5.6 Additionsverfahren

Größe: px
Ab Seite anzeigen:

Download "5.6 Additionsverfahren"

Transkript

1 5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er mit etgegegesetzte Vorzeihe) vorhde sei. Beispiele (G x ) ) () x + y 8 () x - y Es spielt für ds Löse ud ds Ergeis keie Rolle, welhe Vrile zuerst wegfällt, wie us der folgede Musterlösug ersihtlih ist. Vrite x soll zuerst wegflle Vrite y soll zuerst wegflle Defiitiosmege Defiitiosmege D x D x Gleihug(e) umforme Gleihug(e) umforme Gleihug(e) geeiget multipliziere Gleihug(e) geeiget multipliziere hier Gleihug () mit Gleihug () mit (-) () x + y 8 ()' 6x + y 6 () x - y ( - ) ()' -6x + 9y - hier Gleihug () mit Gleihug () muss iht multipliziert werde () x + y 8 ()' 9x + y 5 Elimiiere eier der Vrile Elimiiere eier der Vrile Die eide Gleihuge ddiere Die eide Gleihuge ddiere ()' 6x + y 6 ()' 9x + y 5 ()' -6x + 9y - () x - y y + 9y 6-9x + x 5 + Verleiede. Vrile usrehe Verleiede. Vrile usrehe y x 55 y x 5. Vrile usrehe. Vrile usrehe De Wert der erehete Vrile i eier der eide Ausggsgleihuge eisetze. hier y i Gleihug () De Wert der erehete Vrile i eier der eide Ausggsgleihuge eisetze. hier x i Gleihug () x + y 8 ud y x + y 8 ud x 5 x x y y 8-5 x 5 y Lösugsmege Lösugsmege L { ( 5 ) } L { ( 5 ) } 86 Gleihugssysteme mit zwei Vrile

2 ) () x + y 7 () 7x + 6y 0 D x Defiitiosmege D x Gleihug(e) umforme / geeiget multipliziere () x + y 7 ( - ) ()' -8x - 6y - () 7x + 6y 0 Elimiiere eier der Vrile ()' -8x - 6y - () 7x + 6y 0 -x - ( - ) Ürig gelieee. Vrile usrehe x. Vrile usrehe (hier x i Gleihug () eisetze) + y 7-6 y -9 y - Lösugsmege L { ( - ) } L { ( - ) } d) () 5x - 8y -6 () x + 6y -7 D x Defiitiosmege D x Gleihug(e) umforme / geeiget multipliziere () 5x - 8y -6 ()' 0x - 6y - () x + 6y -7 ( -5 ) ()' -0x - 0y 5 Elimiiere eier der Vrile ()' 0x - 6y - ()' -0x - 0y 5-6y ( -6 ) Ürig gelieee. Vrile usrehe y -½. Vrile usrehe (hier y i Gleihug () eisetze) x + 6 ( -½ ) -7 x x - x - Lösugsmege L { ( - -½ ) } L 88 Gleihugssysteme mit zwei Vrile

3 6.. pq-formel Nee de eide mthemtishe Methode der Fktorzerlegug ud der qudrtishe Ergäzug git es uh Lösugsmethode, die uf Formel siere die pq- ud die -Formel der qudrtishe Gleihuge. He wir eie qudrtishe Gleihug, ei der vor dem x der Fktor steht, lässt sih die pq-formel wede. Normlform x + px + q 0 x, p ± p q Die mthemtishe Herleitug der pq-formel köe Sie im Kpitel 6.. hvollziehe. Allgemeies Lösugsvorgehe Defiitiosmege estimme Gleihug i die pq-normlform rige (we ötig), ud die Werte für p ud q estimme Ahtug Die Vorzeihe vo p ud q uh üerehme. Werte für p ud q i der Formel eisetze (ikl. Vorzeihe ) Vrile x ud x usrehe Lösugsmege estimme Beispiele (G ) ) x + x - 0 D Wir estimme zuerst p ud q. (flls der Fktor vor x ist, muss die Gleihug oh durh diese dividiert werde) x + x - 0 p q Die Vorzeihe gehöre zu p ud q dzu Die Werte für p ud q i der Formel eisetze p, q - x, ± (-) Vrile x ud x usrehe x, ± + x, ± 5 x, ± 5 x x -7 x x L { 7 ; } Qudrtishe Gleihuge

4 ) x - 6x - D Gleihug i die pq-normlform rige x - 6x - + x - 6x + 0 (d.h. durh de Fktor vor x dividiere) x - x + 0 x - x + 0 p q Die Werte für p ud q i der Formel eisetze p -, q x, - ± - Vrile x ud x usrehe x,.5 ±.5 x,.5 ±. 5 x,.5 ± x x x 0.89 x.680 L { 0.8 ;.6 } ) x - x 5 D D x - x 5 x - x x - x p q x, ± ( 5) x,.5 ± x,.5 ± x,.5 ± 7.5 x -6, x 9 L { -6 ; 9 } L { -6 ; 9 } Qudrtishe Gleihuge

5 Aufge 6.5 Bestimme Sie die Defiitios- ud Lösugsmege der folgede Gleihuge i der Grudmege mit Hilfe der -Formel. ) 5x + 0x 75 0 D L { -5 ; } ) x x 8 D L ; ) 5x + x 8 0 D L { -. ; } d) x x 0 0 D L { -.6 ; 7.6 } e) x 5x + D L f) 6x + 0 9x D L ;. ; 5 g) x 0x D L { - ;.5 } h) 8x x 0.5 D L i) x 5x 8 D L ; 8 ; 7 j) 5x + x 7.5 D L { -. ;.5 } k) ( x )(x + ) 0 D L ; l) ( x )(5x + ) 5x D L { -0.6 ; 0.86 } 0 Qudrtishe Gleihuge

6 ) Die Summe zweier türliher Zhle eträgt 8. Teilt m die grössere durh die kleiere, erhält m, ud es leit ei Rest vo. Wie heisse die eide Zhle? Alyse grössere Zhl kleiere Zhl Resultt ) + 8 ), Rest Tipp Sutrhiert m de Rest vo der grössere Zhl, so ergit die Divisio keie Rest mehr, soder geu. oder - Lösug mit ur Uekte Lösug mit Uekte ( [grössere Zhl] - Rest) [kleiere Zhl] () [grössere Zhl] + [kleiere Zhl] 8 () ( [grössere Zhl] Rest) [kleiere Zhl] x grössere Zhl 8 - x kleiere Zhl x grössere Zhl y kleiere Zhl x () x + y 8 8 x () x y D \ { 8 } x 8 x (8 - x) x - (8 - x) usmultipliziere x x + x 5x x x D x () x + y 8 x 8 y () x y x y + Gleihsetzugsverfhre 8 - y y + + y 8 5y y 5 y 7 kleiere Zhl 8 - x 8-7 y eisetze ud x erehe x 8 - y x 8-7 x Die Zhle lute ud 7. Proe , Rest Gleihuge Textufge

7 ) Zähler ud Neer eies Bruhes ergee zusmme. Zählt m zum Zähler ud Neer je die Zhl 7 dzu, erhält der Bruh de Wert. Wie heisst der Bruh? Alyse () Zähler + Neer () Zähler Neer () [Zähler] + [Neer] () ( [Zähler] + 7 ) ( [Neer] + 7 ) Lösug mit ur Uekte x Zähler - x Neer Lösug mit Uekte x Zähler y Neer x + 7 () x + y ( x) + 7 () x + 7 y + 7 D \ { 8 } x x (8 - x) ( x + 7 ) ( 8 x ) x x + x 7x x 56 7 x 8 D x \ { -7 } () x + y - y x y + x -y + 8 () x + 7 (y + 7) y + 7 ( x + 7 ) ( y + 7 ) x + 8 y x y - 7 Neer - x - 8 Gleihsetzugsverfhre -y + 8 y y 8 7y y 7 y y i Gleihug () eisetze x + y x + x 8 Der Bruh lutet 8. Gleihuge Textufge 5

8 8.5 Reheregel für Poteze mit gleiher Bsis 8.5. Additio / Sutrktio ) + + (iht ddierr) Poteze mit utershiedlihe Expoete köe iht ddiert werde. Ds leuhtet ei, we wir mit m ersetze ud us ewusst werde, dss m ei Flähe- ud m ei Volumemss ist. ) + ) - d) ( - ) + Fzit Nur Poteze mit gleiher Bsis ud gleihem Expoet köe ddiert / sutrhiert werde Multipliktio ) ( + ) 5 weil ) 5 5 ( + ) 6 0 weil 5 ) 7 ( 7 + ) 8 d) 5 ( 5 + ) 8 Fzit Poteze mit gleihe Bse werde multipliziert, idem die Expoete ddiert werde Divisio ) ( ) weil ) (6 ) 6 ( ) weil 6 6 ) 8 ( 8 ) 7 d) 6 5 (9 ) 6 9 ( 5 ) Fzit Poteze werde dividiert, idem die Expoete voeider sutrhiert werde. Poteze 99

9 Aufge 8.8 Berehe Sie die folgede Ausdrüke, ud shreie Sie ds Resultt ohe Prmeter im Neer, soder lleflls mit egtivem Expoete. ) ( ) ) ) e) () g) () d) f) 8 h) 5 () i) ( ) 5 Aufge 8.9 Berehe Sie die folgede Ausdrüke, ud shreie Sie ds Resultt ohe Prmeter im Neer, soder lleflls mit egtivem Expoete. ) ) ) d) e) f) g) h) i) j) 9 () () Poteze 5

5.6 Gleichsetzungsverfahren

5.6 Gleichsetzungsverfahren .6 Gleihsetzungsverfhren Verfhren: Beide Gleihungen des Gleihungssystems werden nh derselen Vrilen ufgelöst und die entsprehenden Terme werden einnder gleihgesetzt. Beispiele (G x ) ) () x + y () x - y

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthemtik Repetitiosufge Poteze ud Potezgleichuge Ihltsverzeichis A) Voremerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufge Poteze mit Musterlösuge F) Aufge Potezgleichuge mit Musterlösuge

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

FORMELSAMMLUNG ARITHMETIK. by Marcel Laube

FORMELSAMMLUNG ARITHMETIK. by Marcel Laube FORMELSAMMLUNG ARITHMETIK y Mrcel Lue EINFÜHRUNG... DIE OPERATIONS-STUFEN... OPERATIONE 1. STUFE: ADDITION UND SUBTRAKTION... BEZEICHNUNGEN... VORZEICHENREGEL... RECHENOPERATION. STUFE... MULTIPLIKATION:...

Mehr

Potenzen, Wurzeln und ihre Rechengesetze

Potenzen, Wurzeln und ihre Rechengesetze R. Brik http://rik-du.de Seite 9.0.00 Poteze, Wurzel ud ihre Rechegesetze Der Potezegriff Defiitio: Eie Potez ist eie Multipliktio gleicher Fktore (Bsis), ei der der Epoet die Azhl der Fktore git. : =...

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG ( ) a) (4a 3b)(a + 2b)(5a + 6b) b) 1 x (1 x (1 x (1 x (1 x (1 x) ) ) ) ) b) ( m + 10) 5

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG ( ) a) (4a 3b)(a + 2b)(5a + 6b) b) 1 x (1 x (1 x (1 x (1 x (1 x) ) ) ) ) b) ( m + 10) 5 Üuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG Blok Die Musterlösuge werde Aed uf der Vorkurs-Hoepge ufgeshltet!. Berehe Sie vo Hd: : 9 9. Berehe Sie vo Hd: / /. Zu welhe Zhleege ln,

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

x + z y = 6 x 2 + z 2 y 2 = 36 x 3 + z 3 2y 3 = 1 x + z = y + 6 x 2 + z 2 = y x 3 + z 3 = 2y x 3 + x 2 y + xy 2 + y 3 = 0 x + xy + y = 1

x + z y = 6 x 2 + z 2 y 2 = 36 x 3 + z 3 2y 3 = 1 x + z = y + 6 x 2 + z 2 = y x 3 + z 3 = 2y x 3 + x 2 y + xy 2 + y 3 = 0 x + xy + y = 1 Gleihuge/Ugleihuge sltt Seite Gleihuge Aufge (Wurzel π37) Fide lle e (x, y, z) R 3 des Gleihugssystems M stellt ds System um zu x z y = 6 x z y = 36 x 3 z 3 y 3 = x z = y 6 x z = y 36 x 3 z 3 = y 3 Aus

Mehr

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y =

Ergebnis: Abhängigkeit y(x) in der impliziten Form G(y) = F(x) + C. y = Lösugsmethode Differetilgleihuge erster Ordug Für gewisse Tpe vo Differetilgleihuge läßt sih ei Weg gee, uf dem m, die Lösug der Differetilgleihug uf Qudrture d.h. uf ds Ausrehe vo Itegrle, urükführe k..

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7. Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergit. x x für 0 9 9 * : Wurzelexpoet, N ud : Rdikd, 0 x: Wurzel(wer t) Poteziere: Bsis ud Expoet sid gegee,

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.

Mehr

Mathematikaufgabe 79

Mathematikaufgabe 79 Home Strtseite Impressum Kotkt Gästeuh Aufge: Betrhte wir wei sih sheiee Kreise mit utershielihe ie u gemeismer Tgete Berehe Sie s Verhältis er Bogeläge vom Shittpukt es jeweilige Kreises mit er Tgete

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

2. Zehnerpotenzen 2.1 Zehnerpotenzen mit positivem Exponenten 2.2 Zehnerpotenzen mit negativem Exponenten 2.3 Zusammenfassung von 2.

2. Zehnerpotenzen 2.1 Zehnerpotenzen mit positivem Exponenten 2.2 Zehnerpotenzen mit negativem Exponenten 2.3 Zusammenfassung von 2. Mthemtik Buch / 5. Poteze ud Wurzel /ZUSAMMENFASSUNG -502- Zusmmefssug: Poteze / Wurzel Potez 1 Ws ist eie Potez? 2 Poteze mit positivem Expoete 3 Poteze mit egtivem Expoete 4 Zusmmefssug vo 2. Zeherpoteze

Mehr

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6.

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6. Ihlte Brüceurs Mthemti Fchhochschule Hover SS 0 Dipl.-Mth. Coreli Reiterger. Grudlge. Poteze, Wurzel, Logrithme. Vetorrechug 4. Trigoometrische Futioe. Differetilrechug. Itegrlrechug 7. Mtrize, Liere Gleichugssysteme

Mehr

Potenzen und Wurzeln

Potenzen und Wurzeln Poteze ud Wurzel.) Poteze mit türliche ud gze Epoete: Epoet Potez: Bsis Ei Produkt us gleiche Fktore lässt sich ls Potez schreie er: ( ) ( ) ( ) ( ) 8 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 ( ) 0 (

Mehr

6.1 Einführung Wenn bei einer Multiplikation lauter gleiche Faktoren auftreten, so wird dafür meistens die Potenzschreibweise gewählt.

6.1 Einführung Wenn bei einer Multiplikation lauter gleiche Faktoren auftreten, so wird dafür meistens die Potenzschreibweise gewählt. Poteziere 6 Poteziere 6. Eiführug We bei eier Multipliktio luter gleiche Fktore uftrete, so wird dfür meistes die Potezschreibweise gewählt.... = Fktore Potezwert Es ist =, =, =, : Bsis oder Grudzhl, R

Mehr

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Poteze Teil it egtive Expoete Triigsheft Alle Regel Musterbeispiele - Triigsufgbe Dtei Nr. 0 Std 9. Dezeber 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.the-cd.de 0 Potezreche

Mehr

Terme und Formeln Potenzen II

Terme und Formeln Potenzen II Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der

Mehr

Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe

Ohm Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe Oh Gsiu Grudwisse Mthetik 8. Jhrggsstufe Wisse ud Köe. Fuktioe ezeihuge: Fuktiosvorshrift: Fuktioster kurz f( ist hier: Fuktiosgleihug = Grph eier Fuktio: ufge ud eispiele Eie Fuktio ist eie eideutige

Mehr

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2 Formelsmmlug Gere urh zwei Pukte A( 3 ) u B( 3 ) g AB : 3 Eee urh rei Pukte A( 3 ), B( 3 ) u C( 3 ) [Eee i Prmeterform] E ABC : 3 s 3 Eee urh Gere u Pukt. Sei P( p p p 3 ) u g : We ie Eee urh ie Gere g

Mehr

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt.

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt. Wurzel Wurzelexpoet Radikad oder auch Basis Die Wurzel eier Zahl a ist die Zahl, die mit sich selbst malgeomme wieder a ergibt. Die -te Wurzel et ma auch Quadratwurzel, dabei lässt ma die (als Wurzelexpoet)

Mehr

Grundwissen Mathematik Otto-Hahn-Gymnasium Marktredwitz. Jahrgangsstufe 7. Schulweg 27%

Grundwissen Mathematik Otto-Hahn-Gymnasium Marktredwitz. Jahrgangsstufe 7. Schulweg 27% Grudwisse Mthemtik - 9 - Otto-Hh-Gymsium Mrktredwitz Jhrggsstufe 7 7.1 Dte, Digrmme ud Prozete 7.1.1 Dte ud Digrmme Zum Vergleih vo Dte sid Säule- ud lkedigrmme (ute liks) geeiget. Die Verteilug ierhl

Mehr

Funktion: Grundbegriffe A 8_01

Funktion: Grundbegriffe A 8_01 Fuktio: Grudegriffe A 8_ Eie Fuktio ist eie eideutige Zuordug: Jede Wert us der Defiitiosege wird geu ei Wert us der Werteege zugeordet. Ist f eie Fuktio ud sid ud y eider zugeordete Werte, d schreit kurz:

Mehr

Vektorrechnung. Ronny Harbich, 2003

Vektorrechnung. Ronny Harbich, 2003 Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),

Mehr

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen Mthemtik Ihlt Zhlebereiche Recheopertioe Hierrchie der Recheopertioe Recheregel Brüche Recheregel für Brüche Klmmerreche Potezrechug Potezgesetze Ntürliche Zhle Zhlebereiche Jeder Zhlebereich ist eie Erweiterug

Mehr

f) n n 2 x x 4 für n gerade; x für n ungerade

f) n n 2 x x 4 für n gerade; x für n ungerade R. Brik http://brik-du.de Seite 7.09.0 Lösuge Poteze I Ergebisse: E E E Ergebisse ( ) = 9 ; ( ) = 7 ; ( ) = 8 ; = ; 7 = ; = 7 ; = 9 ; ( ) = 7 9 Ergebisse x x x x x x ) ( + ) = + ( + ) = + c) x + x = (

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

Wurzel b bedeutet: Suche die Zahl, die mit sich selbst multipliziert gerade die Zahl ergibt, die unter der Wurzel steht.

Wurzel b bedeutet: Suche die Zahl, die mit sich selbst multipliziert gerade die Zahl ergibt, die unter der Wurzel steht. /0 Areitsltt Wurzel edeutet: Suhe die Zhl, die mit sih selst multipliziert gerde die Zhl ergit, die unter der Wurzel steht. Also: - suhe eine Zhl, die mit sih selst multipliziert, genu ergit. Die Lösung

Mehr

DOWNLOAD. Potenzgesetze für rationale Exponenten. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen

DOWNLOAD. Potenzgesetze für rationale Exponenten. Michael Körner. Downloadauszug aus dem Originaltitel: Grundwissen Wurzeln und Potenzen DOWNLOAD Michel Körer Potezgesetze für rtiole Expoete Michel Körer Grudwisse Wurzel ud Poteze. 0. Klsse Bergedorfer Kopiervorlge Dowloduszug us dem Origiltitel: Kubikwurzel bzw.. Wurzel Aufgbe Wie groß

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1 Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.

Mehr

2.1.1 Potenzen mit natürlichen Exponenten

2.1.1 Potenzen mit natürlichen Exponenten .. Poteze mit türliche Expoete Eie Potez (gelese: hoch ) ist eie bgekürzte Schreibweise für ds Produkt us gleiche Fktore : = wobei > eie türliche Zhl ist heisst Bsis, Expoet der Potez. Beispiele: 5 = =

Mehr

Seminarstunden S-Std. (45 min) Nr. Modul Theorie Übungen. 13 Bruchrechnung 1 5

Seminarstunden S-Std. (45 min) Nr. Modul Theorie Übungen. 13 Bruchrechnung 1 5 Mthemtik Grundlgen Mthemtik Grundlgen für Industriemeister Seminrstunden S-Std. ( min) Nr. Modul Theorie Üungen Inhlt.... Allgemeines..... Ehte Brühe..... Unehte Brühe.... Erweitern und Kürzen von Brühen....

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN. Dienstag Lösungen Dienstg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, LÖSUNGEN Dienstg Blok.. - 4 3y 6 3-6y 3-3 y -. - 3y 4 - y 9 - y -93. y 0,,y Sämtlihe Lösungsmethoden liefern hier whre Aussgen. Z. Bsp. «0 0».

Mehr

WS 2005/06 Vorkurs: Mathematische Methoden der Physik Musterlösung von Blatt1. 2. Fall x < 2

WS 2005/06 Vorkurs: Mathematische Methoden der Physik Musterlösung von Blatt1. 2. Fall x < 2 WS 5/6 Vorkurs: Mtemtise Metode der Pysik Musterlösug vo Bltt Aufge : 6 < < 6 8 < > Lsg.: < 7 7. Fll > : < < < <

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert 8. Potenzen 8. Einführung in Potenzen / Wurzeln / Logrithmen Neen den klssischen Grundrechenopertionen git es weitere Opertionen, welche Beziehungen zwischen Zhlen schffen: Potenzieren Rdizieren Wurzelziehen)

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthetik Repetitiosufgbe Poteze ud Potezgleichuge Ihltsverzeichis A) Vorbeerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufgbe Poteze it Musterlösuge F) Aufgbe Potezgleichuge it Musterlösuge

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

9. Jahrgangsstufe Mathematik Unterrichtsskript

9. Jahrgangsstufe Mathematik Unterrichtsskript . Jhrggsstufe Mthetik Uterrichtsskript. Die ioische Forel Beispiel: Auftrg: Bereche die Gestfläche der oe stehede Figur uf zwei verschiedee Arte!. Möglichkeit. Möglichkeit: Teilflächeerechug Mit Zhleeispiel

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6.1 Voremerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Oertionen. Sie heen sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

Formelsammlung WS 2005/06

Formelsammlung WS 2005/06 Forelslug WS 005/06 FH Düsseldorf Fhereih Mshieu ud Verfhrestehik Mthetik für Igeieure Prof. Dr. W. Sheideler Ausreitug: Sevd Mer Ihltsverzeihis. Zeihe für esodere Zhleege 3. Poteze 3 Reheregel für Poteze

Mehr

5.2 Quadratische Gleichungen

5.2 Quadratische Gleichungen Mthemtik mit Mthd MK..0 0_0_Qud_Gleih.xmd Einfhe qudrtishe Gleihungen. Qudrtishe Gleihungen ef.: Eine Gleihung, in der x höhstens qudrtish (in der zweiten Potenz) vorkommt, heißt qudrtishe Gleihung. Gewöhnlihe

Mehr

3. Das Rechnen mit Brüchen (Rechnen in )

3. Das Rechnen mit Brüchen (Rechnen in ) . Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl

Mehr

Johann-Philipp-Reis-Schule

Johann-Philipp-Reis-Schule Joh-Philipp-Reis-Schule Berufliche Schule es Wetterureises i Frieerg Mthemti für Fchoerschule Mthemtische Gruregel Frierich Buchert Joh-Philipp-Reis-Schule Stuieiretor Im Wigert 9 Frieerg Joh-Philipp-Reis-Schule

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr

Gleichung: 11 + x = 35 Welcher Zahlenwert steckt hinter der Variablen x?

Gleichung: 11 + x = 35 Welcher Zahlenwert steckt hinter der Variablen x? Rettungsring Vrilen & Gleihungen gnz klr: Mthemtik - Ds Ferienheft mit Erfolgsnzeiger Vrilen & Gleihungen Vrilen (,, ) werden uh Uneknnte oder Pltzhlter gennnt. Sie smolisieren einen estimmten Zhlenwert

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Übungen zu den Potenzgesetzen

Übungen zu den Potenzgesetzen Üuge u de Potegesete Multiplitio ud Divisio vo Potee it gleicher Bsis. ) d p d q d p q. ). ) + + + p p + p p p + +. ) ²(³ + ) ³( + ) ³(² - ) ( + - ) ( + - ) - ( + ). ) (² + ³)² ( )² ( + )² ( )² (² + ³)²

Mehr

Übungen zu den Potenzgesetzen

Übungen zu den Potenzgesetzen Üuge u de Potegesete Multiplitio ud Divisio vo Potee it gleicher Bsis. d p d q d p q.. + + + p p+ p p p+ +. ²(³ + ) ³( + ) ³(² - ) ( + - ) ( + - ) - ( + ). (² + ³)² ( )² ( + )² ( )² (² + ³)² ( )² (d d

Mehr

1 Algebra. Addition und Subtraktion. Minuend. Differenz. Subtrahend. In einer Summe darf man die Summanden vertauschen. (Kommutativgesetz)

1 Algebra. Addition und Subtraktion. Minuend. Differenz. Subtrahend. In einer Summe darf man die Summanden vertauschen. (Kommutativgesetz) TG TECHNOLOGISCHE GRUNDLAGEN Seite 1 1 Alger Addition und Sutrktion In einer Summe drf mn die Summnden vertushen. (Kommuttivgesetz) + + Summnd Summ nd Beim ddieren drf mn die Summnden zu Teilsummen zusmmenfssen.

Mehr

Rechnerlösungen gibt es zu den Aufgaben 6 bis 10. Ausführliche Berechnungsbeispiele und vieles mehr gibt es unter

Rechnerlösungen gibt es zu den Aufgaben 6 bis 10. Ausführliche Berechnungsbeispiele und vieles mehr gibt es unter R. Brinkmnn http://rinkmnn-du.de eite.0.0 Lösungen Bruhrehnung I mit dem GTR CAIO fx-cg 0 Rehnerlösungen git es zu den Aufgen 6 is 0. Ausführlihe Berehnungseispiele und vieles mehr git es unter http://www.freiurger-verlg.de/

Mehr