung Die g-adische Buchdastellug Votag im Rahme des Posemias zu Aalysis, 24.03.2006 Michael Heste Ziel dieses Votags ist eie kokete Dastellug de elle Zahle, wie etwa die allgemei bekate ud gebäuchliche Dezimaldastellug

Mehr

Lineare Algebra Formelsammlung

Lineare Algebra Formelsammlung ee Algeb Fomelsmmlug vo Gábo Zogg Fomelsmmlug ee Algeb Gábo Zogg. ee Glechugsssteme. Ds Guss'sche Elmtosvefhe Defto: Σ Sstem vo m Glechuge ud Ubekte Opetoe: - Vetusche vo Glechuge - Addee/Subthee ees Velfche

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

Einige Beispiele für Mengen im R n.

Einige Beispiele für Mengen im R n. Eiige Beispiele für Mege im R. Itervalle i R. Seie a, b R mit a < b. [a, b] : {x a x b} abgeschlossees Itervall (a, b : {x a < x < b} offees Itervall [a, b : {x a x < b} halboffees Itervall (a, b] : {x

Mehr

11 Euklidische und unitäre Vektorräume

11 Euklidische und unitäre Vektorräume Euklidische ud uitäe Vektoäume. Nom ud Sklpodukt Fü de R lässt sich die Läge eies Vektos x duch die Nom kxk messe ud duch hx,yi Sklpodukte sog de Wikel cos ](x, y) kxk kyk zwische zwei Vektoe x, y emittel.

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Merkhilfe Mathematik (FOS/BOS) Ausbildungsrichtung Technik

Merkhilfe Mathematik (FOS/BOS) Ausbildungsrichtung Technik Mekhilfe Mthemtik (FOSBOS) Ausildugsichtug Techik Algeische Gudlge Bimische Fmel Aslutetg (+ ) + + (- ) - + (+ ) (- ) - Ï fü Ì Ó fü < (+ ) + + + (- ) + - ( ) ( + + ) Wuzel ud Pteze... - Fkte ( ) y y...

Mehr

f mit n h mit 1 lim lim n n

f mit n h mit 1 lim lim n n Mthemti MB Übugsbltt ***LÖUNGEN*** Theme: Folge, Reihe, Gezwete, Mootoie Umfg: Hilfsmittel: 8 Aufgbe id eie otwedig Eie Fomelsmmlug ud ei icht pogmmiebe Tscheeche öe be vewedet wede Aufgbe A (Mootoie ud

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Vektorrechnung. Ronny Harbich, 2003

Vektorrechnung. Ronny Harbich, 2003 Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),

Mehr

Formelsammlung MATHEMATIK Oberstufe

Formelsammlung MATHEMATIK Oberstufe Formelsmmlug MATHEMATIK Oerstufe Diese Formelsmmlug erhet keie Aspruch uf Vollstädigkeit ud Richtigkeit. Sie wird ei Bedrf durch weitere Kpitel ergäzt..poteze Fktorezerleguge, R r,s R k Z m, N r s r+ s

Mehr

Übungen zu Analysis II Blatt 2 Abgabe: Montag, , bis 12:15 Uhr

Übungen zu Analysis II Blatt 2 Abgabe: Montag, , bis 12:15 Uhr SS 0 Gesamt: 40 Pukte Übuge zu Aalysis II Blatt Abgabe: Motag, 30.04.0, bis :5 Uhr 6. (Tutoriumsaufgabe) Ma bestimme Stammfuktioe zu [+] (a) cos si µ für µ R, si > 0, (b) log ( + + ). + Lösug: (a) Für

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Übungsaufgaben mit Lösungen. Mathematik I

Übungsaufgaben mit Lösungen. Mathematik I Fachhochschule Pforzheim - Eletrotechi / Iformatiostechi - Übugsaufgabe mit Lösuge zur Vorlesug Mathemati I Prof. Dr. Mazura ud Prof. Dr. Gohout) für Studete der Fachrichtuge Eletrotechi / Techische Iformati

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

2 Vektoralgebra. e e = 1 Der Betrag vom Einheitsvektor ist 1. r r Definition eines Vektors

2 Vektoralgebra. e e = 1 Der Betrag vom Einheitsvektor ist 1. r r Definition eines Vektors - 1-2 Vektolge 2.1 Definition eines Vektos - Skle - Vektoen Def.: Q Ende Ein Vekto ist eine mthemtische Göße, die duch Ange von: P Anfng PQ - Mßhl (Mßeinheit) - Richtung Vollständig eschieen ist. Speielle

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 5. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr A Müller-Rettkowski Dr T Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum

Mehr

π ist Grundwissen 10. Jahrgangsstufe Mathematik 1. Kreiszahl π, Bogenmaß, Kreisteile, Kugel Die ersten 30 Dezimalen von π :

π ist Grundwissen 10. Jahrgangsstufe Mathematik 1. Kreiszahl π, Bogenmaß, Kreisteile, Kugel Die ersten 30 Dezimalen von π : Gudwisse 0. Jhggsstufe Mthemtik Wisse / Köe Beispiele. Keiszhl, Bogemß, Keisteile, Kugel Die Zhl ist ls itiole Zhl icht ls Buch dstellb. Näheugswete fü köe z.b. Aäheuge de Umfg U ode de Flächeihlt A eies

Mehr

a x = e xlna log a x = lnx lna a x+y = a x a y log a (x y) = log a x+log a y (a x ) y = a x y log a (x y ) = y log a x arcoshx = ln x+ )

a x = e xlna log a x = lnx lna a x+y = a x a y log a (x y) = log a x+log a y (a x ) y = a x y log a (x y ) = y log a x arcoshx = ln x+ ) Recheregel für Poteze ud Logarithme a x = e xla log a x = lx la a x+y = a x a y log a (x y) = log a x+log a y (a x ) y = a x y log a (x y ) = y log a x Hyperbel- ud Areafuktioe coshx = ex +e x sihx = ex

Mehr

3 Aufgaben Sind keine notwendig. Eine Formelsammlung und ein nicht programmierbarer Taschenrechner können aber verwendet werden.

3 Aufgaben Sind keine notwendig. Eine Formelsammlung und ein nicht programmierbarer Taschenrechner können aber verwendet werden. Stützus Mathemati WIW Übuge Tag Datum: ***LÖSNGSVORSCHLG*** Theme: Folge, Reihe, Gezwete, Mootoie mfag: Hilfsmittel: ufgabe Si eie otweig Eie Fomelsammlug u ei icht pogammiebae Tascheeche öe abe veweet

Mehr

Höhere Mathematik 1 Kapitel 3 Funktionen, Grenzwerte, Stetigkeit

Höhere Mathematik 1 Kapitel 3 Funktionen, Grenzwerte, Stetigkeit Höhere Mthemti Kpitel Futioe, Grezwerte, Stetigeit Prof. Dr.-Ig. Dieter Krus Höhere Mthemti Kpitel Ihltsverzeichis Futioe, Grezwerte, Stetigeit...-. Grudbegriffe...-. Elemetre Futioe...-5.. Gzrtiole Futioe...-5..

Mehr

3.8 Methode der kleinsten Quadrate

3.8 Methode der kleinsten Quadrate 3.8 Methode der leiste Qudrte Lest Squres Normlgleichug usggsput: Üerestimmtes System.? Mehr Gleichuge ls Uete Sei eie m Mtri mit m> ud miml vollem Rg: rg d.h. ildet de R m i de gze R. Ds System ist d

Mehr

Formel- und Tabellensammlung zum Aktuariellen Grundwissen

Formel- und Tabellensammlung zum Aktuariellen Grundwissen Formel- ud Tellesmmlug zum Aturielle Grudwisse Schdeversicherugsmthemti A. Zufllsvrile X, Y seie (disrete oder stetige Zufllsvrile. Verteilugsfutio: F( = P( X (Verteilugs-Dichte: f ( F ( = ei differezierrer

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Theme Logik ud Megelehre Zhlesysteme ud Arithmetik Gleichuge ud Ugleichuge Li. Gleichugssysteme ud spez. Aweduge Geometrie ud Trigoometrie Vektore i der Ebee ud Puktemege Fuktioe eier Veräderliche Zhlefolge

Mehr

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle:

Lösungen zu den Aufgaben zu Mathematik I. w w w f f f f w w f f w w f f w f w w f w w w w f f w w w w w w. s = p q p q erhalten wir folgende Tabelle: TEIL B Lösuge zu de Aufgabe zu Mathematik I.. Logik... A B A B A B A B A B w w w f f f f w f f w f w w f w f w w f w f f f w w w w A B A B B A B [ ] ( A B) ( A B) A ( ) ( ) A B A B A w w w f f f f w w

Mehr

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt Prof. Dr. Berd Dreseler 6 Reihe 6.1 Kovergez vo Reihe Gegebe sei eie Folge s 1 1, 2 1 2 3 1 2 3... s s, s..., 1 2 1, wird der Folge eie weitere Folge omplexer Zhle. Durch s zugeordet. www.berd-dreseler.de

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. R. Köig Dr. M. Prähofer Zetrlübug TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mthemtik Mthemtik für Physiker (Alysis ) MA9 Witersem. 7/8 Lösugsbltt http://www-m5.m.tum.de/allgemeies/ma9 7W (9..8) Z..

Mehr

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume.

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume. 10 Stetigkeit Wir übertrge de Stetigkeitsbegriff für reelle Fuktioe uf metrische Räume 101 Defiitio (Stetigkeit) Seie (X, d x ), (Y,d y ) metrische Räume, f : X Y eie Abbildug Wir sge f ist stetig im Pukt

Mehr

Numerische Methoden zur Lösung bestimmter Integralen

Numerische Methoden zur Lösung bestimmter Integralen Prof. Dr.-Ig. Dirk Rbe, FB Tecik Mtemtik I A Numerisce Metode zur Lösug bestimmter Itegrle D es oft scwierig oder sogr umöglic ist, die Stmmfuktio durc eie bekte Fuktio uszudrücke, ist es oft sivoll/eifcer

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

Analysis I - Zweite Klausur

Analysis I - Zweite Klausur Aalysis I - Zweite Klausur Witersemester 2004-2005 Vorame: Name: Aufgabe Aufgabe 2 Aufgabe 3 Aufgabe 4 Aufgabe 5 Aufgabe 6 Aufgabe 7 Aufgabe 8 Aufgabe 9 Summe Aufgabe 4 Pukte Bestimme Sie (mit Beweis)

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übugsblatt Aufgabe mit Lösuge Aufgabe : a Bestimme Sie de Kovergezradius der Reihe!! x b Für welche x R overgiere die folgede Potezreihe? i x, ii 3 x3 Lösug : a Wir wede das Quotieteriterium a: [!] x

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6.

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6. Ihlte Brüceurs Mthemti Fchhochschule Hover SS 0 Dipl.-Mth. Coreli Reiterger. Grudlge. Poteze, Wurzel, Logrithme. Vetorrechug 4. Trigoometrische Futioe. Differetilrechug. Itegrlrechug 7. Mtrize, Liere Gleichugssysteme

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 07 Torste Schreier e Wert eier etermite köe wir is zu eiem Formt vo mittels dem Verfhre vo Srrusestimme. Für Mtrize, die ei höheres Formt he, köe wir die etermite mit dem estimme. zu sollte Sie im erste

Mehr

N G R C. 6.1 Definition und Darstellungsformen der komplexen Zahlen. Def.: Die formale Summe aus einer reellen Zahl a imaginären Zahl bj heißt

N G R C. 6.1 Definition und Darstellungsformen der komplexen Zahlen. Def.: Die formale Summe aus einer reellen Zahl a imaginären Zahl bj heißt 6 Komplexe Zahle Natürliche Zahle N {0,,,...} Gae Zahle G {...,-,-,0,,,...} Reelle Zahle Komplexe Zahle R (-,+ ) C N G R C 6. Defiitio ud Darstellugsforme der komplexe Zahle Def.: Die formale Summe aus

Mehr

0.1 E: Der Haupsatz der Mineralogie

0.1 E: Der Haupsatz der Mineralogie 0. E: Der Haupsatz der Mieralogie Satz: I eiem Kristall gibt es ur,,3,4 ud 6-zählige Symmetrie. Defiitio: Seie u, v 0 zwei Vektore, die icht auf eier Gerade liege. Die Mege heißt Gitter. Satz: Die Vektore

Mehr

Prof. U. Stephan Studiengang BAU 1. Fachsemester Formelsammlung, V. 1 TFH Berlin, FB II LV Mathematik Seite 1 von 6

Prof. U. Stephan Studiengang BAU 1. Fachsemester Formelsammlung, V. 1 TFH Berlin, FB II LV Mathematik Seite 1 von 6 Prof. U. Steph Studiegg BAU 1. Fchsemester Formelsmmlug, V. 1 TFH Berli, FB II LV Mthemtik Seite 1 vo 6 Formelsmmlug ur LV Mthemtik im Studiegg Buigeieurwese Umgg mit dem Tscherecher: Formel: Nottio: Die

Mehr

Mathematik. Beträge und Ungleichungen. Absoluter Betrag. y < r ist also gleichwertig mit r < y < r

Mathematik. Beträge und Ungleichungen. Absoluter Betrag. y < r ist also gleichwertig mit r < y < r Mthemtik Beträge ud Ugleichuge Absoluter Betrg Es sei IR. Uter dem bsolute Betrg vo versteht m geometrisch de Abstd des der Zhl etsprechede Puktes vom Nullpukt. Für beliebiges reelles gilt Nch Defiitio

Mehr

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER . GRUNDBEGRIFFE. MODELL "STARRER KÖRPER" Bishe habe wi us mit de Mechaik de Puktmasse beschäftigt; dabei meie wi eigetlich u die Bewegug des Massemittelpuktes.

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016 Tutorium Mthemti i der gymsile Oerstufe 3. Verstltug: Berechug vo Whrscheilicheite 6. ovemer 6. Komitori Permuttio: Elemete werde i eie Reihefolge gestellt Vritio: us Elemete werde usgewählt ud i eie Reihefolge

Mehr

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend Wiederholug Alysis Stetige Zufllsgröße F sei Stmmfuktio zu f f d= F F = f Bestimmtes Itegrl f ( d ) = F F Ueigetliche Itegrle f () tdt= F lim F f() t F = f() t dt ist mooto wchsed f () tdt= lim F F A=F()-F()

Mehr

1 Komplexe Zahlen Definitionen Rechenoperationen 2

1 Komplexe Zahlen Definitionen Rechenoperationen 2 Fomelsmmlug Komplee Zhle. Deftoe. Recheopetoe Glechuge. Qudtsche Glechuge. Glechuge höhee Odug.3 Bomsche Lehst 3.4 Tgoometsche Glechuge 3.5 Kegelschtte 5.6 Hpeelfuktoe 5.7 Ivese Hpeelfuktoe 6 3 Vektoechug

Mehr

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück.

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück. Hs Wlser, [0090331] Teilfolge der Fibocci-Folge 1 Worum geht es? Wir wähle us der Fibocci-Folge 1 3 4 5 6 7 8 9 10 11 1 13 14 1 1 3 5 8 13 1 34 55 89 144 33 377 Teilfolge us ud frge ch dere Rekursiosformel.

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

( ) b( ) ( ) z x z. Merkhilfe Mathematik/Technik Juli Teil I: Stoffgebiete der Mittelstufe

( ) b( ) ( ) z x z. Merkhilfe Mathematik/Technik Juli Teil I: Stoffgebiete der Mittelstufe Mekhile MthemtikTechik Juli 0 Die Mekhile stellt keie Fmelsmmlug im klssische Si d. Beeichuge wede icht eklät ud Vussetuge ü die Gültigkeit de Fmel i de Regel icht dgestellt. Teil I: Stgeiete de Mittelstue

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

e aus der Parameterform (*). Die Ebene E, in b c > a 1 = 0, so dass: a a

e aus der Parameterform (*). Die Ebene E, in b c > a 1 = 0, so dass: a a Mihl Buhlm Mthmtik > Vktohug > Kis Pmtfom Eilitug Im didimsiol ll Vktoum kö Gd ud E uh Kis mit Hilf vo Pmtfom dgstllt wd. Gg si im Folgd i Kis k mit Kismittlpukt Mm m m 3 ud Kisdius, >. Sid ud zwi Eihitsvkto,

Mehr

- Gerald Meier: Mathematik Formeln -

- Gerald Meier: Mathematik Formeln - - Geld Mee: Mhemk omel - 7 Vekolss 7. Opeoe 7.. ese Ableug / Gde ϕ ϕ gdϕ M ϕ v v gdv v v v 7.. bl-opeo ( A+ ) A+ M ( Ao) Ao+ Ao ( ) c ( c) 7.. Rchugsbleug 7..4 wee Ableug ϕ ϕ L ϕ ϕ ϕ L M M O 7..5 Dvege

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

( ) a ) ( ) n ( ) ( ) ( ) a. n n

( ) a ) ( ) n ( ) ( ) ( ) a. n n Pre-Study 7 orste Shreier 77 Wiederholu Diese Fre sollte Sie ohe Skript etworte köe: W ist der Sius zw. der Cosius immer NULL? Ws versteht m uter eier Phsevershieu? Ws wird im Eiheitskreis sekreht /wereht

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij:

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij: MATRIZENRECHNUNG Mtri: 3 5 4 5 A = 3 5 5 7 8 3 8 Allgeei: A = 3 3 3 Zeile, Splte ij: heißt Kopoete der Mtri (Eleet der Mtri) ij ist Kopoete der i-te Zeile, j-te Splte Mtri der Ordug, ( -Mtri): A(,) oder

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr