Funktion: Grundbegriffe A 8_01
|
|
|
- Judith Bretz
- vor 9 Jahren
- Abrufe
Transkript
1 Fuktio: Grudegriffe A 8_ Eie Fuktio ist eie eideutige Zuordug: Jede Wert us der Defiitiosege wird geu ei Wert us der Werteege zugeordet. Ist f eie Fuktio ud sid ud y eider zugeordete Werte, d schreit kurz: f: y für die Zuordugsvorschrift, f() für de Fuktioster, yf() für die Fuktiosgleichug, D f ud W f für die Defiitios- ud Werteege. Bsp.: Betrgsfuktio Zuordugsvorschrift: Fuktioster: f() Fuktiosgleichug: y Defiitiosege: D f Q Werteege: W f Q Verschulichug vo Fuktioe A 8_ Fuktioe köe durch Wertetelle, Pfeildigre ud Fuktiosgrphe verschulicht werde. Der Fuktiosgrph esteht us de Pukte ( y) ller Wertepre der Fuktio. f: y Wertetelle: - - -,, y,, Pfeildigr: Fuktiosgrph: - - -,,, Die Stelle, der der Grph vo f, die -Achse scheidet/erührt heiße Nullstelle vo f. Der y-wert ist diese Stelle Null.
2 Liere Fuktio A 8_ Die Fuktio f: t heißt liere Fuktio für lle,t ϵ Q. We icht ders gegee ist die Defiitiosege Q. Der Grph eier liere Fuktio ist eie Gerde oder ei eigeschräkter Defiitiosege ei Teil dvo. Die Gerde ht die Steigug ud scheidet die y-achse der Stelle yt. M et t dher uch de y-achseschitt. Die Gerde steigt, flls > ud fällt, flls <. Der Grph lässt sich ithilfe des y-achseschitts ud des Steigugsdreiecks (vgl. Aildug) zeiche. f: lso ud t y-achseschitt y (Neer vo ) y (Zähler vo ) Geroche-rtiole Fuktioe A 8_ Fuktioe, die i Neer des Fuktiosters die uhägige Vrile ethlte, heiße geroche-rtiole Fuktioe. ± Eifche Beispiele sid Fuktioe der For f :. z.b. : f : oder f : Für sid diese Fuktioe icht defiiert. - Ihr Grphe heiße Hyperel ud esitze G f der Defiitioslücke eie Polstelle. G f Die Gerde ud y sid Asyptote des Grphe. Die Grphe vo f gehe durch Verschieug y ud evtl. Spiegelug der -Achse us de Grphe vo f hervor. Beispiel f : Defiitioslücke ud Polstelle ei - ; Asyptote : - ud y ; Der Grph vo f geht us de Grphe vo f durch Verschieug u LE i egtive -Richtug ud u LE i positive y-richtug hervor.
3 Liere Gleichugssystee it zwei Uekte A 8_ Liere Gleichugssystee estehe i Allgeeie us ehrere liere Gleichuge it ehrere Uekte. Lösuge vo liere Gleichugssystee it zwei Gleichuge ud zwei Uekte sid Zhlepre, die ei Eisetze eide Gleichuge erfülle: (I) y (II) - y - Mögliche Lösug: ( ; y )(, ; ) Proe: (I), (II),- - Lösugsverfhre für liere Gleichugssystee A 8_ Gleichsetzugsverfhre Beide Gleichuge werde ch dersele Vrile ufgelöst ud gleichgesetzt. Ddurch etsteht eie Gleichug it eier Uekte. (I) y -y (I ) (II) - y - y-, (II ) (I )(II ) : -yy-,, y,y Die Lösug für die zweite Vrile erhält durch Eisetze der ereits erechete Lösug i eie der Ausggsgleichuge: y i (II ):,-,, Additiosverfhre Bei Additiosverfhre werde Vielfche der Ausggsgleichuge so ddiert zw. sutrhiert, dss wieder eie Gleichug it eier Uekte etsteht. (I) y (II) - y - (I)-(II) : y-y8 8y 9 y, y i (I):,7, Eisetzverfhre Eie der eide Gleichuge wird ch eier Vrile ufgelöst ud i die dere Gleichug eigesetzt: (I) y -y (I ) (II) - y - (I ) i (II) : (-y) - y - 8-y-y - -8y -9 y, y i (I ): -,,
4 Bruchtere ud Bruchgleichuge A 8_7 Bei eie Bruchter ud ei eier Bruchgleichug kot die Vrile i Neer vor. Aus dere Defiitiosege sid lle Zhle uszuschließe, für die der Neer Null würde. U eie Bruchgleichug zu löse, ist eie dzu äquivlete Gleichug zu suche, die die Vrile icht ehr i Neer ethält. Dei köe lle dir ekte Gesetze des Bruchreches ud des äquivlete Ufores vo Tere ud Gleichuge gewdt werde. Berechug der Nullstelle vo f (vgl. A 8_ ud A 8_): Proe: ) ( g Poteze it gzzhlige Epoete A 8_8 Für Q \{ } ud Z gilt: ud Rechegesetze für Poteze ( Q, \{ } ud Z, ) Poteze it gleicher Bsis: ( ) : Poteze it gleiche Epoete: ( ) ( ) : : Beispiele: ( ) ( ) ( ) 9 ) ( 7 7 : :,, : 7
5 Ufg ud Flächeihlt des Kreises G 8_ Ufg U ud Flächeihlt A eies Kreises häge vo desse Rdius r zw. Durchesser r d : d I. U π r zw. U π π d Kreizhl π,9 ; eist reicht die Näherug π, Verdoppelt de Rdius eies Kreises, so verdoppelt uch desse Ufg, de für r U eu r eu ist π r π r ( π r) U. eu II. A r π zw. d π. A π d Hliert de Rdius eies Kreises, so ht der eue Kreis ei Viertel der Fläche des ursprüg- r r r r eu ist Aeu reu π π π r A r U π 7, 7 liche Kreises, de für Bsp.: A π π π. ( ), Strhlestz ud Ählichkeit G 8_ Werde zwei sich i Z scheidede Gerde ( g ud h ) vo zwei prllele Gerde ( AC ud BD ), die icht durch Z verlufe, geschitte, so gilt:. Je zwei Aschitte uf g verhlte sich wie die etsprechede Aschitte uf h, d.h. ZA ZC ZA ZC oder. ZB ZD AB CD. Die Aschitte uf de Prllele verhlte sich wie die Etferuge ihrer Edpukte vo Z uf g oder h, d.h. AC ZA ZC BD ZB ZD Zueider ähliche Dreiecke stie i lle etsprechede Wikel ud Seiteverhältisse üerei. Die Ählichkeit zweier Dreiecke lässt sich hd vo Ählichkeitssätze prüfe. I der oestehede Figur sid die Dreiecke ZAC ud ZBD ählich.
6 Zufll ud Whrscheilichkeit W 8_ Versuchsusgäge vo Zufllseperiete heiße Ergeisse ω. Werde lle Ergeisse zu eier Mege zusegefsst, erhält de Ergeisru Ω. Teile des Ergeisrues (Teilege) ilde Ereigisse. Ei Eleetrereigis ethält ur ei Eleet. Zufllseperiete it gleichwhrscheiliche Eleetrereigisse heiße Lplce- Eperiete. Bei Lplce Eperiete k die Whrscheilichkeit P(E) für ei Ereigis E erechet werde. Azhl der Eleete vo E P(E) Azhl der Eleete vo Ω Bei Werfe eies Spielwürfels sid die ögliche Ergeisse, die Augezhle,,,, ud Eleete des Ergeisrus Ω { ; ; ; ; ; }. Ei Ereigis ist z.b. Gerde Augezhl G { ; ; }. Es ist G Ω. Die Eleetrereigisse { }, { }, { }, { }, { }, { } he lle die gleiche Whrscheilichkeit. Es k z. B. erechet werde : P( Gerde Augezhl ) %.
Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe
Oh Gsiu Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe ezeihuge: Fuktiosvorshrift: Fuktioster kurz f( ist hier: Fuktiosgleihug = Grph eier Fuktio: ufge ud eispiele Eie Fuktio ist eie eideutige
Die Logarithmusfunktion
Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich
7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.
Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid
Grundwissen Mathematik Klasse 9
Grudwisse Mthetik Klsse Reelle Zhle: Qudrtwurzel: ist die icht-egtive Lösug der Gleichug:. Merke: heißt Rdikd ud drf icht egtiv sei! Bsp.: 7 6, 7 7 Irrtiole Zhle: Jede Zhl, die sich icht ls Bruch drstelle
POTENZEN UND WURZELN. 1. Wurzeln als Potenzen mit rationalen Zahlen als Exponenten. Potenzen und Wurzeln 1
Poteze ud Wurzel POTENZEN UND WURZELN. Wurzel ls Poteze it rtiole Zhle ls Epoete Gegee ist die Zhl. Ds Qudrt vo ist 9: = 9. Ist u ugekehrt die Zhl 9 gegee ud es ist jee ichtegtive Zhl zu erittel, dere
Logarithmus - Übungsaufgaben. I. Allgemeines
Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht
Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11
Mrek Kubic, [email protected] Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig
Potenzen, Wurzeln und ihre Rechengesetze
R. Brik http://rik-du.de Seite 9.0.00 Poteze, Wurzel ud ihre Rechegesetze Der Potezegriff Defiitio: Eie Potez ist eie Multipliktio gleicher Fktore (Bsis), ei der der Epoet die Azhl der Fktore git. : =...
Vektorrechnung. Ronny Harbich, 2003
Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),
5.6 Additionsverfahren
5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er
8.3. Komplexe Zahlen
8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse
Analysis I Probeklausur 2
WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch
Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit
Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.
Potenzen und Wurzeln
Poteze ud Wurzel.) Poteze mit türliche ud gze Epoete: Epoet Potez: Bsis Ei Produkt us gleiche Fktore lässt sich ls Potez schreie er: ( ) ( ) ( ) ( ) 8 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 ( ) 0 (
Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1
Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.
Übersicht Integralrechnung
Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die
Zusammenfassung: Komplexe Zahlen
LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo
Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen
Mthemtik Ihlt Zhlebereiche Recheopertioe Hierrchie der Recheopertioe Recheregel Brüche Recheregel für Brüche Klmmerreche Potezrechug Potezgesetze Ntürliche Zhle Zhlebereiche Jeder Zhlebereich ist eie Erweiterug
von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer
vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (
Mathematik Funktionen Grundwissen und Übungen
Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit
Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.
Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter
Inhalt 1. Zahlenbereiche / Zahlenmengen 2. Terme
Mthemtische Grudlge für die Eiggsklsse des TG Ihlt. Zhlebereiche / Zhlemege. Terme.. Grudbegriffe.. Summe ud Differeze.. Produkte.. Auflöse vo Klmmer.. Ausklmmer ud Ausmultipliziere... Ausklmmer... Ausmultipliziere...
Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest
Studiekolleg ei de Uiversitäte des Freisttes Byer Üugsufge zur Vorereitug uf de Mthemtiktest . Polyomdivisio:. Dividiere Sie! ) ( 6 8 ):( ) Lös.: ) ( 9 7 0 8 9):(6 ) Lös.: 7 9 c) ( - ):() Lös.: d) (8 9
ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel
ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete
Klasse 10 Graphen von ganzrationalen Funktionen skizzieren
Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der
Mathe Basics für's Studium
Mthe Bsics für's Studiu Grudlge zur Mthetikvorlesug eies etrieswirtschftliche Studius vo Stef Schidt Versio: J. Ihltsverzeichis Vorll... Ws ietet dieses Skript?... Für we ist dieses Skript?... TEIL Bsic
Übungsaufgaben BLF. 1. Berechne! d) 0, 2. Löse!
ohe Hilfsmittel. Bereche! ) 0 Üugsufge BLF ) lg 0, 0 c) 0 d) 0, 0 e) f) 00% vo 0, 7. Löse! ) 0, ) lg c) ( ) 0 0. Wie groß ist die Fläche des Kreises? ), cm² ) 5, cm² c) 6,5. Gi Defiitios ud Werteereich!
Grundwissen Mathematik 9. Klasse. Eigenschaften - Besonderheiten - Beispiele
Grudwisse Mthemtik 9. Klsse Theme Erweiterug des Zhlebereichs reelle Zhle Eigeschfte - Besoderheite - Beispiele Jede rtiole Zhl k ls Bruch geschriebe werde: = q p Dieser Bruch stellt etweder eie gze Zhl,
Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c
03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede
Musterlösung zur Musterprüfung 1 in Mathematik
Musterlösug zur Musterprüfug i Mthemtik Diese Musterlösug ethält usführliche Lösuge zu lle Aufgbe der Musterprüfug i Mthemtik sowie Hiweise zum Selbstlere. Literturhiweise ) Bosch: Brückekurs Mthemtik,
f) n n 2 x x 4 für n gerade; x für n ungerade
R. Brik http://brik-du.de Seite 7.09.0 Lösuge Poteze I Ergebisse: E E E Ergebisse ( ) = 9 ; ( ) = 7 ; ( ) = 8 ; = ; 7 = ; = 7 ; = 9 ; ( ) = 7 9 Ergebisse x x x x x x ) ( + ) = + ( + ) = + c) x + x = (
Die Berechnung des Flächeninhalts krummlinig begrenzter Flächen
Die Berechug des Flächeihlts krummliig egrezter Fläche Eiführug i die Itegrlrechug Teil : Die Fläche zwische der Normlprel y = x ud der x-achse im Bereich 0 x Die Fläche sieht us wie ei Dreieck, ei dem
STUDIUM. Mathematische Grundlagen für Betriebswirte
STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es
5.7. Aufgaben zu Folgen und Reihen
5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils
Johann-Philipp-Reis-Schule
Joh-Philipp-Reis-Schule Berufliche Schule es Wetterureises i Frieerg Mthemti für Fchoerschule Mthemtische Gruregel Frierich Buchert Joh-Philipp-Reis-Schule Stuieiretor Im Wigert 9 Frieerg Joh-Philipp-Reis-Schule
Carmichaelzahlen und andere Pseudoprimzahlen
Crmichelzhle ud dere Pseudoprimzhle Christi Glus 26.05.2008 1 Der fermtsche Primzhltest Erierug 1 (Kleier Stz vo Fermt). Für p prim, Z, ggt(, p) 1 gilt: p 1 1 (mod p) Algorithmus 2 (Fermtscher Primzhltest).
ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
ALGEBRA Poteze Teil it egtive Expoete Triigsheft Alle Regel Musterbeispiele - Triigsufgbe Dtei Nr. 0 Std 9. Dezeber 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.the-cd.de 0 Potezreche
Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen
Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,
1. Übungsblatt zur Analysis II
Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio
sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:
M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81
Fachbereich Mathematik
OSZ Kfz-Techik Berufsoberschule Mthemtik Oberstufezetrum Krftfhrzeugtechik Berufsschule, Berufsfchschule, Fchoberschule ud Berufsoberschule Berli, Bezirk Chrlotteburg-Wilmersdorf Fchbereich Mthemtik Arbeits-
( 3) k ) = 3) k 2 3 für k gerade
Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3
Repetitionsaufgaben Potenzen und Potenzgleichungen
Ktole Fchschft Mthetik Repetitiosufgbe Poteze ud Potezgleichuge Ihltsverzeichis A) Vorbeerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufgbe Poteze it Musterlösuge F) Aufgbe Potezgleichuge it Musterlösuge
Bildverarbeitung 2. Dipl.-Ing. Guido Heising. Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K.
Bildverrbeitug 2 Dipl.-Ig. Guido Heisig Digitle Videotechik, SS 2, TFH Berli, Dipl.-Ig. G. Heisig G. Heisig, K. Brthel Bildipultio x(,) Mipultio y(,) Bildpuktopertioe Nchbrschftsopertioe Geoetrische Trsfortioe
Terme und Formeln Potenzen II
Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der
2. Zehnerpotenzen 2.1 Zehnerpotenzen mit positivem Exponenten 2.2 Zehnerpotenzen mit negativem Exponenten 2.3 Zusammenfassung von 2.
Mthemtik Buch / 5. Poteze ud Wurzel /ZUSAMMENFASSUNG -502- Zusmmefssug: Poteze / Wurzel Potez 1 Ws ist eie Potez? 2 Poteze mit positivem Expoete 3 Poteze mit egtivem Expoete 4 Zusmmefssug vo 2. Zeherpoteze
Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.
HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH
Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.
ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede
x mit Hilfe eines linearen, zeitinvarianten
Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede
Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele
Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für
6.1 Einführung Wenn bei einer Multiplikation lauter gleiche Faktoren auftreten, so wird dafür meistens die Potenzschreibweise gewählt.
Poteziere 6 Poteziere 6. Eiführug We bei eier Multipliktio luter gleiche Fktore uftrete, so wird dfür meistes die Potezschreibweise gewählt.... = Fktore Potezwert Es ist =, =, =, : Bsis oder Grudzhl, R
Jeder Käufer der Zeitschrift darf auszugsweise Kopien für den eigenen Unterricht anfertigen.
Mthemtikiformtio Vom Potezreche zum Logrithmus Nr. Zweite korrigierte Auflge. Jur 00 ISSN -9 Mthemtikiformtio ist eie Zeitschrift vo Begbteförderug Mthemtik e.v. Herusgbe ud Redktio: Professor Dr. Hrld
Abschlussprüfung 2013 an den Realschulen in Bayern
Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die ebestehede kizze zeigt de Axialschitt eier massive
Grundwissen Mathematik 8
Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die
MATHEMATIK F 1 MEG Sek II > Formeln. Formelsammlung. Mathematik. Sekundarstufe II. --- Grundlagen & Analysis ---
MATHEMATIK F 1 MEG Sek II > Formel Formelsmmlug Mthemtik Sekudrstufe II --- Grudlge & Alysis --- MATHEMATIK F 2 MEG Sek II > Formel Ihltsverzeichis Zhlereiche & Itervlle...3 Termumformuge...3 Bruchrechug...3
Formelsammlung WS 2005/06
Forelslug WS 005/06 FH Düsseldorf Fhereih Mshieu ud Verfhrestehik Mthetik für Igeieure Prof. Dr. W. Sheideler Ausreitug: Sevd Mer Ihltsverzeihis. Zeihe für esodere Zhleege 3. Poteze 3 Reheregel für Poteze
Flächenberechnung. Flächenberechnung
Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um
1 Das Skalarprodukt und das Kreuzprodukt
Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t
7.5. Aufgaben zu Skalarprodukt und Vektorprodukt
7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,
Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis
Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug
4 Deckungsrückstellung
eckugsrückstellug 33 4 eckugsrückstellug iel: erfhre zur Erittlug des Wertes eies ersicherugsvertrgs ud der zur eckug der Risike ötige Rückstelluge des ersicherugsuterehes. Proble: Präie werde kostt gezhlt,
AT AB., so bezeichnet man dies als innere Teilung von
Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM
Klasse: Platzziffer: Punkte: / Graph zu f
Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25
Musterlösung zu Übungsblatt 2
Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.
Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12
Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls
Lambacher-Schweizer Baden-Württemberg Klasse 10. I Potenzen 6 Rationale Hochzahlen
Lmcher-Schweizer Bde-Württemerg Klsse 0 I Poteze Rtiole Hochzhle Seite Nr. Die folgede Wurzel öe m Beste vereifcht werde, we m zuerst eiml die Zhl uter der Wurzel ls Potez schreit, d die gze Wurzel ls
2.1.1 Potenzen mit natürlichen Exponenten
.. Poteze mit türliche Expoete Eie Potez (gelese: hoch ) ist eie bgekürzte Schreibweise für ds Produkt us gleiche Fktore : = wobei > eie türliche Zhl ist heisst Bsis, Expoet der Potez. Beispiele: 5 = =
Brückenkurs Mathematik Dr. Karl TH Nürnberg
Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise
Thema 8 Konvergenz von Funktionen-Folgen und - Reihen
Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche
In jeder noch so kleinen Umgebung von 2 liegen fast alle Folgenglieder. Die Folge hat den Grenzwert 2 und wir schreiben dafür: lim a = 2
0. Kovergez vo Folge ud Reihe Der i de Aschitte geometrische Folge ud Reihe eigeführte Grezwertegriff ist für die Alysis (Ifiitesimlrechug) grudleged. Im Folgede werde Grezwerte ei elieige Folge ud Fuktioe
Zusammenfassung: Gleichungen und Ungleichungen
LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge
Mittelwerte und Zahlenfolgen Beat Jaggi, [email protected]
vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, [email protected] Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie
Mathematik Vorkurs. Fachhochschule Konstanz Fachbereich Elektrotechnik & Informationstechnik Prof. Birkhölzer
Mthemtik Vorkurs Fchhochschule Kostz Fchbereich Versio 5.8 Copright 0 Versio 5.8 Copright 0 Mthemtik Wozu, Wie, Ws?.... Mthemtik Wozu?..... Hitergrud: Aspekte der Mthemtik..... Mthemtische Aspekte im Alltg
Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen
Grphische Repräsettio vo Iterktiosusdrücke Christi Heilei, Abt. DBIS Jui 1997 1. Eileitug Dieser Bericht stellt eie eifche grphische Nottio für Iterktiosusdrücke vor, wie sie i de Berichte Grudlge vo Iterktiosusdrücke
Einleitung. Aufgabe 1a/1b. Übung IV
Übug IV Eileitug Etity-Relatioship-Modell: Modellierug zu Aalyse- ud Etwurfszwecke (Phase 2 i Wasserfallodell). "diet dazu, de projektierte Awedugsbereich zu strukturiere." [Keper/Eickler: Datebaksystee]
1 Funktionen und Flächen
Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,
Folgen und Reihen. 23. Mai 2002
Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2
Mittelwerte. Sarah Kirchner & Thea Göllner
Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.
