Übersicht Integralrechnung

Größe: px
Ab Seite anzeigen:

Download "Übersicht Integralrechnung"

Transkript

1 Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die Awedug der hier gegebee Beziehuge otwedig sid. Defiitioe: Stmmfuktio: Eie Fuktio F() heißt Stmmfuktio der Fuktio f(), flls F ()f() für lle εd ubestimmtes Itegrl: Mege ller Stmmfuktioe (F()+C) eier Fuktio f() - lso die Mege der Fuktioe dere Ableitug f() ist - et m ds ubestimmte Itegrl vo f(): f ( ) d Amerkug: Die Ableitug eier Kostte C ist. Deshlb köe beliebige Kostte zu F() ddiert werde. Die Summe ist ebeflls eie Lösug des ubestimmte Itegrls. Jede stetige Fuktio besitzt zwr eie Stmmfuktio, es ist oft schwierig oder sogr umöglich (z.b. e ---- d ) die Stmmfuktio durch eie bekte Fuktio uszudrücke. Gruditegrle F ( ) f ( ) F ( ) f ( ) d f ( ) F ( ) f ( ) d - + e e + +C -- l -- l f ( ) f ( ) rct rc rc l f ( ) Lösugsverfhre ubestimmte Itegrle Ubestimmte Itegrle löst m, idem m sie durch geschickte Umformug uf bekte Gruditegrle zurück führt.

2 Recheregel Additiosregel: ( f ( ) ± g( ) ) d f ( ) d ± g ( ) d F+ G Kostteregel: cf( ) d c f( ) d cf Substitutiosregel / Ketteregel: fg ( ( ))g ( ) d mit u g( ) ud d fg ( ( ))g ( ) d Fg ( ( )) - du g ( ) fu ( ) du Fu ( ) prtielle Itegrtio / Produktregel: f ( )g'( ) d mit u f mit v g f ( )g ( f ( )g ( ) d ( ) ud du f ( )d ( ) ud dv g ( )d udv uv vdu Ds bestimmte Itegrl Ds bestimmte Itegrl gibt die Fläche zwische dem Itegrde ud der X-Achse im Bereich der utere ud obere Greze. Bereiche mit egtive Fuktioswerte des Itegrde werde egtiv gezählt. Schreibweise: b obere Greze f ( ) d Itegrd f() utere Greze b Berechug us ubestimmtem Itegrl: f ( ) d b [ F ( )] Fb ( F ( ) otwedige Bedigug: f() stetig im Itervll [;b] -> sost ueigetiches Itegrl,5 -- d,5 [ l ],69,69,5 -- d [ l ],5 (,69),69 -- d Itegrd ustetig für bestimmtes Itegrl icht defiiert

3 Numerische Methode zur Lösug bestimmter Itegrle D es oft schwierig oder sogr umöglich ist, die Stmmfuktio durch eie bekte Fuktio uszudrücke, ist es oft sivoll/eifcher bestimmte Itegrle umerisch zu löse. Ei bestimmtes Itegrl läßt sich durch Ober-, Uter- oder Zwischewertsumme pproimiere. Dbei wird die Fläche eies Teilitervlls durch ei Rechteck pproimiert. Für die Bestimmug der Obersumme (Utersumme) wird ls Rechteckhöhe im Teilitervll der Mimlwert (Miimlwert) im Teilitervll gesetzt. Bei der Zwischewertsumme wird der Fuktioswert für eie Zwischewert (z.b. die Mitte) des Itervlls gesetzt. Die 3 folgede Abb. zeige die Ober-, Uter ud Zwischewertsumme zur Best. vo d : Obersumme Utersumme Zwischewertsumme # Teilitervlle Fläche Utersumme Fläche Obersumme F. Zwischewertsumme 3 6 9,39 3,37,3 56,,6,33 3

4 Die ekte mthemtische Lösug für dieses Beispiel ist türlich sehr eifch: 3 d Der Grezwert für #Teilitervlle strebt für lle 3 Summe gege de Wert des ttsächliche bestimmte Itegrls: d lim U i - O lim - i Z lim - i i i i Nebe diese 3 Verfhre gibt es folgede weitere Verfhre: Liks- ud Rechtssumme: ählich Uter-/Obersumme; jedoch wird stelle des M-/Mi- Wertes immer der like bzw. rechte Fuktioswert gesetzt - für obiges Beispiel etspricht die Utersumme uch der Likssumme ud die Rechtssumme der Obersumme, d die Beispielfuktio im Itegrtios-Itervll mooto steigt. Trpezsumme: Die Fläche für ds Itervll [ i ; i+ ] wird durch ei Trpez geähert. Die f ( i f ( i + ) Teilfläche vo eiem Trpez ist gegebe durch A i ---- ( i + i ) Simpso-Summe: Beim Trpezsumme-Verfhre wird die Fuktioskurve für ei Teilitervll durch seie Sekte geähert. Bei der Simpso-Summe wird die Fuktioskurve durch ei Polyom.Grdes geähert, ds durch 3 ufeiderfolgede Pukte defiiert ist: Für die folgede Drstellug wird ds Teilitervll mittig uf die -Achse geschobe, um die Berechug zu vereifche. Durch die Verschiebug ädert sich die Fläche türlich icht. Die 3 Pukte sid die beide äußere Pukte im Itervll [ i, i+ ] ud der Zwischewert mit i + der X-Koordite i +. Ds Itervll ist lso: i + obere Greze utere Greze i - ] y + ; f ( i + ) P i f() P i ; f ( i ) P Mitte_i f i + i + ; p ( ) A + B Koeffiziete bestimme:

5 C f i + i + Die Fläche des Teilitervlls wird d durch ds bestimmte Itegrl vo p() pproimiert: A d + d A A 3-3 Die Teilfuktioe des Polyoms, die i roter Frbe drgestellt sid, sid gerde Fuktioe. Die Teilfuktio B (blue Frbe) ist eie ugerde Fuktio. Etspreched lsse sich die Itegrle vereifche. Sämtliche dieser Approimtiosverfhre kovergiere für gege de ttsächliche Itegrlwert. Erfhrugsgemäß kovergiere die verschiedee Vefhre i folgeder Reihefolge: m schellste: Simpso-Summe Zwischewertsumme Trpezsumme Uter-, Ober-, Liks- ud Rechtssumme Lösug komplizierter ubestimmter Itegrle Trigometrische Itegrle Ethlte die Itegrde Produkte mehrerer trigoometrischer Fuktioe oder zusmmegesetzte Fuktioe mit trigoometrische Fuktioe, so k m diese oft durch geschickte Umformuge ud Substitutioe löse. Beispiele: A --- B f ( i C A B f i + p ( ) d ( A + B ) d ( ) 3 d ( ) C ( ) 5 ( ) d A d A--- f ( i + ) + f ( i C A + Bd ( f ( i + ) + f ( i C) Cd 5

6 Wichtige trigoometrische Beziehuge für Umformuge: ( siϕ) + ( cosϕ) tϕ - siϕ + ( tϕ) cosϕ siα siα cosα cosβ siβ cosβ -- [ si( α + si( α + ] -- [ cos( α cos( α+ ] -- [ cos( α + cos( α+ ] ( cosϕ) cosϕ ( siϕ) ---- cosϕ ---- ( cosϕ) siϕ cosϕ k! ( ) ( ) 3! Weitere Strtegie werde i der Vorlesug behdelt. Trigoometrische Gruditegrle k ( cosϕ) k ( siϕ) k k k si π ( cosϕ) k ( siϕ) k k k cos π -! k ( k)! k! f ( ) F ( ) f ( ) d f ( ) F ( ) f ( ) d t l cot l --- ( ) t ---- l cot -- ( ) cot t l + t --- ( ) -- ( )

7 Trigometrische Substitutio Für folgede Terme im Itegrde biete sich trigometrische Fuktioe zur Substitutio : Term im Itegrde Substitutio Defiitiosbereic h vo ϕ trigometrische Beziehug zur Vereifchug siϕ d cosϕ dϕ π -- ϕ π -- ( siϕ) ( cosϕ) + tϕ d ---- ( cosϕ) dϕ π -- < ϕ < π -- + ( tϕ) ---- ( cosϕ) - cosϕ tϕ d - dϕ cosϕ ϕ < π -- oder π -- < ϕ π ---- ( tϕ) ( cosϕ) grphische Drstellug der o.. Itegrde: + 7

Numerische Methoden zur Lösung bestimmter Integralen

Numerische Methoden zur Lösung bestimmter Integralen Prof. Dr.-Ig. Dirk Rbe, FB Tecik Mtemtik I A Numerisce Metode zur Lösug bestimmter Itegrle D es oft scwierig oder sogr umöglic ist, die Stmmfuktio durc eie bekte Fuktio uszudrücke, ist es oft sivoll/eifcer

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

4.2 Das bestimmte Integral

4.2 Das bestimmte Integral 4.. DAS BESTIMMTE INTEGRAL 63 4. Ds bestimmte Itegrl Die geometrische Iterprettio eies bestimmte Itegrls ist die Fläche uter eiem Fuktiosgrphe ft. M zerlege ei Itervl [, b] uf der t-achse äquidistt i Teilitervlle

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h.

Definition (Supremum und Infimum). s R heißt Supremum der Menge M R, falls s die kleinste obere Schranke von M ist, d.h. Vorlesug 15 Itegrlrechug 15.1 Supremum ud Ifimum Zuächst ei pr grudlegede, wichtige Defiitioe. Defiitio 15.1.1. Eie Mege M R heißt ch obe beschräkt, we es ei s R gibt, so dss x s für lle x M. M ist ch

Mehr

Numerisches Integrieren

Numerisches Integrieren Numerisches Itegriere Ac I der Prxis werde Itegrle i der Regel umerisch, lso pproximtiv, bestimmt. Dzu solle hier verschiedee Algorithme betrchtet werde ( Rechteck, Mitterechteck, Trpez, Simpso, Romberg

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

12. Integralrechnung. 12.A Das Riemann-Integral. 12. Integralrechnung 131

12. Integralrechnung. 12.A Das Riemann-Integral. 12. Integralrechnung 131 2. Itegrlrechug 3 2. Itegrlrechug Als Abschluss der Alysis i eier Veräderliche wolle wir ch der Differetitio u och die Itegrtio betrchte. D die Itegrlrechug über R sehr verschiede vo der über C ist, werde

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend Wiederholug Alysis Stetige Zufllsgröße F sei Stmmfuktio zu f f d= F F = f Bestimmtes Itegrl f ( d ) = F F Ueigetliche Itegrle f () tdt= F lim F f() t F = f() t dt ist mooto wchsed f () tdt= lim F F A=F()-F()

Mehr

Integralrechnung = 4. = n

Integralrechnung = 4. = n Computer ud Medie im Mthemtikuterriht WS 00/ Itegrlrehug. Allgemei Die Berehug vo Bogeläge, Shwerpukte ud Trägheitsmomete, der Areit ud des Effektivwertes eies elektrishe Wehselstromes, der Bhkurve vo

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Ober- und Untersummen

Ober- und Untersummen Q Mthemtik GK Mrti-Niemöller-Schule Stef Krissel Q Mthemtik GK Mrti-Niemöller-Schule Stef Krissel Ober- ud Utersumme Ober- ud Utersumme mit ud uedlich viele Streife siehe uch S. 5 im Buch. Um die Geuigkeit

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fchbereich Mthemtik Algebr ud Zhletheorie Christi Curill Grudlge der Mthemtik LPSI/LS-M) Lösuge Bltt WiSe 00/ - Curill/Koch/Ziegehge Präsezufgbe P3)-d) Für jede der vier Mege gilt, dss die dri ethltee

Mehr

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen

Jetzt ändert sich die dritte Stelle nach dem Komma nicht mehr, man hat also vier zählende Stellen 9. M setze = ud bereche mit Hilfe der Folge (9.5) die dritte Wurzel us uf vier zählede Stelle geu. = + + =,, =,, =.75, 4 =,48889, =,449, =,4478 Jetzt ädert sich die dritte Stelle ch dem Komm icht mehr,

Mehr

Numerische Integration (s. auch Applet auf

Numerische Integration (s. auch Applet auf Numerische Itegratio (s. auch Applet auf www.mathematik.ch) Voraussetzuge ud Zielsetzug Voraussetzug: Eie Fuktio f sei auf dem abgeschlossee Itervall I = [a,b] stetig. b Gesucht: Bestimmtes Itegral J =

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

MATTHIAS HEINLEIN. 1. Einleitung

MATTHIAS HEINLEIN. 1. Einleitung SEMINRRBEIT: HUPTSTZ DER DIFFERENTIL- UND INTEGRLRECHNUNG MTTHIS HEINLEIN. Eileitug Oftmls wird ds Itegrl i de fägervorlesuge uf zweierlei Weise eigeführt. D ist zum eie ds formle Itegriere, lso ds uffide

Mehr

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m.

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m. Mthemtik I für VIW - Prof. Dr. M. Ludwig.4 Liere Gleichugssysteme.4. Schreibweise, Liere Abbildug. A x = b, wobei m A... Koeffizietemtrix, T x ( x, x 2,, x ) T (, 2,, =... Vektor der Ubekte,... Azhl der

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

Das Riemann-Integral und seine Eigenschaften

Das Riemann-Integral und seine Eigenschaften Ds Riem-Itegrl u seie Eigeshfte Defiitio. Sei ie Fuktio f beshräkt uf [, b]. Stimme ie beie Drboux-Itegrle überei, heißt f Riem-itegrierbr uf [, b] (oer R-itegierbr). Der gemeisme Wert heißt Riem- Itegrl

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Ausbau der Funktionentheorie

Ausbau der Funktionentheorie Skript zum Ausbu der Fuktioetheorie I Skript zum Ausbu der Fuktioetheorie I Ausbu der Fuktioetheorie Potezfuktioe (PF) Bisher hbe wir us mit liere Fuktioe ud dere jeweiligem chrkteristische Verluf bzw

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis

Folgen, Reihen und Grenzwert. Vorlesung zur Didaktik der Analysis Folge, Reihe ud Grezwert Vorlesug zur Didktik der Alysis Ihlt Motivtio Folge Spezielle Folge Grezwertdefiitio Wichtige Zusmmehäge ud Strtegie der Kovergezutersuchug Fuktioegrezwert Reihe Prdoxie ud Zusmmefssug

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Agewdte Mthemtik ud Progrmmierug Eiführug i ds Kozept der objektorietierte Aweduge zu mthemtische Reches WS 2012/13 Ihlt Wiederholug (Eigeschfte vo Folge zusmmegefsst) Zhlereihe Kovergez vo Reihe Beweis

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK BRÜCKENKURS MATHEMATIK ELEMENTE DER DIFFERENTIAL- UND INTEGRALRECHNUNG Schwerpute: Begri der Aleitug Aleitugsregel Uestimmtes Itegrl Bestimmtes Itegrl Itegrtiosregel Aweduge Pro. Dr. hil. M. Ludwig TU

Mehr

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002

Analysis I SS Zusammenfassung Stephan Weller, Juli 2002 Alysis I SS 2 Zusmmefssug Steph Weller, Juli 22 Ihlt. Vollstädige Idutio ud Ugleichuge 2. Folge ud Reihe 3. Kovergez ud Stetigeit 4. Differetitio, lole Extrem, Kovexität 5. Itegrtio, Sustitutiosregel ud

Mehr

Formelsammlung. Angewandte Mathematik

Formelsammlung. Angewandte Mathematik Formelsmmlug für Agewdte Mthemtik + = k= k k k ( b) b Autor: Wolfgg Kugler Formelsmmlug INHALTSVERZEICHNIS. Poteze 3. Defiitioe 3. Recheregel 3.3 Wurzel 4.4 Biomischer Lehrstz 4. Kreisfuktioe 6. Defiitioe

Mehr

Grundbegriffe der Differentialrechnung

Grundbegriffe der Differentialrechnung Wirtschaftswisseschaftliches Zetrum Uiversität Basel Mathematik für Ökoome 1 Dr. Thomas Zehrt Grudbegriffe der Differetialrechug Referez: Gauglhofer, M. ud Müller, H.: Mathematik für Ökoome, Bad 1, 17.

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1 Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

A 2 Die Cramersche Regel

A 2 Die Cramersche Regel Die Crmersche egel Mtrixschreibweise eies liere Gleichugssystems Die Crmersche egel 5 Wir gehe vo der llgemei Gestlt eies liere Gleichugssystems us : Gegebe seie m (reelle oder komplexe) Zhle ik (i,,,

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen.

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen. Terme Kpitel Terme Ei mthemtischer Ausdruck wie B R q q (q ) oder (x + )(x ) x heißt eie Gleichug. Die Ausdrücke uf beide Seite des -Zeiches heiße Terme. Sie ethlte Zhle, Kostte (ds sid Symbole, die eie

Mehr

An2I Zusammenfassung

An2I Zusammenfassung Alysis für Iformtiker AI Zusmmefssug Dilo Brge Std: 013-03-18 https://github.com/hsr-stud/ai/ AI Zusmmefssug Dilo Brge Ihltsverzeichis 1 Itegrlrechug 3 1.1 Defiitio des Itegrls..................................

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

1 Lösungen zu Analysis 1/ 12.Übung

1 Lösungen zu Analysis 1/ 12.Übung Lösuge ausgewählter Beispiele zu Aalysis I, G. Bergauer, Seite Lösuge zu Aalysis / 2.Übug. Eileitug Gleichmäßige Kovergez ist eie starke Eigeschaft eier Fuktioefolge. Formuliert ma sie für Netze, statt

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

Kapitel 3. Kapitel 3: Aus der Natur und Technik: Funktionen

Kapitel 3. Kapitel 3: Aus der Natur und Technik: Funktionen Kpitel 3 Kpitel 3: Aus der Ntur ud Techik: Fuktioe Der Fuktiosbegriff Mthemtisch Polyome Rtiole Fuktioe Trigoometrische Fuktioe Iverse Fuktio Epoetilfuktio ud Logrithmus Notize zur Vorlesug Mthemtik für

Mehr

Integralrechnung. Inhaltsverzeichnis. A. Mentzendorff Geändert: Januar 2009

Integralrechnung. Inhaltsverzeichnis. A. Mentzendorff Geändert: Januar 2009 A. Metzedorff Geädert: Jur 29 Itegrlrechug Ihltsverzeichis Ds bestimmte Itegrl ls Flächeihlt 2. Physiklische Beispiele zur Eiführug...................... 2.2 Itegrlschreibweise. Itegrle bei liere Fuktioe.............

Mehr

Langrange-Multiplikators und Hinreichende Bedingungen

Langrange-Multiplikators und Hinreichende Bedingungen Albert Ludwigs Uiversität Freiburg Abteilug Empirische Forschug ud Ökoometrie Mathematik für Wirtschaftswisseschaftler Dr. Sevtap Kestel Witer 008 10. November 008 14.-4 Lagrage-Multiplikators ud Hireichede

Mehr

3. Anwendungen der Differentialrechnung

3. Anwendungen der Differentialrechnung 3.1 Kurveutersuchuge mittels der Differetialrechug 33 3. Aweduge der Differetialrechug 3.1 Kurveutersuchuge mittels der Differetialrechug I diesem Abschitt betrachte wir Fuktioe f: D, welche je ach Bedarf

Mehr

Musterlösung zur Musterprüfung 1 in Mathematik

Musterlösung zur Musterprüfung 1 in Mathematik Musterlösug zur Musterprüfug i Mthemtik Diese Musterlösug ethält usführliche Lösuge zu lle Aufgbe der Musterprüfug i Mthemtik sowie Hiweise zum Selbstlere. Literturhiweise ) Bosch: Brückekurs Mthemtik,

Mehr

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der

Mehr

Formelsammlung MATHEMATIK Oberstufe

Formelsammlung MATHEMATIK Oberstufe Formelsmmlug MATHEMATIK Oerstufe Diese Formelsmmlug erhet keie Aspruch uf Vollstädigkeit ud Richtigkeit. Sie wird ei Bedrf durch weitere Kpitel ergäzt..poteze Fktorezerleguge, R r,s R k Z m, N r s r+ s

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf.

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf. Komplexe Zahle Problem: x 2 + 1 = 0 ist i R icht lösbar. Zur Geschichte: Cardao 1501-1576: Auflösug quadratischer ud kubischer Gleichuge. Empfehlug: Reche z.b. mit 1 wie mit gewöhliche Zahle. Descartes

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Stetigkeit und Differenzierbarkeit

Stetigkeit und Differenzierbarkeit Didaktik der Mathematik der Sek II Umkehrfuktioe Ableitugsregel für Umkehrfuktioe (Umkehrregel) Beispiele für die Awedug der Umkehrregel Stetigkeit ud Differezierbarkeit Neuma/Roder Umkehrfuktio Fuktio

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen Mthemtik Ihlt Zhlebereiche Recheopertioe Hierrchie der Recheopertioe Recheregel Brüche Recheregel für Brüche Klmmerreche Potezrechug Potezgesetze Ntürliche Zhle Zhlebereiche Jeder Zhlebereich ist eie Erweiterug

Mehr

Fachbereich Mathematik

Fachbereich Mathematik OSZ Kfz-Techik Berufsoberschule Mthemtik Oberstufezetrum Krftfhrzeugtechik Berufsschule, Berufsfchschule, Fchoberschule ud Berufsoberschule Berli, Bezirk Chrlotteburg-Wilmersdorf Fchbereich Mthemtik Arbeits-

Mehr

ZAHLENFOLGEN Teil 1. Einführende Beispiele Arithmetische Folgen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr

ZAHLENFOLGEN Teil 1. Einführende Beispiele Arithmetische Folgen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr ZAHLENFOLGEN Teil Eiführede Beispiele Arithmetische Folge Dtei Nr. 400 Friedrich Buckel Std: August 006 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de Ihlt Eiführede Beispiele. Erste Defiitio. Beispiele:

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Von Kurven und Flächen. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Von Kurven und Flächen. Das komplette Material finden Sie hier: Uterrichtsmaterialie i digitaler ud i gedruckter Form Auszug aus: Vo Kurve ud Fläche Das komplette Material fide Sie hier: School-Scout.de Das bestimmte Itegral ach Riema Eizelstude 69 Klasse 11 ud 12

Mehr

8 Unendliche Reihen, Potenzreihen, Taylor-Reihen, Fourier-Reihen

8 Unendliche Reihen, Potenzreihen, Taylor-Reihen, Fourier-Reihen 8 Uedliche Reihe, Potezreihe, Tylor-Reihe, Fourier-Reihe 8. Uedliche Reihe 8.. Grudlegede Deiitioe ud Eigeschte Im Kp..4. wurde Zhleolge ud ihre Kovergez behdelt. Hier betrchte wir olgede uedliche geometrische

Mehr

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume.

10. Stetigkeit Definition (Stetigkeit) Beispiele. Wir übertragen den Stetigkeitsbegriff für reelle Funktionen auf metrische Räume. 10 Stetigkeit Wir übertrge de Stetigkeitsbegriff für reelle Fuktioe uf metrische Räume 101 Defiitio (Stetigkeit) Seie (X, d x ), (Y,d y ) metrische Räume, f : X Y eie Abbildug Wir sge f ist stetig im Pukt

Mehr

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6.

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6. Ihlte Brüceurs Mthemti Fchhochschule Hover SS 0 Dipl.-Mth. Coreli Reiterger. Grudlge. Poteze, Wurzel, Logrithme. Vetorrechug 4. Trigoometrische Futioe. Differetilrechug. Itegrlrechug 7. Mtrize, Liere Gleichugssysteme

Mehr

2.4.1 Geschlossene Auswertung unendlicher Reihen

2.4.1 Geschlossene Auswertung unendlicher Reihen 8 2.4 ufgbe 2.4. Geschlossee uswertug uedlicher Reihe I Prxis ist die geschlossee uswertug uedlicher Reihe, lso die explizite estimmug des Grezwerts, ur selte möglich. equem geht es, we m die Reihe ls

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Prof. Dr. Johes Grützm Fchereich Grudlgewisseschfte Formelsmmlug Mthemtik für Igeieure Diese Formelsmmlug ist vo mir i de Jhre 99 is 99 ls studieegleitedes Mteril für de husitere Geruch etwickelt ud dmls

Mehr

War Benjamin Franklin Magier?

War Benjamin Franklin Magier? Wr Bejmi Frkli Mgier? Zusmmefssug Es wird eie Methode etwickelt, ei (fst) mgisches Qudrt der Ordug 8 k ( k ) mit fsziierede Eigeschfte herzustelle. Eileitug I seiem überus leseswerte ud bwechslugsreiche

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

10 Anwendungen der Differential- und Integralrechnung

10 Anwendungen der Differential- und Integralrechnung 0 Aweduge der Dieretial- ud Itegralrechug 0. Relative Extrema Eie Fuktio sei i eier Umgebug des Puktes ξ deiiert. ξ heißt relatives Miimum vo, we es eie Umgebug U vo ξ gibt mit (ξ) ür alle x U. I eiem

Mehr

Übungen zu Einführung in die Analysis, WS 2014

Übungen zu Einführung in die Analysis, WS 2014 Übuge zu Eiführug i die Aalysis, WS 2014 Ulisse Stefaelli 19. Jauar 2015 1 Wiederholug 1. Seie p, q ud r Aussage. Zeige Sie, dass dei Aussage Tautologie sid. p ( p q), (b) ( p q) ( p q), [ ((p ) ( ) ]

Mehr

Zusammenfassung der Sätze und Definitionen zur von Prof. Wirths im WS 97/98 gehaltenen Vorlesung Analysis für Informatiker I September 1998

Zusammenfassung der Sätze und Definitionen zur von Prof. Wirths im WS 97/98 gehaltenen Vorlesung Analysis für Informatiker I September 1998 Zusmmefssug der Säte ud iitioe ur vo Prof. Wirths im WS 97/98 gehltee Vorlesug Alysis für Iformtier I Septemer 998 vo Crste F. Buschm mil@crste-uschm.com Ihlt Die geordete Körper IR ud Q 3 Relle Folge

Mehr

Integralrechnung kurzgefasst

Integralrechnung kurzgefasst Itegrlrehug kurzgefsst. Flähe uter eiem Grphe Die Eistiegsfrge lutet: Wie k m de Fläheihlt A eies Flähestüks erehe, ds egrezt wird - vom Grphe G f eier (stetige) Fuktio - vo der -Ahse - vo zwei Prllele

Mehr

Zufallsvariablen und Wahrscheinlichkeitsverteilungen

Zufallsvariablen und Wahrscheinlichkeitsverteilungen Zufllsvrible ud Whrscheilichkeitsverteiluge Kombitorik Zusmmestellug bzw. Aordug vo Elemete Kombitorik mit Berücksichtigug der Reihefolge ohe Berücksichtigug der Reihefolge Permuttioe Vritioe ohe Wiederholug

Mehr

Die Idee des bestimmten Integrals wird anhand der folgenden Aufgabe vorgestellt, bei der das Resultat bereits von vorne herein bekannt ist.

Die Idee des bestimmten Integrals wird anhand der folgenden Aufgabe vorgestellt, bei der das Resultat bereits von vorne herein bekannt ist. . Defiitio des estimmte Itegrals Die Idee des estimmte Itegrals wird ahad der folgede Aufgae vorgestellt, ei der das Resultat ereits vo vore herei ekat ist. Aufgae: Bestimme de Ihalt des vo der Gerade

Mehr

Grundwissen Mathematik Klasse 9

Grundwissen Mathematik Klasse 9 Grudwisse Mthetik Klsse Reelle Zhle: Qudrtwurzel: ist die icht-egtive Lösug der Gleichug:. Merke: heißt Rdikd ud drf icht egtiv sei! Bsp.: 7 6, 7 7 Irrtiole Zhle: Jede Zhl, die sich icht ls Bruch drstelle

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgg Koe Mthemtik, WS07 0.0.07. Zhlefolge.. Wozu IformtikerIe Folge bruche Kovergez vo Folge ist die Grudlge der Alysis (Differetil- ud Itegrlrechug) Trszedete Gleichuge wie x l x 50 k m äherugsweise

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

mathphys-online INTEGRALRECHNUNG

mathphys-online INTEGRALRECHNUNG mthphys-olie INTEGRALRECHNUNG mthphys-olie Itegrlrechug Ihltsverzeichis Kpitel Ihlt Seite Itegrtio gzrtioler Fuktioe. Die Flächemßzhlfuktio. Die Stmmfuktio Flächeerechuge 7. Fläche zwische Grph der Fuktio

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

f) n n 2 x x 4 für n gerade; x für n ungerade

f) n n 2 x x 4 für n gerade; x für n ungerade R. Brik http://brik-du.de Seite 7.09.0 Lösuge Poteze I Ergebisse: E E E Ergebisse ( ) = 9 ; ( ) = 7 ; ( ) = 8 ; = ; 7 = ; = 7 ; = 9 ; ( ) = 7 9 Ergebisse x x x x x x ) ( + ) = + ( + ) = + c) x + x = (

Mehr

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück.

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück. Hs Wlser, [0090331] Teilfolge der Fibocci-Folge 1 Worum geht es? Wir wähle us der Fibocci-Folge 1 3 4 5 6 7 8 9 10 11 1 13 14 1 1 3 5 8 13 1 34 55 89 144 33 377 Teilfolge us ud frge ch dere Rekursiosformel.

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr