Numerisches Integrieren

Größe: px
Ab Seite anzeigen:

Download "Numerisches Integrieren"

Transkript

1 Numerisches Itegriere Ac I der Prxis werde Itegrle i der Regel umerisch, lso pproximtiv, bestimmt. Dzu solle hier verschiedee Algorithme betrchtet werde ( Rechteck, Mitterechteck, Trpez, Simpso, Romberg ). Die Rechtecksitegrtio (Utersumme;Obersumme) Hier werde zwische Grph vo f ud x-achse über [;b] Rechtecke eibeschriebe bzw. umbeschriebe. Die Summe der Rechtecksflächeihlte et m Utersumme U bzw. Obersumme O, wobei die Azhl der Zerlegugsstreife gibt. Für die Breite h jedes eizele Rechtecks gilt: h = (b-) /. Flls f mooto steiged ist, so gilt: U = h f ( + i h) ud i = 0 O = h f ( + i h) i = Für mooto flledes f gilt ds Umgekehrte. Für icht mootoe f (Grfik Nr. 3) muss m dere Formel verwede, bei dee ds Mximum bzw. Miimum vo f im betreffede Teilitervll gesucht werde muss. Algorithmus für mooto steigede Fuktioe: Eigbe (, b,, f) h = (b-)/ summe = 0 x = für i vo 0 bis - wiederhole summe = summe + f(x) x = x + h Ede utersumme = summe h obersumme = utersumme + (f(b)-f()) h Beispiel: f(x) = x³ ; [ 0 ; ] U 0 = 0, (0,³ + 0,4³ + +,8³) = 3,4 O 0 = 0, (0,³ + 0,4³ + +,0³) = 4,84 U 00 = 0,0 (0,0³ + 0,04³ + +,98³) = 3,904 O 00 = 0,0 (0,0³ + 0,04³ + +,0³) = 4,0804 M erket eie Aäherug de exkte Itegrlwert 4,0.

2 Die Mitterechtecksitegrtio Sttt der Rechtecksbegrezuge k m uch dere Mitte ls Stützstelle der Itegrtio verwede. So erhält m die Mitterechtecksformel. M = h f ( + ( i 0,5) h) i = Der Vorteil ist hier, dss uch Fuktioe mit Polstelle de Räder itegriert werde köe. Algorithmus: Eigbe (, b,, f) h = (b-)/ summe = 0 x = + h/ für i vo bis wiederhole summe = summe + f(x) x = x + h Ede mitterechteckssumme = summe h Beispiel : f(x) = x³ ; [ 0 ; ] M 0 = 0, (0,³ + 0,3³ + +,9³) = 3,98 M 00 = 0,0 (0,0³ + 0,03³ + +,99³) = 3,9998 Die Aäherug de exkte Itegrlwert 4,0 ist ersichtlich. Beispiel 4: f(x) = x -/3 = ; [ 0 ; ] ; f besitzt eie Polstelle bei x = 0. 3 x Es etsteht ei sog. ueigetliches Itegrl mit dem Wert 3,0! M 0 = 0, (0,05 -/3 + 0,5 -/ ,95 -/3 ),33 M 00 = 0,0 (0,005 -/3 + 0,05 -/ ,995 -/3 ),69 M 000 = 0,00 (0,0005 -/3 + 0,005 -/ ,9995 -/3 ),86 M 0000 = 0,000 (0, /3 + 0,0005 -/ , /3 ),93 M = 0,0000 (0, /3 + 0, / , /3 ),97 Die Aäherug de exkte Wert ist mühsm.

3 Die Trpezitegrtio Bildet m ds rithmetische Mittel us Utersumme ud Obersumme, so erhält m die Trpezformel. Bei dieser Methode wird jedes Fuktiosteilstück (durch Streckebschitte) lier pproximiert! h T = ( U + O ) / = [ f ( + i h) + f ( + i h)] = i = i = 0 i = h [ f ( + i h) + f ( ) + f ( b)], lso f ( ) + f ( b) T = h [ + f ( + i h)] i = Algorithmus: Eigbe (, b,, f) h = (b-)/ summe = (f()+f(b))/ x = +h für i vo bis - wiederhole summe = summe + f(x) x = x + h Ede trpezsumme = summe h Beispiel: f(x) = x³ ; [ 0 ; ] T 0 = 0, ((0³+³)/ + 0,³ + 0,4³ + +,8³) = 4,04 T 00 = 0,0 ((0³+³)/ + 0,0³ + 0,04³ + +,98³) = 4,0004 Die Aäherug de exkte Itegrlwert 4,0 ist ersichtlich.

4 Die Simpso-Itegrtio Die Idee der Simpso-Itegrtio ist, ds Itervll [;b] i m Teilitervlle zu zerlege, i dee ds jeweilige Fuktiosstück durch Prbelsegmete pproximiert wird. Zuächst sei die (eifche) Simpso-Formel für ei eiziges Prbelsegmet über [;b] betrchtet : p(x) = ux²+vx+w (Prbel) sei eie Näherug für f(x). p soll mit f übereistimme de Stelle, b, (+b)/. Für ds Itegrl gilt b u 3 v b u 3 3 v p( x) dx = [ x + x + wx] = ( b ) + ( b ) + w( b ) 3 3 Es lässt sich u zeige, dss gilt: b + b u 3 3 v [ p( ) + 4 p( ) + p( b)] = ( b ) + ( b ) + w( b ) 6 3 D p(x) eie Approximtio für f(x) ist, folgt d uch b b + b f ( x) dx [ f ( ) + 4 f ( ) + f ( b)] eifche Simpso-Formel bzw. Keplersche Fssregel 6 Beispiel: f(x) = -x³ + 7x² 9x + im Itervll [;7]. Mittels der obige Näherugsformel errechet m : f()=98 f(7)=56 f(4)=40 Itegrläherug = 74. Dies ist sogr der exkte Wert für ds Itegrl!! Rechts ist die grfische Verschulichug zu sehe. Die Summe der schrffierte Rechtecksflächeihlte ist gleich dem gesuchte Itegrlwert. p(x) stimmt de 3 Stützstelle ;4;7 mit f(x) überei. Es gilt: p(x) = -7x²+49x+56 Zer legt m ds Itervll [;b] i m gleich große Teilitervlle ud pproximiert f durch m Prbel, so lässt sich die eifche Simpso-Formel uf lle diese Itervlle wede. Die Itervllbreite (zwische Stützstelle) ist d (b-) / (m). Somit ht m eie gerde Azhl vo Itervlle, d j jedes Prbelsegmet i Itervlle ufgeteilt wird ( mit je 3 Stützstelle ). Für ds Itegrl ergibt sich folgedes: h b f ( x) dx [ f ( ) + f ( b) + f ( + i h) + 4 f ( + (i ) h)] ; h = 3 m b m m i = i = ( Simpso-Formel für m Stützstelle ) Amerkug: Für Polyome bis zum Grd = 3 liefert die Simpsoformel exkte Itegrlwerte!

5 Algorithmus für die Simpso-Formel mit m Stützstelle : Eigbe (, b, m, f) h0 = (b-)/m h = h0/ summe = 0 summe = 0 x = + h für i vo bis m- wiederhole summe = summe + f(x+h) summe = summe + f(x) x = x + h0 Ede summe = summe + f(x) simpsosumme = (f()+f(b)+ summe+4 summe) h/3 Beispiel: f(x) = x 4 ; [ 0 ; ] ; exkter Wert: 0, m=5: D ist m=0 ud h = 0, S 0 = 0,/3 [ (0, 4 + 0,4 4 +0,6 4 +0,8 4 ) + 4 (0, 4 + 0,3 4 +0,5 4 +0,7 4 +0,9 4 ) ] = /30 ( + 0, ,9669 ) = 6,0004 / 30 = 0, Also bereits eie recht gute Approximtio!

6 Newto-Cotes-Formel Die Trpezformel sowie die Simpso-Formel gehöre zur Klsse der so gete Newto-Cotes-Formel. Die llgemeie Form hierfür ist : b ( ) b α i i = 0 I = f ( + i )] ( ) Für die Gewichte α gilt folgede Tbelle : i Nme ( ) α i ( i = 0,,..., ) Trpez - Regel / / Simpso - Regel /3 4/3 /3 3 3/8 - Regel 3/8 9/8 9/8 3/8 4 Mile - Regel 4/45 64/45 4/45 64/45 4/ /88 375/88 50/88 50/88 375/88 95/88 6 Weddle - Regel 4/40 6/40 7/40 7/40 7/40 6/40 4/40 Für größere sid die Newto-Cotes-Formel wege des Auftretes egtiver Gewichte ubruchbr. Bei gerde -Werte werde Polyome bis zum Grd (+) exkt itegriert, bei ugerdem ist die Itegrtio exkt für Polyome bis zum Grd. =3 bedeutet, dss mit eiem Polyom vom Grd =3 pproximiert wird. Ausgeschriebe erhält m für =3 die Itegrläherugsformel: b b 3 9 b 9 b 3 b f ( x) dx [ f ( ) + f ( + ) + f ( + ) + f ( + 3 )] bzw. vereifcht b b b 9 + b 3 f ( x) dx [ f ( ) + f ( ) + f ( ) + f ( b)] ud weiter vereifcht b b + b + b f ( x) dx [ f ( ) + 3 f ( ) + 3 f ( ) + f ( b)] ( Newto-Cotes 3/8-Formel ) 8 3 3

7 Die Romberg-Itegrtio (Romberg-Schem) Ds Romberg-Verfhre ist eie Methode der Kovergezbeschleuigug. Ausgehed vo eier Trpezäherug für ds zu berechede Itegrl wird eie gege de Itegrlwert kovergierede Folge vo Näheruge R[0,k] kostruiert. Durch Lierkombitio der Folgeglieder erhält m bessere Näheruge R[i,k]..Schritt: Bereche R[0,0] = h/ [f()+f(b)] mit h = b-.schritt: Für k vo bis bereche k R[0, k ] b R[0, k] = + h f [ + ( j ) h] ; h = k j = 3.Schritt: Für i vo bis Für k vo 0 bis -i R[ i, k] = i 4 R[ i, k + ] R[ i, k] i 4 ( Lierkombitioe ) Schem: R 00 R 0 R 0 R 0,- R 0,- R 0 R 0=(4R 0-R 00)/3 R R R,- R,- R 0=(6R -R 0)/5 R R R,-... R -,0 R -, R 0 Algorithmus Romberg-Schem : Eigbe (, b,, f) h = b- r[0,0] = h/ (f()+f(b)) für k vo bis wiederhole h = h/ summe = 0 für j vo bis ^(k-) wiederhole summe = summe + f(+(j-) h) ede r[0,k] = r[0,k-]/ + h summe ede für i vo bis wiederhole für k vo 0 bis -i wiederhole r[i,k] = (4^i r[i-,k+]-r[i-,k])/(4^i-) ede ede rombergwert = r[,0]

8 Beispiel : f(x) = x² ; [;3] ; wähle = 3 k=0 k= k= k=3 i= ,75 8,6875 Zeile 0 wird berechet gemäß der Schritte ud! i= 8,6 8, 6 8, 6 Zeile bis 3 werde berechet gemäß Schritt 3. Z.B. R 0 = (4 9-0)/3 = 8,6. i= 8, 6 8, 6 i=3 8, 6 Beispiel : f(x) = e x ; [0;] ; wähle = 4, , , , , , , , , , , , , , , ( 3 Nchkommstelle sid richtig ) ( zum Vergleich; exkt uf 6 Nchkommstelle ) Beispiel 3: f(x) = si(x) ; [0; ] ; wähle = 4 0, , , , , , , , , , , , , , , Amerkug: Der exkte Wert ist,0.

9 Adptive Itegrtio Alle bisher betrchtete Verfhre berücksichtigte icht die Ttsche, dss bei viele Fuktioe die Steiguge i Teilitervlle sehr uterschiedlich verlufe. Dher sollte m i Itervlle mit strker Steigug mehr Stützstelle verwede ud i Itervlle mit schwcher Steigug dere weiger ( siehe Grfik ). M spricht i diese Fälle vo dptiver (gepsster) Itegrtio. Beispiel: f ( x) = 6 x ; [0;4] Stützstellewhl z.b. : 0,5 3 3,5 3,5 3,75 3,875 4 Vorgehesweise (dptive Itegrtio): 0. Schritt: Gib eie Tolerz tol vor, z.b. tol = e-.. Schritt: Bereche eie Näherug s i [;b], z.b. mit der eifche Simpso-Formel. 3. Schritt: Bestimme die Mitte m vo [;b]. m = (+b)/. 4. Schritt: Bereche eie Näherug s i [;m] sowie s i [m;b]. 5. Schritt: Flls s - (s+s) < tol, d ist ds Itegrl = s+s. Ede! Aderflls führe die Schritte bis 5 für die Itervlle [;m] ud [m;b] durch. Amerkuge: Wege der Verwedug der Simpso-Formel werde keie Fuktioe mit Lücke oder Polstelle de Itervllede kzeptiert. Verwedet m stttdesse die Mitterechtecksmethode, d köe uch derrtige Fuktioe berücksichtigt werde. Die Rechezeit ist ber deutlich läger! Noch wesetlich besser ist die Methode ch Guß-Krorod ; hier ist jedoch die Theorie kompliziert! Algorithmus dptive Simpso-Itegrtio : Eigbe (, b, f, tol) // tol = Tolerz (z.b. E-6) itegrl = 0.0 itegriere(,b) itegrlwert = itegrl itegriere(,b) s = simpso(,b) m = (+b)/ s = simpso(,m) s = simpso(m,b) teilit = s+s flls s-teilit < tol itegrl = itegrl + teilit sost itegriere(,m) // rekursiver Aufruf itegriere(m,b) ede sost ede itegriere // rekursiver Aufruf simpso(,b) rückgbe (f()+4 f((+b)/)+f(b)) (b-)/6; ede simpso

10 Beispiel : f(x) = x/(x²-) ; [.00;0] Zu Begi müsse viele Stützstelle verwedet werde, m Ede weige. Der exkte Itegrlwert ist übriges I = 0,5 [ l(x+)+l(x-) ] 0,00 = [ l()+l(9)-l(,00)-l(0,00) ] / = l(99/0,0000) / = l( /667) / Dies ist c. 5, Mit dem dptive Simpso-Algorithmus berechet Jv7 bis uf Nchkommstelle geu: Beispiel (siehe Grfik obe): f(x) = (6-x²) ; [0;4]. Jv7: (Simpso; 3 richtige Nchkommstelle) Beispiel 3 : f(x) = si(x)/x ; [0;3]. Fuktio mit Lücke bei x = 0. Jv7: (Mitterechteck; 8 richtige Nchkommstelle) Beispiel 4: f(x) = x -/3 = ; [ 0 ; ] ; f besitzt eie Polstelle bei x = 0. 3 x Es etsteht ei sog. ueigetliches Itegrl mit dem Wert 3,0! Jv7: (Mitterechteck; erstulich präzise!)

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Numerische Methoden zur Lösung bestimmter Integralen

Numerische Methoden zur Lösung bestimmter Integralen Prof. Dr.-Ig. Dirk Rbe, FB Tecik Mtemtik I A Numerisce Metode zur Lösug bestimmter Itegrle D es oft scwierig oder sogr umöglic ist, die Stmmfuktio durc eie bekte Fuktio uszudrücke, ist es oft sivoll/eifcer

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h.

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h. Vorlesug 15 Itegrlrechug 15.1 Supremum ud Ifimum Zuächst ei pr grudlegede, wichtige Defiitioe. Defiitio 15.1.1. Eie Mege M R heißt ch obe beschräkt, we es ei s R gibt, so dss x s für lle x M. M ist ch

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

4.2 Das bestimmte Integral

4.2 Das bestimmte Integral 4.. DAS BESTIMMTE INTEGRAL 63 4. Ds bestimmte Itegrl Die geometrische Iterprettio eies bestimmte Itegrls ist die Fläche uter eiem Fuktiosgrphe ft. M zerlege ei Itervl [, b] uf der t-achse äquidistt i Teilitervlle

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Versuchsprotokoll zum Versuch Nr. 4

Versuchsprotokoll zum Versuch Nr. 4 I diesem Versuch geht es drum, die Temperturbhäigkeit vo Widerstäde zu bestimme. Dies erfolgt mit folgeder Aordug: Folgede Geräte wurde dbei verwedet Gerät Bezeichug/Hersteller Ivetrummer Schleifdrhtbrücke

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr

Das Riemann-Integral und seine Eigenschaften

Das Riemann-Integral und seine Eigenschaften Ds Riem-Itegrl u seie Eigeshfte Defiitio. Sei ie Fuktio f beshräkt uf [, b]. Stimme ie beie Drboux-Itegrle überei, heißt f Riem-itegrierbr uf [, b] (oer R-itegierbr). Der gemeisme Wert heißt Riem- Itegrl

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fchbereich Mthemtik Algebr ud Zhletheorie Christi Curill Grudlge der Mthemtik LPSI/LS-M) Lösuge Bltt WiSe 00/ - Curill/Koch/Ziegehge Präsezufgbe P3)-d) Für jede der vier Mege gilt, dss die dri ethltee

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n

Carl Friedrich Gauß (Deutscher Mathematiker, 1777 bis 1855) formulierte die folgende Formel n mthphys-ole Alyss. Klsse Techk Itegrlrechug Vertefug des Itegrlegrffs De Itegrlrechug ht ds Zel, de Flächehlt krummlg egrezter Flächestücke zu ereche. Be der äherugswese Berechug der Fläche uter Polyomfuktoe

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Numerische Integration (s. auch Applet auf

Numerische Integration (s. auch Applet auf Numerische Itegratio (s. auch Applet auf www.mathematik.ch) Voraussetzuge ud Zielsetzug Voraussetzug: Eie Fuktio f sei auf dem abgeschlossee Itervall I = [a,b] stetig. b Gesucht: Bestimmtes Itegral J =

Mehr

Funktion: Grundbegriffe A 8_01

Funktion: Grundbegriffe A 8_01 Fuktio: Grudegriffe A 8_ Eie Fuktio ist eie eideutige Zuordug: Jede Wert us der Defiitiosege wird geu ei Wert us der Werteege zugeordet. Ist f eie Fuktio ud sid ud y eider zugeordete Werte, d schreit kurz:

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

War Benjamin Franklin Magier?

War Benjamin Franklin Magier? Wr Bejmi Frkli Mgier? Zusmmefssug Es wird eie Methode etwickelt, ei (fst) mgisches Qudrt der Ordug 8 k ( k ) mit fsziierede Eigeschfte herzustelle. Eileitug I seiem überus leseswerte ud bwechslugsreiche

Mehr

Ausbau der Funktionentheorie

Ausbau der Funktionentheorie Skript zum Ausbu der Fuktioetheorie I Skript zum Ausbu der Fuktioetheorie I Ausbu der Fuktioetheorie Potezfuktioe (PF) Bisher hbe wir us mit liere Fuktioe ud dere jeweiligem chrkteristische Verluf bzw

Mehr

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der

Mehr

Carmichaelzahlen und andere Pseudoprimzahlen

Carmichaelzahlen und andere Pseudoprimzahlen Crmichelzhle ud dere Pseudoprimzhle Christi Glus 26.05.2008 1 Der fermtsche Primzhltest Erierug 1 (Kleier Stz vo Fermt). Für p prim, Z, ggt(, p) 1 gilt: p 1 1 (mod p) Algorithmus 2 (Fermtscher Primzhltest).

Mehr

6 Numerische Integration

6 Numerische Integration Numerik I 251 6 Numerische Integrtion Ziel numerischer Integrtion (Qudrtur): Näherungswerte für f(t) dt. Wozu? Eine Apprtur liefere Messwerte x i = x i + ε i. Angenommen, die Messfehler ε i sind stndrdnormlverteilt

Mehr

Integralrechnung = 4. = n

Integralrechnung = 4. = n Computer ud Medie im Mthemtikuterriht WS 00/ Itegrlrehug. Allgemei Die Berehug vo Bogeläge, Shwerpukte ud Trägheitsmomete, der Areit ud des Effektivwertes eies elektrishe Wehselstromes, der Bhkurve vo

Mehr

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück.

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück. Hs Wlser, [0090331] Teilfolge der Fibocci-Folge 1 Worum geht es? Wir wähle us der Fibocci-Folge 1 3 4 5 6 7 8 9 10 11 1 13 14 1 1 3 5 8 13 1 34 55 89 144 33 377 Teilfolge us ud frge ch dere Rekursiosformel.

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

Quadratwurzeln Armin P. Barth -LERNZENTRUM, ETH ZÜRICH. Skript. Quadratwurzeln

Quadratwurzeln Armin P. Barth -LERNZENTRUM, ETH ZÜRICH. Skript. Quadratwurzeln Qudrtwurzel Armi P. Brth -LERNZENTRUM, ETH ZÜRICH Skript Qudrtwurzel Qudrtwurzel Armi P. Brth -LERNZENTRUM, ETH ZÜRICH Qudrtwurzel spiele eie sehr wichtige Rolle i der Mthemtik. Drum versuche wir, i diesem

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Gaußsches Integral und Stirling-Formel

Gaußsches Integral und Stirling-Formel Gaußsches Itegral ud Stirlig-Formel Lemma. Gaußsches Itegral Es gilt für alle a > : e ax dx π a Beweis: Wir reche: e dx ax e ax dx e ay dy e ax e ay dx dy mit dem Satz vo Fubii e ax +y dx dy. Nu verwede

Mehr

12. Integralrechnung. 12.A Das Riemann-Integral. 12. Integralrechnung 131

12. Integralrechnung. 12.A Das Riemann-Integral. 12. Integralrechnung 131 2. Itegrlrechug 3 2. Itegrlrechug Als Abschluss der Alysis i eier Veräderliche wolle wir ch der Differetitio u och die Itegrtio betrchte. D die Itegrlrechug über R sehr verschiede vo der über C ist, werde

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen.

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen. Terme Kpitel Terme Ei mthemtischer Ausdruck wie B R q q (q ) oder (x + )(x ) x heißt eie Gleichug. Die Ausdrücke uf beide Seite des -Zeiches heiße Terme. Sie ethlte Zhle, Kostte (ds sid Symbole, die eie

Mehr

Fachbereich Mathematik

Fachbereich Mathematik OSZ Kfz-Techik Berufsoberschule Mthemtik Oberstufezetrum Krftfhrzeugtechik Berufsschule, Berufsfchschule, Fchoberschule ud Berufsoberschule Berli, Bezirk Chrlotteburg-Wilmersdorf Fchbereich Mthemtik Arbeits-

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

DIE KEPLERSCHE FASSREGEL UND NUMERISCHE QUADRATURVERFAHREN

DIE KEPLERSCHE FASSREGEL UND NUMERISCHE QUADRATURVERFAHREN DIE KEPLERSCHE FASSREGEL UND NUMERISCHE QUADRATURVERFAHREN FRANK KLINKER Zusmmefssug. Wir präsetiere hier eie Vorschlg für eie motivierede Eiführug i die Volumeberechug mittels Itegrle ud i die Theorie

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

Die Berechnung des Flächeninhalts krummlinig begrenzter Flächen

Die Berechnung des Flächeninhalts krummlinig begrenzter Flächen Die Berechug des Flächeihlts krummliig egrezter Fläche Eiführug i die Itegrlrechug Teil : Die Fläche zwische der Normlprel y = x ud der x-achse im Bereich 0 x Die Fläche sieht us wie ei Dreieck, ei dem

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1 Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgg Koe Mthemtik, WS07 0.0.07. Zhlefolge.. Wozu IformtikerIe Folge bruche Kovergez vo Folge ist die Grudlge der Alysis (Differetil- ud Itegrlrechug) Trszedete Gleichuge wie x l x 50 k m äherugsweise

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Terme und Formeln Potenzen II

Terme und Formeln Potenzen II Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der

Mehr

4.5 Integralrechnung

4.5 Integralrechnung .5 Itegrlrechug Ihltsverzeichis 1 Checkliste Eiführugsufgbe Die Lösug des Problems.1 Utersumme.......................................... Ds Summezeiche...................................... Die Berechug

Mehr

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen Grphische Repräsettio vo Iterktiosusdrücke Christi Heilei, Abt. DBIS Jui 1997 1. Eileitug Dieser Bericht stellt eie eifche grphische Nottio für Iterktiosusdrücke vor, wie sie i de Berichte Grudlge vo Iterktiosusdrücke

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1?

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1? Aufge : Poteze ) We die Zhl elieig oft mit sich selst multipliziert wird, d edet ds Ergeis immer uf eie. Git es och mehr Zhle, die diese Eigeschft esitze? ) Welche Edziffer esitzt die ute stehede Summe?

Mehr

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Poteze Teil it egtive Expoete Triigsheft Alle Regel Musterbeispiele - Triigsufgbe Dtei Nr. 0 Std 9. Dezeber 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.the-cd.de 0 Potezreche

Mehr

Integralrechnung. Inhaltsverzeichnis. A. Mentzendorff Geändert: Januar 2009

Integralrechnung. Inhaltsverzeichnis. A. Mentzendorff Geändert: Januar 2009 A. Metzedorff Geädert: Jur 29 Itegrlrechug Ihltsverzeichis Ds bestimmte Itegrl ls Flächeihlt 2. Physiklische Beispiele zur Eiführug...................... 2.2 Itegrlschreibweise. Itegrle bei liere Fuktioe.............

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 07 Torste Schreier e Wert eier etermite köe wir is zu eiem Formt vo mittels dem Verfhre vo Srrusestimme. Für Mtrize, die ei höheres Formt he, köe wir die etermite mit dem estimme. zu sollte Sie im erste

Mehr

Numerische Integration

Numerische Integration Numerische Integrtion Bei vielen Problemen des nturwissenschftlichen Rechnens treten Integrle uf, die nicht in expliziter Form drgestellt werden können, sei es, dß kein geschlossener Ausdruck für eine

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

2.4.1 Geschlossene Auswertung unendlicher Reihen

2.4.1 Geschlossene Auswertung unendlicher Reihen 8 2.4 ufgbe 2.4. Geschlossee uswertug uedlicher Reihe I Prxis ist die geschlossee uswertug uedlicher Reihe, lso die explizite estimmug des Grezwerts, ur selte möglich. equem geht es, we m die Reihe ls

Mehr

mathphys-online INTEGRALRECHNUNG

mathphys-online INTEGRALRECHNUNG mthphys-olie INTEGRALRECHNUNG mthphys-olie Itegrlrechug Ihltsverzeichis Kpitel Ihlt Seite Itegrtio gzrtioler Fuktioe. Die Flächemßzhlfuktio. Die Stmmfuktio Flächeerechuge 7. Fläche zwische Grph der Fuktio

Mehr

N.6.1. Die Simpsonsche Regel zur Näherung eines bestimmten Integrals

N.6.1. Die Simpsonsche Regel zur Näherung eines bestimmten Integrals N.6.. Die Simpsosce Regel zur Näerug eies estimmte Itegrls lutet. F Simpso ) ) ) ) )... N ) ) N ) ) )) Dei geügt die Scrittweite der Formel N mit eier türlice Zl N. Der Approximtioseler wird gescätzt durc:

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $ Mthemtik für Ingenieure II, SS 9 Freitg 15.5 $Id: integrl.te,v 1.1 9/5/15 13:14:4 hk Ep $ $Id: uneigentlich.te,v 1. 9/5/15 13:1:33 hk Ep $ Integrlrechnung.5 Sonstige Integrtionstechniken Wir kommen nun

Mehr

Kapitel 4 Numerische Integration

Kapitel 4 Numerische Integration Kpitel 4 Numerische Integrtion Einführung und Motivtion Newton-Cotes-Formeln Zusmmengesetzte Integrtionsformeln Adptive Verfhren Romberg Verfhren Fzit Numerische Mthemtik II Herbsttrimester 01 1 Problemstellung:

Mehr

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume.

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume. 10 Stetigkeit Wir übertrge de Stetigkeitsbegriff für reelle Fuktioe uf metrische Räume 101 Defiitio (Stetigkeit) Seie (X, d x ), (Y,d y ) metrische Räume, f : X Y eie Abbildug Wir sge f ist stetig im Pukt

Mehr

Musterlösung zur Musterprüfung 1 in Mathematik

Musterlösung zur Musterprüfung 1 in Mathematik Musterlösug zur Musterprüfug i Mthemtik Diese Musterlösug ethält usführliche Lösuge zu lle Aufgbe der Musterprüfug i Mthemtik sowie Hiweise zum Selbstlere. Literturhiweise ) Bosch: Brückekurs Mthemtik,

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Halbleiter II. x 1 2 e ax dx = Γ ( ) verwendet werden. Außerdem gilt. 1. intrinsische Halbleiter. 4π 2 ( 2m. k b T ) a

Halbleiter II. x 1 2 e ax dx = Γ ( ) verwendet werden. Außerdem gilt. 1. intrinsische Halbleiter. 4π 2 ( 2m. k b T ) a Übuge zu Materialwisseschafte I Prof. Alexader Holleiter Übugsleiter: Jes Repp / ric Parziger Kotakt: jes.repp@wsi.tum.de / eric.parziger@wsi.tum.de Blatt 4, Besprechug:28.-3..23 Halbleiter II. itrisische

Mehr

2.3. ZAHLENREIHEN 109. Eine Reihe ist also per Definitionem genau dann konvergent, wenn die Folge ihrer Partialsummen konvergiert.

2.3. ZAHLENREIHEN 109. Eine Reihe ist also per Definitionem genau dann konvergent, wenn die Folge ihrer Partialsummen konvergiert. 2.3. ZAHLENREIHEN 109 2.3 Zhlereihe 2.3.1 Reihe Für IN, 0 sei IR. D ist die Reihe defiiert ls die = 0 m Folge (S m ) der Prtil- oder Teilsumme S m :=. = 0 Eie Reihe ist lso per Defiitioem geu d koverget,

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Die gleichen Verhältnisse, wenn wir Faktor 1 festhalten. Diese Überlegungen geben uns eine Vorstellung über das Ertragsgebirge.

Die gleichen Verhältnisse, wenn wir Faktor 1 festhalten. Diese Überlegungen geben uns eine Vorstellung über das Ertragsgebirge. Pro. Dr. Friedel Bolle Vorlesug "Miroöoomie" WS 008/009 II. Teorie der Uteremug/ 36 Pro. Dr. Friedel Bolle Vorlesug "Miroöoomie" WS 008/009 II. Teorie der Uteremug/ 37 7. Frge: Welce Eigescte be Produtiosutioe

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen

Resultate: Vertauschbarkeit von Grenzprozessen, Konvergenzverhalten von Potenzreihen 26 Gleichmäßige Kovergez ud Potezreihe 129 26 Gleichmäßige Kovergez ud Potezreihe Lerziele: Kozepte: Puktweise ud gleichmäßige Kovergez Resultate: Vertauschbarkeit vo Grezprozesse, Kovergezverhalte vo

Mehr

Fachschaft Mathematik der Staatlichen Fachoberschule und Berufsoberschule Augsburg

Fachschaft Mathematik der Staatlichen Fachoberschule und Berufsoberschule Augsburg Fchschft Mthemtik der Sttliche Fchoberschule ud Berufsoberschule Augsburg Auf de folgede Seite sid i kurzer Form die Schverhlte der Algebr drgestellt, mit eiige relevte Übugsbeispiele, i der Regel ch Schwierigkeitsgrd

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

Numerische Integrationsverfahren

Numerische Integrationsverfahren Numerische Itegrtiosverfhre Schwerpukt:Qusi-Mote Crlo Methode Teilehmer: Simo Mther Kevi Sog Kostti Lio Julie Ritter Viet-Thuog Tr Thh Le Huu Jos Peschel Gruppeleiter: Frk Feudel Adres-Oberschule, Berli

Mehr

Verallgemeinerte Heron-Verfahren für 3., 4., 5... Wurzeln und deren Optimierung

Verallgemeinerte Heron-Verfahren für 3., 4., 5... Wurzeln und deren Optimierung Verallgemeierte Hero-Verfahre für 3., 4., 5.... Wurzel ud dere Optimierug Beitrag zum Wettbewerb juged forscht 005 Marti Zöllig Has-ud-Hilde-Coppi-Gymasium Berli Zusammefassug Die Iteratiosfolge des Heroverfahres

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Ober- und Untersummen

Ober- und Untersummen Q Mthemtik GK Mrti-Niemöller-Schule Stef Krissel Q Mthemtik GK Mrti-Niemöller-Schule Stef Krissel Ober- ud Utersumme Ober- ud Utersumme mit ud uedlich viele Streife siehe uch S. 5 im Buch. Um die Geuigkeit

Mehr

Numerische Integration

Numerische Integration TU Ilmenu Institut für Mthemtik FG Numerische Mthemtik und Informtionsverrbeitung PD Dr. W. Neundorf Dtei: UEBG9.TEX Übungsufgben zum Lehrgebiet Numerische Mthemtik - Serie 9 Numerische Integrtion. Mn

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016 Tutorium Mthemti i der gymsile Oerstufe 3. Verstltug: Berechug vo Whrscheilicheite 6. ovemer 6. Komitori Permuttio: Elemete werde i eie Reihefolge gestellt Vritio: us Elemete werde usgewählt ud i eie Reihefolge

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr