4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

Größe: px
Ab Seite anzeigen:

Download "4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst"

Transkript

1 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer Verküfug ud G. D heißt flls k 1 G k 1 ord( : mi } k 1 k 1 G sost Ordug vo (i G. (Alog für dditiv geschriebee Grue: mi k N k 0} Beisiele (Z/7Z multiliktive Grue bzgl, Elemete 1,, 3 ud 1,, 3. ord ( 1 1, ord( 3, ord ( 3 6, ord ( 1, ord( 6, ord( 3 3 Stz 1 (Elemetordug teilt Grueordug Ist G edliche Grue (#G < so gilt d.h. #G ist Vielfches vo ord (. Weiterhi gilt: We ord( <, so ist Utergrue vo G mit Elemete. ord( #G G : i 0 i < } 4. heißt die vo erzeugte Utergrue. Seziell heißt G zyklisch, we ei existiert mit G (d.h. we ei existiert mit ord( #G. Stz (kleier Fermt N sei Primzhl,. Stz 3 (Zyklizität vo (Z/Z Z/Z 1 1 (we 0, > 1 +1, 1} (we 0, > Primzhl (Z/Z mit ord( 1

2 16 Isbesodere existiert für jedes solche geu ei Isomorhismus (Z/( 1 Z,+ ( (Z/Z, 1 Beisiel Isomorhismus zwische (Z/10Z,+ ud ( (Z/11Z,. 4.3 Für m, N, Z mit ggt (,m 1 heißt ei -ter Potezrest modulo m, flls die Gleichug X mod m i Z lösbr ist. Seziell heißt qudrtischer Rest ( mod m flls X mod m lösbr ist. Aderflls heißt qudrtischer Nichtrest. b Sei > Primzhl, Z, ggt (, 1. D heißt ( : Legedre-Symbol ( ch. 1 flls qudrtischer Rest modulo 1 flls qudrtischer Nichtrest modulo Beisiel ist qudrtischer Rest mod7, de 3 mod 7. ist qudrtischer Nichtrest mod3, de 1 mod 3 ud mod 3. Stz 4 (Recheregel Legedre-Symbol > rim. (i We,b Z, b mod, ggt (, 1 so ist ggt (b, 1 ud ( ( b (ii We,b Z, ggt (, 1, ggt (b, 1 so ist ggt ( b, 1 ud ( ( ( b b (iii We ggt (, 1, π (, ord ( 1 so ist ( 1, ( i ( 1 i für i 1

3 17 (iv We ggt (, 1 ud π (, so ist ( 1 ( 1 1 Übug Ist 1 mod 4 1 ist Qudrt mod. Ist 3 mod 4 1 kei Qudrt mod. Stz 5 (Qudrtisches Rezirozitätsgesetz q seie Primzhle >. D: ( q ( q 1 flls 3 mod 4 ud q 3 mod 4 +1 sost Weiterhi: ( 1 +1 flls 1 mod 4 1 flls 3 mod 4 ( +1 flls ±1 mod 8 1 flls ±3 mod 8 Beisiel (Gußsches Lemm Ist > rim, Z mit ggt (, 1, so sei µ ( die Azhl ller j 1,..., 1 }, dere Produkt mit eie egtive Restklsse im Reräsettesystem 1 } 1,..., vo Z ht. D ist ( ( 1 µ( Beisiel Wieder folgt: ( 1 ( flls ±1 mod 8 1 flls ±3 mod 8 d µ ( 1 # j 1,..., 1 j < 0 } 1. Beisiele ( ( 7 1, ( 17 1, ( 11 1, 5 1, ( 17 ( 31 1, 17 ( 3 1, , ( 3 Für Primzhl der Form 6k + 1: 1.

4 Für Z ud ugerdes N 3 mit e1 1 e... er r, i rim 1 i r, heißt ( 0, flls ggt (, > 1 : ( e1 ( e ( er 1... r, sost cobi-symbol. Bemerkug 4.1 ( M bechte, ( dss ggt (, i 1 i, we ggt (, 1. Ist 1 rim, ggt (, 1, so ist 1 1. Ds cobi-symbol ist lso eie Erweiterug des Legedre-Symbols ud m schreibt meist uch ( ( für. Beisiele ( 15 ( ( , ber ist qudrtischer Nichtrest modulo 15! ( Stz 6 (Recheregel für ds cobi-symbol ud Rezirozitätsgesetz Seie m, N 3 ugerde. D (i,b Z mit b mod ist (ii,b Z gilt: ( ( b ( ( b ( b (iii flls ggt (m, 1 gilt: ( m ( m 1 we m 3 mod 4 +1 sost (iv ( 1 1 (v (vi ( mod mod 4 ( 1 ±1 mod 8 1 ±3 mod 8 Beisiel ggt (17,703 1, ( (

5 19 ( 57 ( ( ( ( ( Beisiel (Solovy-Strsse-Test Gegebe eie (große ugerde Zhl. Der Test stellt etweder fest, dss keie Primzhl ist (diese Atwort ist immer korrekt oder dss ohe Grtie eie Primzhl vorliegt. Im Fll dss keie Primzhl ist, wird die zweite Atwort mit eier Whrscheilichkeit < 1 gegebe, k wählbr. Hierbei wählt k m eie Azhl k > 1 vo Schritte ud eie zufällige Folge 1,..., k vo Zhle mit 1 < i < 1 (für 1 k. Berechet wird i jedem Schritt: Notwedig für Primzhl ist Flls OK, wird berechet i 1 so wird uch och ( i } 1,..., Ist g i : ggt ( i, 1. g i 1 b i : ( 1/ i. b i ±1 berechet. Flls rim, so muss 3. b i mod ( i gelte. Hohe Whrscheilichkeit für Primzhl, we für lle i cheider OK.

6 0 Aufgbe Es sei E 59 (Z/59Z 1,58} 64 ±1 } ud E 59 E ( 59}. M bereche #E 59 ud #E 59. M bechte, dss ist. Es ist E 59 (Z/59Z ud #(Z/59Z 3. Wir zerlege (Z/59Z i U V mit U (Z/59Z 1 mod 59 } ud V (Z/59Z 1 mod 3 } wobei #U ud #V 3. Wir betrchte sttt der Mege (Z/59Z 64 ±1 } die Mege } (b,c U V (b,c 64 ±(1,1 ud bechte, dss die Orduge der Elemete vo U i 1,,11,} liege, währed die vo 1 verschiedee Elemete vo V die Ordug 3 hbe. Es ist lso b 64 ( b 1 1 für lle b U. Dmit uch c 64 1 gilt, ist es otwedig, dss 1 c 64 c 3 3 c 1 c 1, lso dss c 1. Somit folgt } (b,c U V (b,c 64 ±(1,1 (b,c b U, c 1}. Diese Mege ht #U Elemete. Dher ist Weiterhi gilt #E 59 #E 59, d #E ( ( ( 1. 3

Carmichaelzahlen und andere Pseudoprimzahlen

Carmichaelzahlen und andere Pseudoprimzahlen Crmichelzhle ud dere Pseudoprimzhle Christi Glus 26.05.2008 1 Der fermtsche Primzhltest Erierug 1 (Kleier Stz vo Fermt). Für p prim, Z, ggt(, p) 1 gilt: p 1 1 (mod p) Algorithmus 2 (Fermtscher Primzhltest).

Mehr

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6

Mathematik für die Physik II, Sommersemester 2018 Lösungen zu Serie 6 Mthemtik für die Physik II, Sommersemester 2018 Lösuge zu Serie 6 26 Utersuche die folgede Fuktioefolge uf puktweise beziehugsweise gleichmäßige Kovergez, d.h. bestimme jeweils ob diese vorliegt ud gebe

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt.

Eine Folge ist eine durchnummerierte (Index) Abfolge von Zahlen die eine Abbildung der natürlichen Zahlen auf eine andere Zahlenmenge darstellt. . Kovergez.. Eiführug i ds Prizip der Folge Eie Folge ist eie durchummerierte (Idex) Abfolge vo Zhle die eie Abbildug der türliche Zhle uf eie dere Zhlemege drstellt. Beispiel: : = k uch ls Abbildug: f

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fchbereich Mthemtik Algebr ud Zhletheorie Christi Curill Grudlge der Mthemtik LPSI/LS-M) Lösuge Bltt WiSe 00/ - Curill/Koch/Ziegehge Präsezufgbe P3)-d) Für jede der vier Mege gilt, dss die dri ethltee

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

Kapitel I Zahlenfolgen und -reihen

Kapitel I Zahlenfolgen und -reihen Kpitel I Zhlefolge ud -reihe D (Zhlefolge) Ist jeder Zhl geu eie Zhl R,,,, eie (reelle) Zhlefolge bilde M schrieb: Die heiße Glieder der Zhlefolge zugeordet, so sgt m, dss die Zhle B Eie Zhlefolge ist

Mehr

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m.

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m. Mthemtik I für VIW - Prof. Dr. M. Ludwig.4 Liere Gleichugssysteme.4. Schreibweise, Liere Abbildug. A x = b, wobei m A... Koeffizietemtrix, T x ( x, x 2,, x ) T (, 2,, =... Vektor der Ubekte,... Azhl der

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist.

7-1 Elementare Zahlentheorie. 1 a ist quadratischer Rest modulo p, 1 falls gilt a ist quadratischer Nichtrest modulo p, 0 p a. mod p, so ist. 7-1 Elementre Zhlentheorie 7 Ds udrtische Rezirozitätsgesetz 70 Erinnerung Sei eine ungerde Primzhl, sei Z In 114 wurde ds Legendre-Symbol eingeführt: 1 ist udrtischer Rest modulo, 1 flls gilt ist udrtischer

Mehr

Kapitel VI. Eigenschaften differenzierbarer Funktionen

Kapitel VI. Eigenschaften differenzierbarer Funktionen Kpitel VI Eigeschfte differezierbrer Fuktioe S 6 (Fermt, 6-665) Die Fuktio f sei uf dem Itervll I defiiert ud ehme der iere Stelle ξ vo I eiem bsolute Extremum Ist f der Stelle ξ differezierbr, d gilt

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück.

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück. Hs Wlser, [0090331] Teilfolge der Fibocci-Folge 1 Worum geht es? Wir wähle us der Fibocci-Folge 1 3 4 5 6 7 8 9 10 11 1 13 14 1 1 3 5 8 13 1 34 55 89 144 33 377 Teilfolge us ud frge ch dere Rekursiosformel.

Mehr

Terme und Formeln Potenzen II

Terme und Formeln Potenzen II Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

War Benjamin Franklin Magier?

War Benjamin Franklin Magier? Wr Bejmi Frkli Mgier? Zusmmefssug Es wird eie Methode etwickelt, ei (fst) mgisches Qudrt der Ordug 8 k ( k ) mit fsziierede Eigeschfte herzustelle. Eileitug I seiem überus leseswerte ud bwechslugsreiche

Mehr

ZAHLENFOLGEN Teil 1. Einführende Beispiele Arithmetische Folgen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr

ZAHLENFOLGEN Teil 1. Einführende Beispiele Arithmetische Folgen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr ZAHLENFOLGEN Teil Eiführede Beispiele Arithmetische Folge Dtei Nr. 400 Friedrich Buckel Std: August 006 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de Ihlt Eiführede Beispiele. Erste Defiitio. Beispiele:

Mehr

Grundwissen Mathematik Klasse 9

Grundwissen Mathematik Klasse 9 Grudwisse Mthetik Klsse Reelle Zhle: Qudrtwurzel: ist die icht-egtive Lösug der Gleichug:. Merke: heißt Rdikd ud drf icht egtiv sei! Bsp.: 7 6, 7 7 Irrtiole Zhle: Jede Zhl, die sich icht ls Bruch drstelle

Mehr

13. Quadratische Reste

13. Quadratische Reste ChrNelius: Zhlentheorie (SS 007) 3 Qudrtische Reste Wir ehndeln jetzt ei den Potenzresten den Sezilfll m und führen die folgende Begriffsildung ein: (3) DEF: Seien n und teilerfremd heißt qudrtischer Rest

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018

ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sort Trining erfordert, erfordert Mthemtik ds selbständige Lösen von Übungsufgben. Ds wesentliche n den Übungen ist ds Selbermchen!

Mehr

4. Das quadratische Reziprozitätsgesetz.

4. Das quadratische Reziprozitätsgesetz. 4-1 Elementre Zhlentheorie 4 Ds udrtische Rezirozitätsgesetz Sei eine ungerde Primzhl, sei Z mit, 1 Frge: Wnn gibt es x Z mit x mod? Gibt es ein derrtiges x, so nennt mn einen udrtischen Rest modulo Legendre

Mehr

Grundlagen Mathematik 9. Jahrgangsstufe

Grundlagen Mathematik 9. Jahrgangsstufe Grudlge Mthetik 9. Jhrggsstufe ALGEBRA. Uter der (Qudrt-)Wurzel Zhl, die qudriert ergit : der positive Zhl versteht diejeige positive heißt dei der Rdikd.. Rtiole Zhle Q = lle Brüche zw. edliche oder uedlich

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n

Mathematik für VIW - Prof. Dr. M. Ludwig. Def. 6.1 Eine (reelle) Zahlenfolge ist eine unendliche Menge von (reellen) Zahlen a1, a2,, a n Mthemti für VIW - Prof. Dr. M. Ludwig 6. Zhlefolge ud Reihe 6. Zhlefolge 6.. Grudbegriffe Def. 6. Eie (reelle Zhlefolge ist eie uedliche Mege vo (reelle Zhle,,,, i eier bestimmte Reihefolge geordet sid.

Mehr

Im Rahmen des Seminars Extremal Combinatorics. Anna Lea Dyckhoff

Im Rahmen des Seminars Extremal Combinatorics. Anna Lea Dyckhoff Abzähle Im Rhme des Semirs Extreml Combitorics A Le Dyckhoff 23. April 2004 Abzähle Fortgeschrittees Abzähle Die Kombitorik beschäftigt sich mit dem Abzähle vo Elemete. Dbei versucht m Strtegie, Methode

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr

A 2 Die Cramersche Regel

A 2 Die Cramersche Regel Die Crmersche egel Mtrixschreibweise eies liere Gleichugssystems Die Crmersche egel 5 Wir gehe vo der llgemei Gestlt eies liere Gleichugssystems us : Gegebe seie m (reelle oder komplexe) Zhle ik (i,,,

Mehr

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume.

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume. 10 Stetigkeit Wir übertrge de Stetigkeitsbegriff für reelle Fuktioe uf metrische Räume 101 Defiitio (Stetigkeit) Seie (X, d x ), (Y,d y ) metrische Räume, f : X Y eie Abbildug Wir sge f ist stetig im Pukt

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo Polyome 9 Für Experte Komplexe

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Theme Logik ud Megelehre Zhlesysteme ud Arithmetik Gleichuge ud Ugleichuge Li. Gleichugssysteme ud spez. Aweduge Geometrie ud Trigoometrie Vektore i der Ebee ud Puktemege Fuktioe eier Veräderliche Zhlefolge

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1 Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.

Mehr

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt Prof. Dr. Berd Dreseler 6 Reihe 6.1 Kovergez vo Reihe Gegebe sei eie Folge s 1 1, 2 1 2 3 1 2 3... s s, s..., 1 2 1, wird der Folge eie weitere Folge omplexer Zhle. Durch s zugeordet. www.berd-dreseler.de

Mehr

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Poteze Teil it egtive Expoete Triigsheft Alle Regel Musterbeispiele - Triigsufgbe Dtei Nr. 0 Std 9. Dezeber 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.the-cd.de 0 Potezreche

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016 Tutorium Mthemti i der gymsile Oerstufe 3. Verstltug: Berechug vo Whrscheilicheite 6. ovemer 6. Komitori Permuttio: Elemete werde i eie Reihefolge gestellt Vritio: us Elemete werde usgewählt ud i eie Reihefolge

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthemtik Repetitiosufge Poteze ud Potezgleichuge Ihltsverzeichis A) Voremerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufge Poteze mit Musterlösuge F) Aufge Potezgleichuge mit Musterlösuge

Mehr

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h.

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h. Vorlesug 15 Itegrlrechug 15.1 Supremum ud Ifimum Zuächst ei pr grudlegede, wichtige Defiitioe. Defiitio 15.1.1. Eie Mege M R heißt ch obe beschräkt, we es ei s R gibt, so dss x s für lle x M. M ist ch

Mehr

Quadratwurzeln Armin P. Barth -LERNZENTRUM, ETH ZÜRICH. Skript. Quadratwurzeln

Quadratwurzeln Armin P. Barth -LERNZENTRUM, ETH ZÜRICH. Skript. Quadratwurzeln Qudrtwurzel Armi P. Brth -LERNZENTRUM, ETH ZÜRICH Skript Qudrtwurzel Qudrtwurzel Armi P. Brth -LERNZENTRUM, ETH ZÜRICH Qudrtwurzel spiele eie sehr wichtige Rolle i der Mthemtik. Drum versuche wir, i diesem

Mehr

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen.

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen. Terme Kpitel Terme Ei mthemtischer Ausdruck wie B R q q (q ) oder (x + )(x ) x heißt eie Gleichug. Die Ausdrücke uf beide Seite des -Zeiches heiße Terme. Sie ethlte Zhle, Kostte (ds sid Symbole, die eie

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthetik Repetitiosufgbe Poteze ud Potezgleichuge Ihltsverzeichis A) Vorbeerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufgbe Poteze it Musterlösuge F) Aufgbe Potezgleichuge it Musterlösuge

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgg Koe Mthemtik, WS07 0.0.07. Zhlefolge.. Wozu IformtikerIe Folge bruche Kovergez vo Folge ist die Grudlge der Alysis (Differetil- ud Itegrlrechug) Trszedete Gleichuge wie x l x 50 k m äherugsweise

Mehr

Fachschaft Mathematik der Staatlichen Fachoberschule und Berufsoberschule Augsburg

Fachschaft Mathematik der Staatlichen Fachoberschule und Berufsoberschule Augsburg Fchschft Mthemtik der Sttliche Fchoberschule ud Berufsoberschule Augsburg Auf de folgede Seite sid i kurzer Form die Schverhlte der Algebr drgestellt, mit eiige relevte Übugsbeispiele, i der Regel ch Schwierigkeitsgrd

Mehr

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213)

A. Bertrand sches Sehnenparadoxon, Modellierung V Zwei Punkte zufällig im Kreis (S. 212/213) A. Bertrd sches Seheprdoxo, Modellierug V Zwei Pukte zufällig i Kreis (S. /) I Abb..58 sid 5 Sehe gezeichet, vo dee 7 kürzer ls die Dreiecksseite sid. Die reltive Häufigkeit ist,8. Bei große Versuchszhle

Mehr

1.Weiterentwicklung der Zahlvorstellung

1.Weiterentwicklung der Zahlvorstellung Grudwie Mthemtik 9.Kle Gymium SOB.Weiteretwicklug der Zhlvortellug Defiitio der Qudrtwurzel: Für 0 it diejeige icht egtive Zhl dere Qudrt ergibt. heißt Qudrtwurzel, heißt Rdikd. Beipiele: 0,5 0,5 64 8

Mehr

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Lösungen zum Aufgabenblatt 9

Lösungen zum Aufgabenblatt 9 Lösuge zum Aufgbebltt 9 Aufgbe Es gilt ( ) x ( ( + x) ) ( + x) x Zwei Polyome sid geu d gleich, we lle ihre Koeffiziete gleich sid. Wir betrchte die Koeffiziete für x. Der x -Koeffiziet der vordere Summe

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

DOWNLOAD. Potenzgesetze für rationale Exponenten. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen

DOWNLOAD. Potenzgesetze für rationale Exponenten. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen DOWNLOAD Michel Körer Potezgesetze für rtiole Expoete Michel Körer Grudwisse Wurzel ud Poteze. 0. Klsse Bergedorfer Kopiervorlge Dowloduszug us dem Origiltitel: Kubikwurzel bzw.. Wurzel Aufgbe Wie groß

Mehr

Terme und Formeln Potenzen I

Terme und Formeln Potenzen I Terme ud Formel Poteze I Die Mrgrit philosophic ist die älteste gedruckte llgemeie Ezyklopädie us dem Jhr 0 i lteiischer Sprche. Ds Werk ethält ls Uiversits literrum ds gesmte Wisse des späte Mittellters.

Mehr

ASW Lösungen zu Übung 6, MB,

ASW Lösungen zu Übung 6, MB, ASW Lösue u Übu MB Mthemtik I Geometrie vo Gerde ud bee rof DrBGrbowski Zu Aufbe Geebe sei eie Gerde im R : { } R Gebe Sie die Gerde i Normlform b R! b Gebe Sie die Gerde - R i ukt-richtusform! cliet der

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

6.1 Einführung Wenn bei einer Multiplikation lauter gleiche Faktoren auftreten, so wird dafür meistens die Potenzschreibweise gewählt.

6.1 Einführung Wenn bei einer Multiplikation lauter gleiche Faktoren auftreten, so wird dafür meistens die Potenzschreibweise gewählt. Poteziere 6 Poteziere 6. Eiführug We bei eier Multipliktio luter gleiche Fktore uftrete, so wird dfür meistes die Potezschreibweise gewählt.... = Fktore Potezwert Es ist =, =, =, : Bsis oder Grudzhl, R

Mehr

2.3. ZAHLENREIHEN 109. Eine Reihe ist also per Definitionem genau dann konvergent, wenn die Folge ihrer Partialsummen konvergiert.

2.3. ZAHLENREIHEN 109. Eine Reihe ist also per Definitionem genau dann konvergent, wenn die Folge ihrer Partialsummen konvergiert. 2.3. ZAHLENREIHEN 109 2.3 Zhlereihe 2.3.1 Reihe Für IN, 0 sei IR. D ist die Reihe defiiert ls die = 0 m Folge (S m ) der Prtil- oder Teilsumme S m :=. = 0 Eie Reihe ist lso per Defiitioem geu d koverget,

Mehr

Glossar zum Brückenkurs "Mathematik für Wirtschaftswissenschaftler" 1

Glossar zum Brückenkurs Mathematik für Wirtschaftswissenschaftler 1 Glossr zum Brückekurs "Mthemtik für Wirtschftswisseschftler" GLOSSAR Abbildug Eie eideutige Zuordug f zwische zwei Mege X ud Y heißt Abbildug oder Fuktio us X i Y. M schreibt: f: X Y. f heißt Abbildug

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Potenzen, Wurzeln und ihre Rechengesetze

Potenzen, Wurzeln und ihre Rechengesetze R. Brik http://rik-du.de Seite 9.0.00 Poteze, Wurzel ud ihre Rechegesetze Der Potezegriff Defiitio: Eie Potez ist eie Multipliktio gleicher Fktore (Bsis), ei der der Epoet die Azhl der Fktore git. : =...

Mehr

4.2 Das bestimmte Integral

4.2 Das bestimmte Integral 4.. DAS BESTIMMTE INTEGRAL 63 4. Ds bestimmte Itegrl Die geometrische Iterprettio eies bestimmte Itegrls ist die Fläche uter eiem Fuktiosgrphe ft. M zerlege ei Itervl [, b] uf der t-achse äquidistt i Teilitervlle

Mehr

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen Mthemtik Ihlt Zhlebereiche Recheopertioe Hierrchie der Recheopertioe Recheregel Brüche Recheregel für Brüche Klmmerreche Potezrechug Potezgesetze Ntürliche Zhle Zhlebereiche Jeder Zhlebereich ist eie Erweiterug

Mehr

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij:

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij: MATRIZENRECHNUNG Mtri: 3 5 4 5 A = 3 5 5 7 8 3 8 Allgeei: A = 3 3 3 Zeile, Splte ij: heißt Kopoete der Mtri (Eleet der Mtri) ij ist Kopoete der i-te Zeile, j-te Splte Mtri der Ordug, ( -Mtri): A(,) oder

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgbesmmlug Um sich schell ierhlb der c. 0.000 Mthemtikufgbe zu orietiere, beutze Sie ubedigt ds Lesezeiche Ihres Acrobt Reders: Ds Ico fide Sie i der liks stehede Leiste. Bitte

Mehr

Expertentipps für die Prüfung:

Expertentipps für die Prüfung: Epertetipps für die Prüfug: Alle Aufgbestelluge im Überblick! Wertvolle Hiweise uf Stolperflle! Elegte Rechetipps! Übersicht ller wichtige Formel! Mthemtik Bde-Württemberg Ihlt:. Pflichtteilufgbe........................................

Mehr

Numerisches Integrieren

Numerisches Integrieren Numerisches Itegriere Ac I der Prxis werde Itegrle i der Regel umerisch, lso pproximtiv, bestimmt. Dzu solle hier verschiedee Algorithme betrchtet werde ( Rechteck, Mitterechteck, Trpez, Simpso, Romberg

Mehr

2.1.1 Potenzen mit natürlichen Exponenten

2.1.1 Potenzen mit natürlichen Exponenten .. Poteze mit türliche Expoete Eie Potez (gelese: hoch ) ist eie bgekürzte Schreibweise für ds Produkt us gleiche Fktore : = wobei > eie türliche Zhl ist heisst Bsis, Expoet der Potez. Beispiele: 5 = =

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgg Koe Mthemtik WS06 7.0.06. Zhlefolge.. Wozu IformtikerIe Folge bruche Kovergez vo Folge ist die Grudlge der Alysis (Differetil- ud Itegrlrechug) Trszedete Gleichuge wie x l x = 50 k m äherugsweise

Mehr

Mathematik für VIW - Prof. Dr. M. Ludwig. 4. Differentialrechnung für Funktionen einer reellen Veränderlichen. wird in Umgebung von x0 D f

Mathematik für VIW - Prof. Dr. M. Ludwig. 4. Differentialrechnung für Funktionen einer reellen Veränderlichen. wird in Umgebung von x0 D f 4. Dieretilrechug ür Fuktioe eier reelle Veräderliche 4. Begri des Dieretilquotiete :D, D wird i Umgebug vo D bzgl. ihrer "Veräderug" utersucht. De. 4. Dieretilquotiet Die i eier Umgebug vo deiierte Fuktio

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

f) n n 2 x x 4 für n gerade; x für n ungerade

f) n n 2 x x 4 für n gerade; x für n ungerade R. Brik http://brik-du.de Seite 7.09.0 Lösuge Poteze I Ergebisse: E E E Ergebisse ( ) = 9 ; ( ) = 7 ; ( ) = 8 ; = ; 7 = ; = 7 ; = 9 ; ( ) = 7 9 Ergebisse x x x x x x ) ( + ) = + ( + ) = + c) x + x = (

Mehr

Mathematik. Beträge und Ungleichungen. Absoluter Betrag. y < r ist also gleichwertig mit r < y < r

Mathematik. Beträge und Ungleichungen. Absoluter Betrag. y < r ist also gleichwertig mit r < y < r Mthemtik Beträge ud Ugleichuge Absoluter Betrg Es sei IR. Uter dem bsolute Betrg vo versteht m geometrisch de Abstd des der Zhl etsprechede Puktes vom Nullpukt. Für beliebiges reelles gilt Nch Defiitio

Mehr

Zufallsvariablen und Wahrscheinlichkeitsverteilungen

Zufallsvariablen und Wahrscheinlichkeitsverteilungen Zufllsvrible ud Whrscheilichkeitsverteiluge Kombitorik Zusmmestellug bzw. Aordug vo Elemete Kombitorik mit Berücksichtigug der Reihefolge ohe Berücksichtigug der Reihefolge Permuttioe Vritioe ohe Wiederholug

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Definition einer Gruppe

Definition einer Gruppe Defiitio eier Gruppe Uter eier Gruppe versteht i der Mthetik eie Ahl vo Eleete, die durch Regel i Beiehug stehe. Bediguge für eie thetische Gruppe: I. Verküpfug weier beliebiger Eleete (ud dit uch ds Qudrt

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Grundwissen Mathematik 9. Klasse. Eigenschaften - Besonderheiten - Beispiele

Grundwissen Mathematik 9. Klasse. Eigenschaften - Besonderheiten - Beispiele Grudwisse Mthemtik 9. Klsse Theme Erweiterug des Zhlebereichs reelle Zhle Eigeschfte - Besoderheite - Beispiele Jede rtiole Zhl k ls Bruch geschriebe werde: = q p Dieser Bruch stellt etweder eie gze Zhl,

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgabe ud e Ausarbeitug der Übugsstude zur Vorlesug Aalysis I Witersemester 008/009 Übug am 8..008 Übug 5 Eileitug Zuerst soll auf de aktuelle Übugsblatt ud Stoff der Vorlesug eigegage werde. Dazu werde

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

Algorithmentheorie Randomisierung

Algorithmentheorie Randomisierung Algorithmetheorie 03 - Radomisierug Prof. Dr. S. Albers Prof. Dr. Th. Ottma Radomisierug Klasse vo radomisierte Algorithme Radomisierter Quicksort Radomisierter Primzahltest Kryptographie 2 1. Klasse vo

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Istitut für Kryptogrphie ud Sicherheit Prof. Dr. Jör Müller-Qude Dirk Achebch Tobis Nilges Vorlesug Theoretische Grudlge der Iformtik Übugsbltt Nr. 1 svorschlg Aufgbe 1 (K) (4 Pukte): Edliche Automte ud

Mehr