Johann-Philipp-Reis-Schule
|
|
|
- Stefan Bader
- vor 9 Jahren
- Abrufe
Transkript
1 Joh-Philipp-Reis-Schule Berufliche Schule es Wetterureises i Frieerg Mthemti für Fchoerschule Mthemtische Gruregel Frierich Buchert Joh-Philipp-Reis-Schule Stuieiretor Im Wigert 9 Frieerg
2 Joh-Philipp-Reis-Schule Frieerg Mthemti Seite vo Fchoerschule Mthemtische Gruregel ie sichere Beherrschug er folgee mthemtische Gruregel ist eie Vorussetzug für ie erfolgreiche Teilhme m Mthemtiuterricht i er Fchoerschule!!! Flls hier Lüce estehe, liegt es i er Vertwortug er Schüler, iese zu schließe!. Vorrgregel. Putrechug geht vor Strichrechug!. Potezrechug geht vor Putrechug!. Mit Klmmer ie Priorität geäert were!. Vorzeicheregel. itio u Sutrtio Eie egtive Zhl iere heißt, e Zhlewert sutrhiere. Eie egtive Zhl sutrhiere heißt, e Zhlewert iere. ; ; ; ; Reche- u Vorzeiche gleich ergit, Reche- u Vorzeiche ugleich ergit -.. Multiplitio u ivisio " " " " ergit " " " " " " ergit " " " " " " ergit " " " " " " ergit " " gleiche Vorzeiche ergee, ugleiche Vorzeiche ergee -. Beim Teile gelte ie gleiche Regel. Buchert ugust 00
3 Joh-Philipp-Reis-Schule Frieerg Mthemti Seite vo Fchoerschule Mthemtische Gruregel. Klmmerregel. Ei - vor er Klmmer äert eim uflöse ie Vorzeiche i er Klmmer! c c. Bei mehrere Klmmereee erfolgt eie Berechug vo ie ch uße. [ ] [ ] []. Eie Summe ifferez wir mit eiem Ftor multipliziert, iem jeer Summ mit em Ftor multipliziert wir!. Summe were miteier multipliziert, iem jees Glie er erste Klmmer mit jeem Glie er zweite Klmmer multipliziert wir! 0 0. Gemeisme Summe i Summe öe usgelmmert were! c c. Bruchreche Bruch Zähler Neer. Eie Bruch erweiter heißt, Zähler u Neer mit er gleiche Zhl zw. er gleiche Vrile multipliziere! ; c c. Eie Bruch ürze heißt, Zähler u Neer urch ie gleiche Zhl zw. ie gleiche Vrile iviiere! 9 ; 9 c c Buchert ugust 00
4 Joh-Philipp-Reis-Schule Frieerg Mthemti Seite vo Fchoerschule Mthemtische Gruregel. Größter gemeismer Teiler ggt vo gegeee Zhle ist ie größte gze Zhl, ie i lle gegeee Zhle ls Ftor vorhe ist Primftorezerlegug 9 ggt Es were ur ie Ftore erücsichtigt, 0 cz c z ie i lle Zhle voromme.. Brüche iere heißt, sie uf eie gemeisme Neer Hupteer zu rige vgl. erweiter u ie Zähler zu iere! c c 9c 0. Kleistes gemeismes Vielfches gv vo gegeee Zhle ist ie leiste gze Zhl, ie lle gegeee Zhle ls Ftor ethält Primftorezerlegug 9 gv c z 0cz 0 cz c z Berücsichtigt were ie Ftore us e Zhle, i ee sie m häufigste voromme.. Brüche multipliziere heißt, Zähler mit Zähler u Neer mit Neer zu multipliziere! 0 ; ; c c c ; c c c ;. Brüche iviiere heißt, vom Teilerruch e Kehrwert Reziprowert zu ile u ie Brüche zu multipliziere! ; ; c ; c c c ; c c Buchert ugust 00
5 Joh-Philipp-Reis-Schule Frieerg Mthemti Seite vo Fchoerschule Mthemtische Gruregel. oppelrüche vgl. iviiere ; 9 c 9 c c 9 0c 9.9 Bruchstriche ersetze Klmmer!.0 Kürze vo Summe ist ur möglich, we us e Summe ei gemeismer Ftor usgelmmert were! z z z. Potezreche ;... Ftore zw. ist ie Bsis, zw. ist er Epoet. ist ie Potez, ist er Koeffiziet 0 ; ; mit 0 ;. Gleiche Poteze were iert, iem ie Koeffiziete iert u ie Poteze eiehlte were! c c c. Poteze gleicher Bsis were multipliziert, iem m ie Bsis eiehält u ie Epoete iert! [ ] ;. Poteze ugleicher Bsis mit gleiche Epoete were multipliziert, iem m ie Bse multipliziert u e Epoete eiehält ; Buchert ugust 00
6 Joh-Philipp-Reis-Schule Frieerg Mthemti Seite vo Fchoerschule Mthemtische Gruregel. Poteze gleicher Bsis were iviiert, iem m ie Bsis eiehält u ie Epoete sutrhiert! ; Schreiweise. Poteze ugleicher Bsis mit gleiche Epoete were iviiert, iem m ie Bse iviiert u ie Epoete eiehält! ;. Poteze were poteziert, iem m ie Epoete multipliziert! ; 9 9. ie Potezgesetze gelte uch für Wurzel! Schreiweise ; ; ;. Poteziere vo Summe erfolgt urch Umschreie i ei Prout mit schließeer Multiplitio vgl. Klmmerregel! 9 9 Eie Summe mit Summe heißt Biom. Biom. Biom. Biom Buchert ugust 00
7 Joh-Philipp-Reis-Schule Frieerg Mthemti Seite vo Fchoerschule Mthemtische Gruregel. Termumformug Formelumstellug Moell Eie Gleichug etspricht eier Blewge, ie sich im Gleichgewicht efiet, woei jee vollstäige Seite er Gleichug eier Wgschle etspricht. Bei Umformuge muss ieses Gleichgewicht erhlte leie. ies eeutet, ei er Gleichug muss wie ei er Blewge uf eie Seite ie gleiche Äerug vorgeomme were. ie Äerug muss sich uf ie omplette Gleichugsseite Wgschle eziehe! Umformuge, ie iese foreruge geüge, führe immer wieer uf eie Gleichug. Sie heiße Äquivlezumformuge. Umformugsopertioe ehre Recheopertioe um us wir -, us - wir, us. wir, us wir., us... wir..., us... wir.... Bei Umformuge liegt im Vergleich zu Recheopertioe eischließlich Klmmerregel umgeehrte Priorität vor. Bei e folgee Regel ist er Term ch ufzulöse. Strich-Umformug geht vor Put-Umformug!. Put-Umformug geht vor Potez-Umformug! Buchert ugust 00
8 Joh-Philipp-Reis-Schule Frieerg Mthemti Seite vo Fchoerschule Mthemtische Gruregel. Klmmer äer ie Umformugspriorität! Bei Recheopertioe he sie höchste, ei Umformuge ierigste Priorität. Beispiel Kreisrigfläche umstelle ch! Buchert ugust 00
1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6.
Ihlte Brüceurs Mthemti Fchhochschule Hover SS 0 Dipl.-Mth. Coreli Reiterger. Grudlge. Poteze, Wurzel, Logrithme. Vetorrechug 4. Trigoometrische Futioe. Differetilrechug. Itegrlrechug 7. Mtrize, Liere Gleichugssysteme
Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen
Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,
Logarithmus - Übungsaufgaben. I. Allgemeines
Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht
Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen
Mthemtik Ihlt Zhlebereiche Recheopertioe Hierrchie der Recheopertioe Recheregel Brüche Recheregel für Brüche Klmmerreche Potezrechug Potezgesetze Ntürliche Zhle Zhlebereiche Jeder Zhlebereich ist eie Erweiterug
Potenzen, Wurzeln und ihre Rechengesetze
R. Brik http://rik-du.de Seite 9.0.00 Poteze, Wurzel ud ihre Rechegesetze Der Potezegriff Defiitio: Eie Potez ist eie Multipliktio gleicher Fktore (Bsis), ei der der Epoet die Azhl der Fktore git. : =...
Repetitionsaufgaben Potenzen und Potenzgleichungen
Ktole Fchschft Mthemtik Repetitiosufge Poteze ud Potezgleichuge Ihltsverzeichis A) Voremerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufge Poteze mit Musterlösuge F) Aufge Potezgleichuge mit Musterlösuge
FORMELSAMMLUNG ARITHMETIK. by Marcel Laube
FORMELSAMMLUNG ARITHMETIK y Mrcel Lue EINFÜHRUNG... DIE OPERATIONS-STUFEN... OPERATIONE 1. STUFE: ADDITION UND SUBTRAKTION... BEZEICHNUNGEN... VORZEICHENREGEL... RECHENOPERATION. STUFE... MULTIPLIKATION:...
Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.
Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter
Aufgaben für Klausuren und Abschlussprüfungen
Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.
Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.
. Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel
ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
ALGEBRA Poteze Teil it egtive Expoete Triigsheft Alle Regel Musterbeispiele - Triigsufgbe Dtei Nr. 0 Std 9. Dezeber 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.the-cd.de 0 Potezreche
Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c
03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede
ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel
ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete
f) n n 2 x x 4 für n gerade; x für n ungerade
R. Brik http://brik-du.de Seite 7.09.0 Lösuge Poteze I Ergebisse: E E E Ergebisse ( ) = 9 ; ( ) = 7 ; ( ) = 8 ; = ; 7 = ; = 7 ; = 9 ; ( ) = 7 9 Ergebisse x x x x x x ) ( + ) = + ( + ) = + c) x + x = (
Potenzen und Wurzeln
Poteze ud Wurzel.) Poteze mit türliche ud gze Epoete: Epoet Potez: Bsis Ei Produkt us gleiche Fktore lässt sich ls Potez schreie er: ( ) ( ) ( ) ( ) 8 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 ( ) 0 (
7 Ungleichungen und Intervalle
Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,
Größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches
Größter gemeinsmer Teiler un kleinstes gemeinsmes Vielfhes 1 Der größte gemeinsme Teiler (ggt) Zu jeer Zhl knn mn ihre Teilermenge ngeen. Τ0 {1; 2; ; 5; 6; 10; 15; 0} Τ {1; 2; ; ; 6; } Die gemeinsmen Teiler
Terme und Formeln Potenzen II
Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der
5.6 Additionsverfahren
5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er
7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.
Rdiziere 7 Rdiziere 7. Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergit. x x für 0 9 9 * : Wurzelexpoet, N ud : Rdikd, 0 x: Wurzel(wer t) Poteziere: Bsis ud Expoet sid gegee,
Mathematikaufgabe 79
Home Strtseite Impressum Kotkt Gästeuh Aufge: Betrhte wir wei sih sheiee Kreise mit utershielihe ie u gemeismer Tgete Berehe Sie s Verhältis er Bogeläge vom Shittpukt es jeweilige Kreises mit er Tgete
Lambacher-Schweizer Baden-Württemberg Klasse 10. I Potenzen 6 Rationale Hochzahlen
Lmcher-Schweizer Bde-Württemerg Klsse 0 I Poteze Rtiole Hochzhle Seite Nr. Die folgede Wurzel öe m Beste vereifcht werde, we m zuerst eiml die Zhl uter der Wurzel ls Potez schreit, d die gze Wurzel ls
2. Zehnerpotenzen 2.1 Zehnerpotenzen mit positivem Exponenten 2.2 Zehnerpotenzen mit negativem Exponenten 2.3 Zusammenfassung von 2.
Mthemtik Buch / 5. Poteze ud Wurzel /ZUSAMMENFASSUNG -502- Zusmmefssug: Poteze / Wurzel Potez 1 Ws ist eie Potez? 2 Poteze mit positivem Expoete 3 Poteze mit egtivem Expoete 4 Zusmmefssug vo 2. Zeherpoteze
6.1 Einführung Wenn bei einer Multiplikation lauter gleiche Faktoren auftreten, so wird dafür meistens die Potenzschreibweise gewählt.
Poteziere 6 Poteziere 6. Eiführug We bei eier Multipliktio luter gleiche Fktore uftrete, so wird dfür meistes die Potezschreibweise gewählt.... = Fktore Potezwert Es ist =, =, =, : Bsis oder Grudzhl, R
Funktion: Grundbegriffe A 8_01
Fuktio: Grudegriffe A 8_ Eie Fuktio ist eie eideutige Zuordug: Jede Wert us der Defiitiosege wird geu ei Wert us der Werteege zugeordet. Ist f eie Fuktio ud sid ud y eider zugeordete Werte, d schreit kurz:
Inhalt 1. Zahlenbereiche / Zahlenmengen 2. Terme
Mthemtische Grudlge für die Eiggsklsse des TG Ihlt. Zhlebereiche / Zhlemege. Terme.. Grudbegriffe.. Summe ud Differeze.. Produkte.. Auflöse vo Klmmer.. Ausklmmer ud Ausmultipliziere... Ausklmmer... Ausmultipliziere...
Repetitionsaufgaben Potenzen und Potenzgleichungen
Ktole Fchschft Mthetik Repetitiosufgbe Poteze ud Potezgleichuge Ihltsverzeichis A) Vorbeerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufgbe Poteze it Musterlösuge F) Aufgbe Potezgleichuge it Musterlösuge
Komplexe Zahlen Ac '16
Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht
Formelsammlung Chemietechnik
EUROPA-FACHBUCHREIHE für Chemieberufe Wlter Bierwerth Formelsmmlug Chemietechik. Auflge VERLAG EUROPA-LEHRMITTEL Nourey, Vollmer GmbH & Co. KG Düsselberger Strße 23 4278 H-Gruite Euro-Nr.: 763 Autor Wlter
Formelsammlung Chemietechnik
EUROPA-FACHBUCHREIHE für Chemieberufe Wlter Bierwerth Formelsmmlug Chemietechik. Auflge VERLAG EUROPA-LEHRMITTEL Nourey, Vollmer GmbH & Co. KG Düsselberger Strße 23 4278 H-Gruite Euro-Nr.: 763 Autor Wlter
Formelsammlung Chemietechnik
Formelsmmlug Chemietechik Berbeitet vo Wlter Bierwerth. Auflge 205. Broschüre im Order. c. 96 S. ISBN 978 3 8085 76 3 Formt (B x L): 5,2 x 2,5 cm Gewicht: 46 g schell ud ortofrei erhältlich bei Die Olie-Fchbuchhdlug
DOWNLOAD. Potenzgesetze für rationale Exponenten. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen
DOWNLOAD Michel Körer Potezgesetze für rtiole Expoete Michel Körer Grudwisse Wurzel ud Poteze. 0. Klsse Bergedorfer Kopiervorlge Dowloduszug us dem Origiltitel: Kubikwurzel bzw.. Wurzel Aufgbe Wie groß
Die Logarithmusfunktion
Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich
= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.
Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt
9. Jahrgangsstufe Mathematik Unterrichtsskript
. Jhrggsstufe Mthetik Uterrichtsskript. Die ioische Forel Beispiel: Auftrg: Bereche die Gestfläche der oe stehede Figur uf zwei verschiedee Arte!. Möglichkeit. Möglichkeit: Teilflächeerechug Mit Zhleeispiel
Kleine Algebra-Formelsammlung
Immnuel-Knt-Gymnsium Heiligenhus Gierhrt Kleine Alger-Formelsmmlung Mittelstufe (is Klsse 0) Drgestellt sin ie wichtigsten Fkten un Gesetze, woei iverse Ausnhmeregeln wie z.b. s Verot er Division urch
Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt.
Wurzel Wurzelexpoet Radikad oder auch Basis Die Wurzel eier Zahl a ist die Zahl, die mit sich selbst malgeomme wieder a ergibt. Die -te Wurzel et ma auch Quadratwurzel, dabei lässt ma die (als Wurzelexpoet)
RESULTATE UND LÖSUNGEN
TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthemtik Kpitel 3.2 Alger Grundrechenrten RESULTATE UND LÖSUNGEN Verfsser: Hns-Rudolf Niedererger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausge:
x a 2 (b 2 c 2 ) (a + b 4 + a + weil Klammern nicht geschlossen oder Operationszeichen keine Terme verbinden.
Termnlyse Mthemtik. Klsse Ivo Blöhliger Terme Ein wihtiger Teil es mthemtishen Hnwerks esteht rin, Terme umzuformen. Dzu müssen einerseits ie Rehengesetze er reellen Zhlen verinnerliht sein, un nererseits
Terme und Formeln Potenzen I
Terme ud Formel Poteze I Die Mrgrit philosophic ist die älteste gedruckte llgemeie Ezyklopädie us dem Jhr 0 i lteiischer Sprche. Ds Werk ethält ls Uiversits literrum ds gesmte Wisse des späte Mittellters.
Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1
Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.
MATHEMATIK BASICS. Potenzen, Wurzeln und Logarithmen. Marc Peter Rainer Hofer. Ausgefülltes Exemplar für Lehrpersonen (Folienvorlagen)
MATHEMATIK BASICS Mrc Peter Rier Hofer Poteze, Wurzel ud Logrithme Ausgefülltes Eemplr für Lehrpersoe (Folievorlge) Impressum Iteret: Folievorlge ud Lerkotrolle www.hep-verlg.ch/mt/mth.sics/ ISBN -9090-96-
Mathematik PM Rationale Zahlen. Ist a kein Vielfaches von b, so entsteht eine neue Zahl, Bruch oder rationale Zahl genannt. Sie bilden die Menge Q.
Mthetik PM Rtionle Zhlen Rtionle Zhlen. Einführung Die Gleihung = 9 ht ie Lösung. Z 9 9 Die Gleihung = ht ie Lösung. Z Definition Die Gleihung =, it, Z un 0, ht ie Ist kein Vielfhes von, so entsteht eine
VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG. 1. Berechnen Sie von Hand und Beachten Sie dabei die Reihenfolge der Operationen:
Üuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG Block Die Musterlösuge werde Aed uf der Vorkurs-Hoepge ufgeschltet!. Bereche Sie vo Hd ud Bechte Sie dei die Reihefolge der Opertioe:
7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.
Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid
Mathematische Grundlagen 1. Zahlenrechnen
Mthemtische Grudlge. Zhlereche Ihltsverzeichis:. Zhlereche..... Die Grudrecherte..... Reche i der Mege der türliche Zhle..... Reche i der Mege der gze Zhle... 5.. Reche i der Mege der rtiole Zhle... 7...
Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit
Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.
3. Das Rechnen mit Brüchen (Rechnen in )
. Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl
1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen
Inhlte Brückenkurs Mthemtik Fchhochschule Hnnover SS 00 Dipl.-Mth. Corneli Reiterger. Grundlgen. Summenzeichen, Produktzeichen. Fkultät, Binomilkoeffizient. Potenzen, Wurzeln, Logrithmen. Elementre Funktionen
multipliziert und der Ausdruck dann in Real- und Imaginärteil aufgespaltet: Zur Berechnung der Phase werden Zähler und Nenner zunächst mit 1 F F
8 requezgg lierer Sstee 9 t t t e e e Jede Differetitio etspricht lso eier Multipliktio it! Setze wir diese ere i die Differetilgleichug 87 ei, so erhlte wir ür de requezgg ergit sich lso 88 Beispiel:
( 3) k ) = 3) k 2 3 für k gerade
Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3
Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2
Formelsmmlug Gere urh zwei Pukte A( 3 ) u B( 3 ) g AB : 3 Eee urh rei Pukte A( 3 ), B( 3 ) u C( 3 ) [Eee i Prmeterform] E ABC : 3 s 3 Eee urh Gere u Pukt. Sei P( p p p 3 ) u g : We ie Eee urh ie Gere g
a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert
8. Potenzen 8. Einführung in Potenzen / Wurzeln / Logrithmen Neen den klssischen Grundrechenopertionen git es weitere Opertionen, welche Beziehungen zwischen Zhlen schffen: Potenzieren Rdizieren Wurzelziehen)
Analysis I SS Zusammenfassung Stephan Weller, Juli 2002
Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud
5.7. Aufgaben zu Folgen und Reihen
5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils
2.1.1 Potenzen mit natürlichen Exponenten
.. Poteze mit türliche Expoete Eie Potez (gelese: hoch ) ist eie bgekürzte Schreibweise für ds Produkt us gleiche Fktore : = wobei > eie türliche Zhl ist heisst Bsis, Expoet der Potez. Beispiele: 5 = =
Übungen zu den Potenzgesetzen
Üuge u de Potegesete Multiplitio ud Divisio vo Potee it gleicher Bsis. ) d p d q d p q. ). ) + + + p p + p p p + +. ) ²(³ + ) ³( + ) ³(² - ) ( + - ) ( + - ) - ( + ). ) (² + ³)² ( )² ( + )² ( )² (² + ³)²
Übungen zu den Potenzgesetzen
Üuge u de Potegesete Multiplitio ud Divisio vo Potee it gleicher Bsis. d p d q d p q.. + + + p p+ p p p+ +. ²(³ + ) ³( + ) ³(² - ) ( + - ) ( + - ) - ( + ). (² + ³)² ( )² ( + )² ( )² (² + ³)² ( )² (d d
Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz
Ihaltsverzeichis Biomialoeffiziete ud Biomischer Satz 1 Der biomische Lehrsatz wird als eie gaze Zahl vorausgesetzt, für die gilt: 0. a ud b werde als reelle Zahle vorausgesetzt, die icht Null sid. Bemerug:
2. Das Rechnen mit ganzen Zahlen (Rechnen in )
. Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.
Mathe Basics für's Studium
Mthe Bsics für's Studiu Grudlge zur Mthetikvorlesug eies etrieswirtschftliche Studius vo Stef Schidt Versio: J. Ihltsverzeichis Vorll... Ws ietet dieses Skript?... Für we ist dieses Skript?... TEIL Bsic
Vektorrechnung. Ronny Harbich, 2003
Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 1. Semester ARBEITSBLATT 9 MULTIPLZIEREN MIT MEHRGLIEDRIGEN TERMEN
Mathematik: Mag. Schmi Wolfgang Areitslatt 9 1. Semester ARBEITSBLATT 9 MULTIPLZIEREN MIT MEHRGLIEDRIGEN TERMEN Ein neues Prolem ergit sich, wenn wir mehrere mehrglierige Terme 3x+ 1 4 x = miteinaner multiplizieren
4. Lineare Gleichungen mit einer Variablen
4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch
Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen
Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die
