AT AB., so bezeichnet man dies als innere Teilung von

Größe: px
Ab Seite anzeigen:

Download "AT AB., so bezeichnet man dies als innere Teilung von"

Transkript

1 Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM : bzw. AT AM Drückt ma diese Sachverhalt durch Vektore aus, so sid AT ud TM parallele Vektore, d.h. AT TM bzw. AT AM Betrachtet ma u allgemei drei verschiede Pukte A, B ud T, die alle auf eier Gerade liege. Iere Teilug Liegt der Pukt T auf der Strecke AB ud teilt diese im Verhältis m:, so gilt: AT :TB m: m Vektoriell gilt: m AT TB bzw. m AT AB m Allgemei gilt: Ist AT TB mit IR Pukt T., so bezeichet ma dies als iere Teilug vo AB durch de. Äußere Teilug Liegt dagege der Pukt T auf der Gerade AB, icht aber auf der Strecke AB, da sid die Vektore AT ud TB etgegegesetzt gerichtet. I diesem Fall ist AT TB mit IR. Ma spricht vo eier äußere Teilug der Strecke AB durch de Pukt T.

2 Defiitio: (Teilug eier Strecke) Seie A, B ud T drei Pukte mit T AB. Die reelle Zahl, die durch die Bedigug AT TB AB. festgelegt ist heißt Teilverhältis vo T bezüglich der Strecke (Diese Defiitio garatiert, dass die Pukte A, B ud T auf eier Gerade liege, sie legt A als Afagspukt fest ud liefert außerdem och das richtige Vorzeiche vo. Weil für Vektore kei Quotiet defiiert ist, ka ma das Teilverhältis icht als Quotiet zweier Vektore schreibe; ma muss daher i der Defiitio die Produktform wähle) I der folgede Abbildug sid die uterschiedliche Werte vo agegebe, we der zugehörige Teilpukt T die Gerade AB durchläuft. äußerer Teilpukt ierer Teilpukt äußerer Teilpukt ; ; ; ; Dem Pukt B wird keie Zahl als Teilverhältis zugeordet. Zu gibt es keie Teilpukt. Beispiele: Ermittel Sie, i welchem Verhältis der Pukt T die Strecke AB teilt. Gebe Sie auch a ob der Pukt T ierer oder äußerer Teilpukt ist ud ob er äher a A oder äher a B liegt. A 0 B 4 T.), ud 0 0 löst auch die erste Gleichug AT TB T ist ierer Teilpukt. T teilt die Strecke AB im Verhältis : AT : TB :. T liegt äher a A..) A, B4 7 7 ud T AT TB T ist äußerer Teilpukt. T liegt äher a A. Aufgabe:.) I welchem Verhältis teilt T die Strecke AB? Gebe Sie auch a ob der Pukt T ierer oder äußerer Teilpukt ist ud ob er äher a A oder äher a B liegt. T 0 7 A 0 B 4 9 a),, b) T4, A 7, B c) T t t, A 0 4, B 0 d) T8 8, A 4, B 0 ; bereche Sie t ud t

3 .) P teilt AB im Verhältis. Zwische welche Greze liegt, we a) P zwische A ud B liegt? b) A zwische B ud P liegt? c) B zwische A ud P liegt? d) P zwische A ud dem Mittelpukt vo.) A 9, B, C 4 a) C die Strecke AB? b) B die Strecke AC? c) A die Strecke BC? AB liegt?. I welchem Verhältis teilt. Bestimmug des Teilpuktes bei gegebee Verhältis Sid der Afagspukt A, der Edpukt B ud das Teilverhältis gegebe, da führt eie kurze Rechug mit Ortsvektore zum gesuchte Teilpukt T. AT TB t a b t t a b t t t a b t a b a b t für Ist jedoch, so folgt aus vorletzter Gleichug: t a b 0 t a b 0 a b a b Also sid die beide Pukte A ud B idetisch. Aufgabe: 4.) Gegebe sid die Pukte A0 ud B 8 die AB im Verhältis i teile: ; ; ; 4. Bereche Sie die Teilpukte T i,.) Gegebe sid die Pukte T ud B 0. T teilt 4. Bereche Sie die Koordiate des Puktes A. BA im Verhältis.) Gegebe sid die Pukte A 0 ud B8. S ud T teile gleiche Teile. Bereche Sie S ud T. AB i drei

4 7.) Bestimme Sie für die Strecke AB mit A ud B0 4 des Teilpuktes T0 t t ud das Teilverhältis. 8.) Bestimme Sie für die Strecke AB mit A ud B0 4 des Teilpuktes Tt t 0 ud das Teilverhältis. die Koordiate die Koordiate Bemerkug: Wird die Strecke AB durch zwei Pukte T ud T so geteilt, dass für die zugehörige Teilverhältisse gilt, so sagt ma, die Strecke AB wird durch die Pukte T ud T harmoisch geteilt. 9.) Gegebe sid die Pukte A, B 9 ud T 4 T so, dass die Strecke de Pukt wird. 0.) Gegebe ist für AB der Teilpukt T A 4. Bestimme Sie AB durch die Pukte T ud T harmoisch geteilt mit 0, ud der Pukt. Bereche Sie die Koordiate des Puktes B..4 Schwerpukte I der Physik versteht ma uter dem Schwerpukt eies Körpers de Pukt, i dem ma sich die Masse des Körpers kozetriert vorstellt. Für de Ortsvektor des Schwerpuktes S der Strecke AB gilt: s a b Das ist aber auch gerade der Mittelpukt der Strecke AB. S teilt somit die Strecke AB im Verhältis :. Für de Ortsvektor des Schwerpuktes S des Dreiecks ABC gilt: s a b c Der Schwerpukt des Dreiecks ist der Schittpukt der Seitehalbierede, er teilt diese im Verhältis : Für de Ortsvektor des Schwerpuktes S des Tetraeders ABCD gilt: 4 s a b c d Verbidet ma eie Eckpukt des Tetraeders mit dem Schwerpukt der gegeüberliegede Dreiecksseite, so wird diese Strecke vom Schwerpukt des Tetraeders im Verhältis : geteilt. Allgemei gilt für de Schwerpukt des Vielecks AAA...A : s a a a... a 4

5 . Berechug vo Teilverhältisse i ebee Figure Beispiel: Ei Parallelogramm ABCD wird vo de Vektore a AB ud b AD aufgespat. Der Pukt E teilt die Strecke BC im Verhältis :. I welchem Verhältis teilt da der Pukt T die Strecke AE bzw. BD? Wir wisse BE : EC : bzw. BE BC ud suche: BT TD bzw. BT BD AT TE bzw. AT AE b a Zuächst wählt ma sich eie geschlossee Streckezug, der de Pukt T als Ecke ethält (z.b. ABTA). Da gilt: AB BT TA 0 Da stellt ma alle Vektore als Liearkombiatio der liear uabhägige Vektore a ud b dar: AB a BT BD b a TA AT AE AB BE AB BC a b mit de Ubekate ud. Diese Liearkombiatioe setzt ma i Gleichug ei. a b a a b 0 a b a a b 0 a a a b b 0 a b 0 Aus der lieare Uabhägigkeit der beide Vektore a ud b folgt da: 0 0 Addiert ma diese beide Gleichuge, so erhält ma: 0 ud eigesetzt i : Jetzt folgt: BT BD BT BT TD BT BT TD BT TD BT TD 0 AT AE AT AT TE AT AT TE AT TE AT TE

6 T teilt die Strecke BD im Verhältis :. T teilt die Strecke AE im Verhältis :. Aufgabe:.) Ei Rechteck ABCD wird vo de Vektore a AB ud b AD aufgespat. Der Pukt E teilt die Strecke BC im Verhältis :. Bereche Sie i welchem Verhältis die Diagoale BD die Strecke AE teilt. (Fertige Sie zuächst eie Skizze a).) Ei Rechteck ABCD wird vo de Vektore a AB ud b AD aufgespat. Die Strecke AB wird durch E im Verhältis 4 :, BC durch F im Verhältis : geteilt, Wie teile sich folgede Strecke? (Skizze!) a) AF ud CE b) AF ud DE c) DF ud EC.) Ei Parallelogramm ABCD wird vo de Vektore a AB ud b AD aufgespat. E teilt die Strecke AD im Verhältis :, F die Seite BC im Verhältis :. Wie teile sich die Strecke CE ud DF? (Skizze!) 4.) Zeige Sie, dass der Schwerpukt eies Dreiecks die Seitehalbierede im Verhältis : teilt.

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe 10 Gegebe sid die Pukte A(/4), B(/8) ud Z 1 (5/6) eier zetrische Streckug mit dem Zetrum Z 1 ud k = - 11 Fertige eie Zeichug a ud kostruiere die Bildstrecke [A`B`] Platzbedarf: - < x < 15 ud 0 < y < 14

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 06 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Gegebe ist die Fuktio f mit der Gleichug y 3 + + = mit

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die ebestehede kizze zeigt de Axialschitt eier massive

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Name: Abschlussprüfug 204 a de Realschule i Bayer Mathematik I Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Gegebe ist das rechtwiklige Dreieck ABC mit der Hypoteuse

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 0 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A cos 6 A 0 Die Pfeile OP ( ) ud OQ ( ) cos cos spae für [0 ;80 ] Dreiecke

Mehr

Rotationsvolumina Auf den Spuren von Pappus und Guldin

Rotationsvolumina Auf den Spuren von Pappus und Guldin Rotatiosvolumia Auf de Spure vo Pappus ud Guldi Gegebe sei ei Kreis mit Radius r, desse Mittelpukt um a aus dem Ursprug eies kartesische Koordiatesystems i Richtug der Ordiate verschobe sei. Die Kreisfläche

Mehr

Ein Kreis mit dem Mittelpunkt M=(1 2) geht durch den Punkt P=(4-2). Bestimme den Radius des Kreises und die Kreisgleichung.

Ein Kreis mit dem Mittelpunkt M=(1 2) geht durch den Punkt P=(4-2). Bestimme den Radius des Kreises und die Kreisgleichung. 9 Lösuge Beispiel 1: Bestimme Mittelpukt ud Radius des Kreises k: x²+4x+y²-2y-11=0. Diese Gleichug formt ma um i die Form (x-x M )²+(y-y M )²=r². I dieser Gleichug sid x M ud y M die Koordiate des Mittelpuktes

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Miisterium für Bildug, Juged ud Sport Zetrale Prüfug zum Erwerb der Fachhochschulreife im Schuljahr 6/7 Mathematik B. Mai 7 9: Uhr Uterlage für die Lehrkraft Lad Bradeburg. Aufgabe: Differetialrechug Gegebe

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 I eier Medikametestudie wird i drei zeitgleich begiede

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Name: Abschlussprüfug 04 a de Realschule i Bayer Mathematik I Vorame: Klasse: Platzziffer: Pukte: Aufgabe A A.0 Die ebestehede Skizze zeigt ei Schrägbild der Pyramide ABCS, dere

Mehr

Mathematik II Haupttermin Aufgabe A 1. IR. Die Gerade g hat die Gleichung y= 0,25x+ 5,5 mit GI = IR

Mathematik II Haupttermin Aufgabe A 1. IR. Die Gerade g hat die Gleichung y= 0,25x+ 5,5 mit GI = IR Prüfugsdauer: Abschlussprüfug 008 50 Miute a de Realschule i Bayer Mathematik II Haupttermi Aufgabe A A.0 Die Parabel p verläuft durch die Pukte A( 3) ud C(6 3). Sie hat eie Glei- chug der Form y= 0,5x

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 202 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die Pukte A(2 0), B(5 ) ud C bilde das gleichseitige Dreieck

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe .0 Die Pukte P(0/-7) ud Q(5/-) liege auf eier ach ute geöffete Normalparabel p. G< x. Bereche die Gleichug der Parabel p. (Ergebis: y = - x + 6x - 7 ). Bestimme die Koordiate des Parabel-Scheitels. Gib

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 06 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Gegebe sid der Pukt O0 0 ud die Pfeile OP 4si 5cos A Zeiche

Mehr

Mathematik II Wahlteil Haupttermin Aufgabe A 1

Mathematik II Wahlteil Haupttermin Aufgabe A 1 Prüfugsdauer: Abschlussprüfug 006 Mathematik II Wahlteil Haupttermi Aufgabe A 1 A 1.0 Gegebe sid die Parabel p mit der Gleichug y = 0,15x + 0,3x + 6,85 ud die 3 Gerade g mit der Gleichug y= x+ mit GI =

Mehr

Humboldt-Universität zu Berlin Wintersemester 2017/18. Mathematisch-Naturwissenschaftliche Fakultät II Institut für Mathematik A.

Humboldt-Universität zu Berlin Wintersemester 2017/18. Mathematisch-Naturwissenschaftliche Fakultät II Institut für Mathematik A. Huboldt-Uiversität zu Berli Witerseester 07/8. Matheatisch-Naturwisseschaftliche Fakultät II Istitut für Matheatik A. Filler Übugsaufgabe zur Vorlesug Lieare Algebra ud Aalytische Geoetrie I Übugsserie

Mehr

Abschlussprüfung 2017 an den Realschulen in Bayern

Abschlussprüfung 2017 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Name: Abschlussprüfug 017 a de Realschule i Bayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Haupttermi A 1.0 Ei 90 heißes Geträk wird zur Abkühlug is Freie gestellt.

Mehr

Abschlussprüfung 2017 an den Realschulen in Bayern

Abschlussprüfung 2017 an den Realschulen in Bayern Prüfugsdauer: 50 Miute bschlussprüfug 07 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: ufgabe Haupttermi.0 Trapeze BD mit de parallele Seite D ud B rotiere um die Gerade

Mehr

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1 Abschlussprüfug 200X Wahlteil Mathematik I Aufgabe A 1 Vorame: Klasse: Platzziffer: Pukte: / A 1.0 A 1.1 Gegebe ist die Fuktio f mit der Gleichug 0,5 y 2 ( 3) 4,5 ( GI IR IR ). Begrüde Sie, warum ma bei

Mehr

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.

Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus. bschlussprüfug 0 a de Realschule i Bayer usterlösug Lösug Diese Lösug wurde erstellt vo orelia azebacher. ie ist keie offizielle Lösug des Bayerische taatsmiisteriums für Uterricht ud Kultus. ufgabe.0

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Aufgabe B 1 Haupttermi B 1.0 Die Parabel p verläuft durch die Pukte P( 5 19) ud Q(7 5). Sie hat eie Gleichug der Form y

Mehr

gesucht. Die Lösungen dieser Gleichung, kann man als Punkte der Ebene E deuten. Fragt sich nun, ob der Koeffizientenvektor n 1

gesucht. Die Lösungen dieser Gleichung, kann man als Punkte der Ebene E deuten. Fragt sich nun, ob der Koeffizientenvektor n 1 Norrmallefforrm derr Ebee ud Absttäde Koorrdi iattegl leichug derr Ebee eu itterrprretti i ierrtt mitt dem Skalarrprroduktt Neu-iterpretatio der Koordiategleichug b c a d E. Gegebe ist die Ebee E durch

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Abschlussprüfung 2018 an den Realschulen in Bayern

Abschlussprüfung 2018 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 018 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzummer: Pukte: Aufgabe A 1 Nachtermi A 10 Die Fuktio 1 f hat die Gleichug ylog x1,5 0,5 mit GI

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 05 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Für Trapeze ABC D mit de parallele Seite [AD ] ud [BC ]

Mehr

Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte:

Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte: Prüfugsdauer: Abschlussprüfug 2008 150 Miute a de Realschule i Bayer R4/R6 Mathematik I Nachtermi Aufgabe P 1 Name: Vorame: Klasse: Platzziffer: Pukte: P 1.0 Die ebestehede Tabelle zeigt die Azahl der

Mehr

Abschlussprüfung 150 Minuten an den Realschulen in Bayern

Abschlussprüfung 150 Minuten an den Realschulen in Bayern Prüfugsdauer: Abschlussprüfug 50 Miute a de Realschule i Bayer 2009 Mathematik I Haupttermi Aufgabe A Name: Vorame: Klasse: Platzziffer: Pukte: A.0 Ei Messbecher fasst, bis zum Rad gefüllt, geau eie Liter

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 2010 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 1.0 Lekt ma eie Schiffschaukel auf eie Afagshöhe vo 2,00

Mehr

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD Vektor-Geometrie Koordiategeometrie Prüfugsaufgabe uter Verwedug vo Abbildugsgleichuge Prüfugsaufgabe der Abschlussprüfug a Realschule i Bayer! mit ausführliche Musterlösuge ud Querverweise auf Theoriedateie

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe.

so spricht man von einer kommutativen Gruppe oder auch abelschen Gruppe. Defiitioe ud Aussage zu ruppe Michael ortma Eie ruppe ist ei geordetes Paar (, ). Dabei ist eie icht-leere Mege, ist eie Verküpfug (Abbildug), wobei ma i.a. a b oder gar ur ab statt ( a, b) schreibt. Es

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Abschlussprüfung 2017 an den Realschulen in Bayern

Abschlussprüfung 2017 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 07 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A.0 Trapeze ABCD rotiere um die Achse AD. Die Wikel 45 ;90 DCB

Mehr

A 5 A 3. Geschlossenes Polygon mit 8 Eckpunkten

A 5 A 3. Geschlossenes Polygon mit 8 Eckpunkten Has Walser, [0100708a] Polgofläche Aregug: [Beder 010] 1 Worum es geht Es werde verschiedee Formel zur Berechug des Flächeihaltes eies eifach geschlossee Polgos A 1 A A diskutiert. Dabei zeigt sich, dass

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 iute Abschlussprüfug 03 a de Realschule i Bayer athematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A Die ebestehede Skizze zeigt die Figur, die zum ibau eier Küchespüle

Mehr

Abschlussprüfung 2018 an den Realschulen in Bayern

Abschlussprüfung 2018 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 08 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzummer: Pukte: Aufgabe A Haupttermi A 0 Es werde zwei Versuche zur Abkühlug vo heißem Wasser durchgeführt

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 205 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: A.0 A. Aufgabe A Die ebestehede Figur ist durch de Kreisboge BC mit dem Radius

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt Gebiet G2 Analytische Geometrie

Abitur - Grundkurs Mathematik. Sachsen-Anhalt Gebiet G2 Analytische Geometrie Abitur - Grudkurs Mathematik Sachse-Ahalt 00 Gebiet G Aalytische Geometrie Aufgabe.. 4 0 I eiem kartesische Koordiatesystem sid die Vektore a, b 8 sowie der Pukt 4 4 A 3 gegebe. a) Weise Sie ach, dass

Mehr

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1

Abschlussprüfung 200X Wahlteil Mathematik I Aufgabe A 1 Wahlteil Mathematik I Aufgabe A Name: Vorame: Klasse: Platzziffer: Pukte: / A.0 A. Gegebe ist die Fuktio f mit der Gleichug y (x3) 4,5 ( GI ). Begrüde Sie, warum ma bei der Fuktio f für x < 3 keie Fuktioswerte

Mehr

heißt kommutativ (oder auch abelsch), falls für die Verknüpfung das Kommutativgesetz gilt: (G 5) Für alle ab, Ggilt a b

heißt kommutativ (oder auch abelsch), falls für die Verknüpfung das Kommutativgesetz gilt: (G 5) Für alle ab, Ggilt a b r M J auer Algebraische trukture 7 Kapitel : Gruppe Gruppe: efiitio, Beispiele efiitio (Gruppe) Eie Mege G (G ) zusamme mit eier Verküpfug heißt eie Gruppe, we folgede Eigeschafte erfüllt sid: (G ) G ist

Mehr

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i

( ), der genau auf der Geraden ( ) 2 ( ) #( ) 8. Lineare Regression. = f i. Nach der Summe der kleinsten. mx i 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Ziel dieses Verfahres ist es, Beziehuge zwische zwei Merkmale

Mehr

Proseminar Lineare Algebra WS 2016/17

Proseminar Lineare Algebra WS 2016/17 Prosemiar Lieare Algebra WS 2016/17 Bachelorstudium Lehramt Sekudarstufe (Allgemeibildug) Lehramtsstudium Uterrichtsfach Mathematik Kapitel 0: Grudlage 1. Wie sid die Begriffe Vereiigug, Durchschitt ud

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 00 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A A.0 I eiem Hadbuch zur Wetterkude fide Sie im Kapitel Erdatmosphäre die

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 016 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Haupttermi A 10 Die gleichscheklige Dreiecke ABC habe die Base AB

Mehr

(a) Richtig, die Varianz ist eine Summe quadratischer Größen.

(a) Richtig, die Varianz ist eine Summe quadratischer Größen. Aufgabe 1 (10 Pukte) Welche der folgede Aussage sid richtig? (a) Richtig, die Variaz ist eie Summe quadratischer Größe. (b) Falsch, die Abweichug ordialer Merkmale vom Media ist icht defiiert - also auch

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Fragen zur Abschlussprüfung Mathematik I. Welche Funktionen kennst Du? Skizziere kurz eine solche Funktion.

Fragen zur Abschlussprüfung Mathematik I. Welche Funktionen kennst Du? Skizziere kurz eine solche Funktion. Frage zur Abschlussprüfug Mathematik I Frage 1: Welche Fuktioe kest Du? Skizziere kurz eie solche Fuktio. Frage 2: Gib zu f: y = 620 1,032 x + 32 Defiitios- ud Wertemege a Frage 3.1: Für die Vermehrug

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 0 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Pukte ( ) auf der Gerade g mit der Gleichug y (GI IRIR) ud

Mehr

Schwerpunkt 1 E Ma 1 Lubov Vassilevskaya

Schwerpunkt 1 E Ma 1 Lubov Vassilevskaya http://www.ewagilmour.com/wp-cotet/uploads/2010/05/forkkifespooegg.jpg Schwerpukt 1 E Der starre c Körper http://www.flickr.com/photos/iesca/3139536876/i/pool-streetlamps Abb. 1 1: Zur Defiitio eies starre

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Berechnung von Abständen zu Geraden und Ebenen. Einfache Darstellung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr.

Berechnung von Abständen zu Geraden und Ebenen. Einfache Darstellung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr. Vektorgeometrie gaz eifach Teil 6 Abstäde Berechug vo Abstäde zu Gerade ud Ebee Eifache Darstellug der Grudlage: Die wichtigste Aufgabestelluge ud Methode- Datei Nr. 640 Stad 28. Dezember 205 Demo-Text

Mehr

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya

Funktionenreihen. 1-E1 Ma 2 Lubov Vassilevskaya Fuktioereihe Erst durch Newto wurde die Theorie uedlicher Reihe zu eiem eigestädige Forschugsgebiet i der Mathematik, das da i Britaie besodere Beachtug ud weitere Etwicklug durch Brook Taylor ud Coli

Mehr

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus

Höhere Mathematik 3. Kapitel 12 Differenzengleichungen, z-transformation. Prof. Dr.-Ing. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Differezegleichuge, z-trasformatio Prof. Dr.-Ig. Dieter Kraus Höhere Mathematik 3 Kapitel 1 Ihaltsverzeichis 1 Differezegleichuge, -Trasformatio...1-1 1.1 Eiführug i Differezegleichuge...1-1

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 016 a de Realschule i ayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: A 1.0 A 1.1 Aufgabe A 1 Haupttermi Der Wertverlust verschiedeer E-ike-Modelle

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 0 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A.0 Daphe plat eie Teilahme bei Juged forscht. Für ihre Beitrag

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Haupttermi A 1 Die ebestehede Skizze zeigt de Pla C eies dreieckige

Mehr

0.1 E: Der Haupsatz der Mineralogie

0.1 E: Der Haupsatz der Mineralogie 0. E: Der Haupsatz der Mieralogie Satz: I eiem Kristall gibt es ur,,3,4 ud 6-zählige Symmetrie. Defiitio: Seie u, v 0 zwei Vektore, die icht auf eier Gerade liege. Die Mege heißt Gitter. Satz: Die Vektore

Mehr

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $

Mathematische Probleme, SS 2015 Montag 1.6. $Id: convex.tex,v /06/01 09:26:03 hk Exp $ athematische Probleme, 2015 otag 1.6 $Id: cove.te,v 1.19 2015/06/01 09:26:03 hk Ep $ 3 Kovegeometrie 3.2 Die platoische Körper I der letzte itzug habe wir mit de Vorarbeite zur Berechug der platoische

Mehr

Positiv denken! Lösungen

Positiv denken! Lösungen Schülerzirkel Mathematik Fakultät für Mathematik. Uiversität Regesburg Positiv deke! Lösuge Aufgabe 1 (GMAMQM (ur für die Klasse 7/8) [ Pukte]). Seie a, b reelle Zahle. 1. Sei a 0 ud b 0. Zeige, dass a

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Aufgabe 1-1: Aufgabe 1-2: Aufgabe 1-3: Aufgabe 1-4:

Aufgabe 1-1: Aufgabe 1-2: Aufgabe 1-3: Aufgabe 1-4: 1. Übug zur Höhere Mathematik 1 Abgabe: KW 4 Aufgabe 1-1: Es seie a,b mit a 0, b 0. Beweise Sie ab a b a b a b Aufgabe 1-: Beweise Sie durch vollstädig Iduktio k 1 (k 1) k 0 0 k 1!, 0, 0? 1,? d), 0, 0?

Mehr

Besprechung: S. 1/1

Besprechung: S. 1/1 Übug 8 Aufgabe 8.1 Sei P R ei Polytop mit P Z =vert(p ). Zeige Sie, dass vert(p ) 2. Aufgabe 8.2 Sei P V ei ratioales Polyeder. Zeige Sie, dass P ebefalls ei ratioales Polyeder ist. Aufgabe 8.3 Sei u 1,...,u

Mehr

Mathematik Funktionen Grundwissen und Übungen

Mathematik Funktionen Grundwissen und Übungen Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit

Mehr

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten 4/22/10 lausthal omputer-raphik II Verallgemeierte Baryzetrische Koordiate. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Verallgemeieruge der baryzetr. Koord. 1. Was macht ma im 2D bei (kovexe)

Mehr

Kapitel VII: Der Körper der komplexen Zahlen

Kapitel VII: Der Körper der komplexen Zahlen Lieare Algebra II SS 011 - Prof Dr Mafred Leit 3 Der Körper der komplexe Zahle 3 Der Körper der komplexe Zahle A Die Mege der komplexe Zahle B Grudrechearte im Bereich der komplexe Zahle C Realteil Imagiärteil

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 1 Die ebestehede Skizze zeigt das Dracheviereck D ABD

Mehr

So lösen Sie die Gleichung für den Korrelationskoeffizienten

So lösen Sie die Gleichung für den Korrelationskoeffizienten 8. Lieare Regressio 8.1. Die Methode der kleiste Quadrate Regressiosgerade bzw. Ausgleichsgerade sid eie Auswertug vo statistische Messdate. Dabei sid Datepukte ( x 1, y 1 ),( x 2, y 2 ), ( x, y ) gegebe.

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen

Fit in Mathe. April Klassenstufe 10 Wurzelfunktionen Thema Fit i Mathe Musterlösuge 1 April Klassestufe 10 Wurzelfuktioe Uter der -te Wurzel eier icht-egative Zahl (i Zeiche: ) versteht ma die icht-egative Zahl, die mal mit sich selber multipliziert, die

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute bschlussprüfug 05 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: ufgabe Haupttermi.0 Gegebe sid rechtwiklige Dreiecke BM mit M 4 cm ud de Hypoteuse

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung: Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge

Mehr

ABITURPRÜFUNG 2007 GRUNDFACH MATHEMATIK

ABITURPRÜFUNG 2007 GRUNDFACH MATHEMATIK ABITURPRÜFUNG 007 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 0 Miute Wörterbuch zur deutsche Rechtschreibug Tascherecher (icht programmierbar, icht grafikfähig) Tafelwerk Wähle Sie vo

Mehr

2.3 Einführung der Bruchzahlen

2.3 Einführung der Bruchzahlen . Eiführug der Bruchzahle..1 Bruchzahlaspekte Sei m (mit m ), eie Bruchzahl. (1) Teil vom Gaze (Siehe dazu de folgede Abschitt..!) () Maßzahl: Bezeichug vo Größe [Siehe Abschitt., Teil I (Größekozept).

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

A. Zahleneinteilung. r a b

A. Zahleneinteilung. r a b Aus FUNKSCHAU 14/1953 (Blatt 1+) ud 17/1953 (Blatt 3), im Origial -spaltig. Digitalisiert 07/016 vo Eike Grud für http://www.radiomuseum.org mit freudlicher Geehmigug der FUNKSCHAU- Redaktio. Die aktuelle

Mehr

b) Alle ganzen Zahlen die auf 0 enden sind durch 5 teilbar Spezialisierung: 120 endet auf ist durch 5 teilbar

b) Alle ganzen Zahlen die auf 0 enden sind durch 5 teilbar Spezialisierung: 120 endet auf ist durch 5 teilbar d) Die Beweismethode der vollstädige Iduktio Der Übergag vo allgemeie zu spezielle Aussage heisst Deduktio Beispiele: a) Allgemeie Aussage: Spezialisierug: Schluss: Alle Mesche sid sterblich Sokrates ist

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Mathematik I Aufgabengruppe A Aufgabe A 1

Mathematik I Aufgabengruppe A Aufgabe A 1 Seite vo 9 Prüfugsdauer: Abschlussprüfug 004 50 Miute a de Realschule i Bayer Mathematik I Aufgabegruppe A Aufgabe A A.0 Ei Kodesator (Speicher für elektrische Eergie) wird a eier Elektrizitätsquelle für

Mehr

Herleitung der Parameter-Gleichungen für die einfache lineare Regression

Herleitung der Parameter-Gleichungen für die einfache lineare Regression Herleitug der Parameter-Gleichuge für die eifache lieare Regressio Uwe Ziegehage. März 03 Historie v.0 6.03.009, erste Versio hochgelade v.0 0.03.03, eie Vorzeichefehler beseitigt, diverse Gleichuge ud

Mehr

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden

Es gibt verschiedene Möglichkeiten eine Folge zu definieren. Die zwei häufigsten Methoden Folge ud Reihe Folge Eie Folge ist eie Abbildug der atürliche Zahle N = {0, 1,,...} i die Mege der (zumidest i de meiste Fälle) reelle Zahle R. I diesem Fall ka ma sich eie Folge als Pukte i eiem Koordiatesystem

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabeblatt F Aufgabe zum Kapitel Fuktioe Prof Dr Peter Plappert Fachbereich Grudlage Aufgabe : Bestimme Sie jeweils de maimal mögliche Defiitiosbereich D ma a) f ( =

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert.

Für eine n n-matrix A müssen wir die Gleichung. lösen. Falls (A λi) invertierbar ist, dann ist. Dann ist aber λ kein Eigenwert. Geschlossees Leotief-Modell Ei Leotief-Modell für eie Volkswirtschaft heißt geschlosse, we der Kosum gleich der Produktio ist, d.h. we Kapitel 5 Eigewerte V x = x Es hadelt sich dabei um eie Spezialfall

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

a ist die nichtnegative Lösung der Gleichung a 0 a, b 0 : a 0 und b > 0 Beispiele:

a ist die nichtnegative Lösung der Gleichung a 0 a, b 0 : a 0 und b > 0 Beispiele: Zahle. Die Quadratwurzel Die Quadratwurzel a heißt Radikad Beachte: 0 = 0 a ist die ichtegative Lösug der Gleichug = a, wobei a 0. 4 Ei Teil der Quadratwurzel sid ratioale Zahle (bspw. 6, 0, 09, ), adere

Mehr

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es?

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es? Uiversität Stuttgart Fachbereich Mathematik Prof Dr C Hesse PD Dr P H Lesky Dipl Math D Zimmerma Msc J Köller FAQ 4 Höhere Mathematik 724 el, kyb, mecha, phys Lieare Abbilduge ud Matrize Um was geht es?

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Breer Osabrück SS 2016 Lieare Algebra ud aalytische Geometrie II Vorlesug 50 Ei Tetraeder (eie Pyramide mit gleichseitige Dreiecke als Seite). Ei Oktaeder (ei Achtflächer). Ei Dodekaeder,

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

38 Normen und Neumannsche Reihe

38 Normen und Neumannsche Reihe 168 V. Lieare Algebra 38 Norme ud Neumasche Reihe Wir erier zuächst a (vgl. 15.6) 38.1 Normierte Räume. Es sei E ei Vektorraum über K = R oder K = C. Eie Abbildug : E [0, ) heißt Norm auf E, falls gilt

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Euklidische Geometrie. Sommersemester 2007.

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Euklidische Geometrie. Sommersemester 2007. Uterlage zur Vorlesug Algebra ud Geometrie i der Schule: Grudwisse über Euklidische Geometrie Sommersemester 2007 Fraz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 25, 6020 INNSBRUCK,

Mehr

Normierte Vektorräume

Normierte Vektorräume Normierte Vektorräume Wir betrachte im Folgede ur Vektorräume über R 1. Sei also V ei Vektorraum. Wir möchte Metrike auf V betrachte, die im folgede Sie mit der Vektorraumstruktur verträglich sid:, y,

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Has Walser Mathematik für Naturwisseschafte Modul 0 Regressiosgerade ud Korrelatio Has Walser: Modul 0, Regressiosgerade ud Korrelatio ii Ihalt Die Regressiosgerade.... Problemstellug.... Berechug der

Mehr