Formelsammlung MATHEMATIK Oberstufe

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung MATHEMATIK Oberstufe"

Transkript

1 Formelsmmlug MATHEMATIK Oerstufe Diese Formelsmmlug erhet keie Aspruch uf Vollstädigkeit ud Richtigkeit. Sie wird ei Bedrf durch weitere Kpitel ergäzt..poteze Fktorezerleguge, R r,s R k Z m, N r s r+ s : ( ) r s r s r s r s (. ) r + * r r r 0 k m k k ( ) k r r m m k m k ( ± ) ± + ( ) ( ) ± ± + ± + + c + + c + + c + c ( )( ). + ( )(. + + ) + ( + )(. + ) ( ) gerde ( + )( ) ugerde + ( + )( ) Formelsmmlug A. Lider Seite

2 .Logrithmus Umrechuge, R + + * \{}, u, v R, r R, N, R u log u log log log 0 log( u v) logu + log v u log logu log v v log u r log u r log u log u log lg 0 e log ld log l e lim +, e log u log u log log u log l Formelsmmlug A. Lider Seite

3 .Qudrtische Gleichuge + p + q 0 4.Komplee Zhle p p ± q + + c 0 0 4c ± + p ( )( ) + p + q q ( )( ) + + c i. z +. i C, R ud i ( )( ) mit > 0 + i i + z r rg z ϕ tϕ r cos ϕ + [ O ;60 ] r siϕ z r cosϕ + i siϕ ( ) ( r; ϕ) ( r ; ϕ) ( r ; ϕ ) ( r r ; ϕ + ϕ ) ( r ; ϕ) r ; ϕ ϕ ( r ; ϕ ) r ( r; ϕ) ( r ; ϕ) ϕ 60 ( r; ϕ) r ; + k k 0,..., - - Formel vo Moivre N ( cos + i si ) cos( ) i si( ) : ϕ ϕ ϕ + ϕ Formelsmmlug A. Lider Seite

4 5. Eee Figure Dreieck Rechtwikeliges Dreieck A...Flächeihlt u...umfg A h h c h c A Stz des Pythgors + c Höhestz h p q Kthetestz Gleichseitiges Dreieck Formel vo Hero Umkreisrdius Ikreisrdius p c, q c A A 4 h s.( s ).( s ).( s c) c r 4A A p s + c h A Trpez ( ) Deltoid A e f Prllelogrmm A. h h Rhomus (Rute) e f A h Rechteck A Qudrt A d Kreis A r π u r π Kreissektor A r r πα 60 Kreisoge rπα rπα mit + + c s Formelsmmlug A. Lider Seite 4

5 6.Körper G...Ihlt der Grudfläche M...Ihlt der Mtelfläche O...Ihlt der Oerfläche A...Flächeihlt V...Volume h...höhe r...rdius Prism O G + M V G h Quder O ( + c + c) V c Würfel Zylider Pyrmide Pyrmidestumpf Kegel Kegelstumpf Kugel Kugelklotte A rπ h Kugelzoe A rπ h Kugelsektor Kugelsegmet Kugelschichte + O 6 Rumdigole: d V O r π + rπh M rπh V r πh O G + M V G h ( ) O G + G + M V h G + G G + G O r r s r s V r + h π π π M π O r π + r π + ( r + r ) πs M ( r + r ) πs ( ) V h π r + r r + r O 4r π V 4 r π O rπ h + ρπr r π V h h O rπ. h + ρ π V ( r h) hπ O rπ. h + ρ + ρ π V ρ + ρ + h 6 π ( ) Formelsmmlug A. Lider Seite 5

6 7.Wikelfuktioe - Trigoometrie Trigoometrische Grudeziehuge Werte spezieller Wikel siα Gegekthete Hypoteuse Akthete cos α Hypoteuse tα Gegekthete Akthete cotα Akthete Gegekthete si α + cos α siα tα cotα siα tα α siα 0 tα 0 cotα Qudrteregel α Qudrt I Qudrt II Qudrt III Qudrt IV siα tα cotα Reduktiosformel siα si (80 α) si (80 + α) si (60 α) si (60 + α) cos (80 α) cos (80 + α) cos (60 α) cos (60 + α) tα t (80 α) t (80 + α) t (60 α) t (60 + α) si( α ) siα ugerdefuktio siα cos(90 α) cos(90 + α) cos( α ) gerdefuktio si (90 α) si (90 + α) t ( α) tα Formelsmmlug A. Lider Seite 6

7 Umrechuge Summesätze Siusstz siα tα si siα si α α cos cos si( α ± β ) siα.cos β ±.si β cos( α ± β ).cos β siα.si β siα siα α α tα + t + t cos α si α tα ± β t( α ± β) tα tβ tα tα t α α + β α β siα + si β si cos α + β α β + cosβ cos cos α + β α β siα si β cos si α + β α β cosβ si si c R ; : : c siα : siβ : siγ siα si β siγ α α Kosiusstz + c c Flächeihlt des Dreiecks Umkreisrdius Bogemß ud Grdmß + c c cosβ c + cosγ c c A siα siβ si γ c r siα siβ si γ rd π π π π rd rd Formelsmmlug A. Lider Seite 7

8 8. Vektore ; ; Sklres Produkt Eiheitsvektore zu ϕ (, )... Wikelmß vo ud... Normlprojektio vo uf Vektorielles Produkt (Kreuzprodukt) R : ± A ± B ± ± R : ± A ± B ± ± ± r r A r r mit r R r r A r r mit r R r : R A B + : R A B + + R R A A A A : A + : A ± cosϕ 0 cosϕ 0 ; woei d c c d siϕ Formelsmmlug A. Lider Seite 8

9 9. Alytische Geometrie Drstellugsform ) A,B,C...Koorditevektore der Pukte A,B,C ) Vektor AB mit Afgspukt A ud Edpukt B,, c...ortsvektore der Pukt A, B,C g...gerde g...richtugsvektor vo g...normlvektor vo g... Eiheitsvektor zu 0 X, A, B... Koorditevektore der Pukte X, A, B g,,... Ortsvektore der Pukte X, X, X g AB B A A + AB B Astd AB der Pukte A,B AB AB B A ( B A) AB AB Mittelpukt M der Strecke AB ( ) ( ) M A + B A + AB m ( + ) S A + B + C zw. s + + c A... T A λ B woei λ λ cos ϕ V X A+ t g (mit t R) ; + t g (mit t R) Schwerpukt S des Dreiecks ABC ( ) ( ) Vektorielle Flächeformel des Dreiecks ( ) Teilugspukt T der Strecke AB eim Teilugsverhältis λ ( ) Wikelmß Volume Prllelepiped ( ) c Prmeterdrstellug Gleichug eier Gerde i der Eee Hessesche Normlform (HNF) X A + t AB (mit t R) ; X A ( X A) 0 Gleichug: + y +c 0 + t ( )(mit t R) + y +c HNF: 0 + Formelsmmlug A. Lider Seite 9

10 0.Mtrize λ λ λ λ λ + + ( λ R ) Differetil- ud Itegrlrechug Fuktio ud Aleitugsfuktio; Stmmfuktio y f() k y' f'() 0 F() y y' F() y y' k d k + C f ( ) q f '( ) q mit q Formelsmmlug A. Lider Seite 0 q q+ q d + C q + f ( ) f '( ) q mit q q F() d I + C y f ( ) e y' f '( ) e F( ) e d e + C y f ( ) y' f' ( ) l F() d + C l y f ( ) l q y' f' ( ) :, lso f() F( ) l d l + C y f ( ) log y' f' ( ) log e l F( ) log d ( l ) + C l ;

11 y f ( ) si y' f' ( ) cos F( ) si d cos + C y f ( ) cos y' f' ( ) si F( ) cosd si + C y f ( ) t y' f' ( ) cos F( ) td l cos + C y f ( ) cot y' f' ( ) si F( ) cot d l si + C Aleitugsregel ( f ± g)' f ' ± g' Aleitugsregel ( k f)' k f' k R Aleitugsregel ( f g)' f' g + f' g' Aleitugsregel f f g f g g ' ' g Ketteregel h( ) g( f ( )) h'() g'(f()) f'() Reziprokregel Itegrtiosregel Prtielle Itegrtio Itegrtio durch Sustitutio Newtosches Verfhre ' ' f '( ) f( ) f ( ) ( f ± g) f ± g k f k f (k R ) f g F g F g' f ( y) dy f( g( )) g' ( ) d f ( ) d F( ) F( ) f( ) + f '( ) e d e + C Formelsmmlug A. Lider Seite

12 . Zhlefolge Arithmetische Folge Arithmetische Folge Geometrische Folge Geometrische Folge Geometrische Folge Ziseerechug K 0... Afgskpitl K... Kpitl ch Jhre ei gzjähriger Kpitlisierug p...zisfuß rekursive Drstellug : eplizite Drstellug : s + ( + ). rekursivedrstellug : eplizitedrstellug : s + speziell ei lims K : s + + d + ( ) d q mit q < q p K q [ + ( ) d] c q woeic q q q + q + q, q mit q 0 mit q q q i 0 q i Formelsmmlug A. Lider Seite

Formelheft bfi ('11/'12/ 13)

Formelheft bfi ('11/'12/ 13) Formelheft fi ('/'/ ) zuletzt ktulisiert:.. Kp. Poteze S. Poteze, IR + ; r, s IR; k Z; m, IN 0 ; - k k k r s r+s r : s r-s ( r ) s r s ( ) r r r r r r k k m km m m k,, c IR ( + )² ² + + ² ( )² ² + ² (

Mehr

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest

Studienkolleg bei den Universitäten des Freistaates Bayern. Übungsaufgaben zur Vorbereitung auf den. Mathematiktest Studiekolleg ei de Uiversitäte des Freisttes Byer Üugsufge zur Vorereitug uf de Mthemtiktest . Polyomdivisio:. Dividiere Sie! ) ( 6 8 ):( ) Lös.: ) ( 9 7 0 8 9):(6 ) Lös.: 7 9 c) ( - ):() Lös.: d) (8 9

Mehr

Formelsammlung für den Mittleren uchulabschluss in uchleswig-holstein

Formelsammlung für den Mittleren uchulabschluss in uchleswig-holstein Formelsmmlug für de Mittlere uhulshluss i uhleswig-holstei gültig : 5/6 Figure Dreiek g rudseite g h Fläheihlt A si( ), Seite Umfgu g + + Wikel Qudrt Fläheihlt A Umfgu 4 Rehtek Seite Fläheihlt A, Seite

Mehr

Mathematik (AHS) Formelsammlung für die standardisierte kompetenzorientierte schriftliche Reifeprüfung (ab Schuljahr 2017/18)

Mathematik (AHS) Formelsammlung für die standardisierte kompetenzorientierte schriftliche Reifeprüfung (ab Schuljahr 2017/18) Mthemtik (AHS Formelsmmlug für die stdrdisierte kompetezorietierte schriftliche Reifeprüfug ( Schuljhr 017/18 Std: 1. Septemer 017 1 Mege ist Elemet vo... ist icht Elemet vo Durchschitt(smege Vereiigug(smege

Mehr

Abiturprüfung Baden-Württemberg: Mathematische Merkhilfe, 1. Auflage (2017) S. 1/8. Dreieck Flächeninhalt: Mindestens zwei Seiten sind gleich lang.

Abiturprüfung Baden-Württemberg: Mathematische Merkhilfe, 1. Auflage (2017) S. 1/8. Dreieck Flächeninhalt: Mindestens zwei Seiten sind gleich lang. Aiturprüfug Bde-Württemerg: Mthemtishe Merkhilfe,. Auflge (7) S. /8 Eee Figure Dreiek Fläheihlt: A g hg gleihshekliges Dreiek Midestes zwei Seite sid gleih lg. gleihseitiges Dreiek Alle drei Seite sid

Mehr

Formelsammlung. Angewandte Mathematik

Formelsammlung. Angewandte Mathematik Formelsmmlug für Agewdte Mthemtik + = k= k k k ( b) b Autor: Wolfgg Kugler Formelsmmlug INHALTSVERZEICHNIS. Poteze 3. Defiitioe 3. Recheregel 3.3 Wurzel 4.4 Biomischer Lehrstz 4. Kreisfuktioe 6. Defiitioe

Mehr

Formelheft. Sarah Leitner. Fiona Aschenbrenner. Paul Brandauer. Julia Nageler. Alwin Dürrer. Sarah Neumann. Angelina Eder.

Formelheft. Sarah Leitner. Fiona Aschenbrenner. Paul Brandauer. Julia Nageler. Alwin Dürrer. Sarah Neumann. Angelina Eder. Formelheft der 8C ('/') ulett geädert m 9.. Fio Aschereer Pul Brduer Alwi Dürrer Ageli Eder Kord Esterm Mimili Heim Kthri Höck Christi Hörhger Fi Jicek Christi Joh Christi Jurkeit Mimili Kimmel Ev Körschild

Mehr

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Mathematik (AHS) Formelsammlung für die standardisierte kompetenzorientierte schriftliche Reifeprüfung (ab Schuljahr 2017/18)

Mathematik (AHS) Formelsammlung für die standardisierte kompetenzorientierte schriftliche Reifeprüfung (ab Schuljahr 2017/18) Mthemtik (HS Formelsmmlug für die stdrdisierte kompetezorietierte schriftliche Reifeprüfug ( Schuljhr 017/18 1 Poteze Poteze mit gzzhlige Expoete R; N\{0} R\{0}; N\{0}... 1 0 1 1 1 1 ( 1 Fktore Poteze

Mehr

Grundwissen Mathematik Klasse 9

Grundwissen Mathematik Klasse 9 Grudwisse Mthetik Klsse Reelle Zhle: Qudrtwurzel: ist die icht-egtive Lösug der Gleichug:. Merke: heißt Rdikd ud drf icht egtiv sei! Bsp.: 7 6, 7 7 Irrtiole Zhle: Jede Zhl, die sich icht ls Bruch drstelle

Mehr

1.Weiterentwicklung der Zahlvorstellung

1.Weiterentwicklung der Zahlvorstellung Grudwie Mthemtik 9.Kle Gymium SOB.Weiteretwicklug der Zhlvortellug Defiitio der Qudrtwurzel: Für 0 it diejeige icht egtive Zhl dere Qudrt ergibt. heißt Qudrtwurzel, heißt Rdikd. Beipiele: 0,5 0,5 64 8

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 06/07 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium

Merkhilfe. 1 Inhalte der Mittelstufe STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN. Mathematik am Gymnasium STAATSINSTITUT FÜR SCHULQUALITÄT UND BILDUNGSFORSCHUNG MÜNCHEN Mekhilfe Mthemtik m Gymsium Ihlte de Mittelstufe Lösugsfomel fü qudtische Gleichuge c / 4c Poteze m m s s s s s s Logithme logc log logc log

Mehr

Formelsammlung. Angewandte Mathematik (BHS) für die standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung (SRDP)

Formelsammlung. Angewandte Mathematik (BHS) für die standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung (SRDP) Formelsmmlug für die stdrdisierte kompetezorietierte schriftliche Reife- ud Diplomprüfug SRDP Agewdte Mthemtik BHS A dem Hupttermi 09 Mi 09 ist diese Formelsmmlug die eizig zugelssee Formelsmmlug für die

Mehr

Formelsammlung. Angewandte Mathematik (BHS) für die standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung (SRDP)

Formelsammlung. Angewandte Mathematik (BHS) für die standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung (SRDP) Formelsmmlug für die stdrdisierte kompetezorietierte schriftliche Reife- ud Diplomprüfug SRDP Agewdte Mthemtik BHS Diese Formelsmmlug ist dem Hupttermi 07 Mi 07 ls Hilfsmittel für die SRDP i Agewdter Mthemtik

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

Grundwissen Mathematik 9. Klasse. Eigenschaften - Besonderheiten - Beispiele

Grundwissen Mathematik 9. Klasse. Eigenschaften - Besonderheiten - Beispiele Grudwisse Mthemtik 9. Klsse Theme Erweiterug des Zhlebereichs reelle Zhle Eigeschfte - Besoderheite - Beispiele Jede rtiole Zhl k ls Bruch geschriebe werde: = q p Dieser Bruch stellt etweder eie gze Zhl,

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 05 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Für Trapeze ABC D mit de parallele Seite [AD ] ud [BC ]

Mehr

Stereometrie: Übersicht

Stereometrie: Übersicht Stereometrie: Übersicht Stereometrie ist die Lehre der dreidimensionlen Körper. Wir werden uns nun mit einigen von ihnen beschäftigen.. Prismen Ein Prism besteht us einer Grund und Deckfläche die gleich

Mehr

Formelsammlung für den Mittleren Schulabschluss in Schleswig-Holstein

Formelsammlung für den Mittleren Schulabschluss in Schleswig-Holstein Formelsmmlug für de Mittlere Shulshluss i Shleswig-Holstei gültig : 5/6 Figure Dreiek g rudseite gh h Höhe FläheihltA si( γ ), Seite Umfgu g + + γ Wikel Qudrt Fläheihlt A Umfgu 4 Rehtek Seite Fläheihlt

Mehr

Merkhilfe Mathematik für die Sekundarstufe II an beruflichen Schulen in Baden-Württemberg

Merkhilfe Mathematik für die Sekundarstufe II an beruflichen Schulen in Baden-Württemberg Für die schriftliche Fchhochschulreifeprüfug sid ur die Ihlte der Seite is 6 der Merkhilfe relevt, die icht mit eiem grue Blke mrkiert sid. Zhlemege ℕ = { ; ; ; 3 ;...} Mege der türliche Zhle ℕ = ℕ {}

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

Merkhilfe Mathematik für die Sekundarstufe II an beruflichen Schulen in Baden-Württemberg

Merkhilfe Mathematik für die Sekundarstufe II an beruflichen Schulen in Baden-Württemberg Merkhilfe Mthemtik für die Sekudrstufe II erufliche Schule i Bde-Württemerg Für die schriftliche Fchhochschulreifeprüfug sid ur die Ihlte der Seite is 6 der Merkhilfe relevt, die icht mit eiem grue Blke

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

Formelsammlung für das Fach Mathematik Stand:

Formelsammlung für das Fach Mathematik Stand: Formelsmmlug für ds Fch Mthemtik Std:.4.6 Mthemtische Symbole gleich ugleich < kleier ls kleier oder gleich > größer größer oder gleich ugefähr gleich; rud deckugsgleich; kogruet etsricht rllel sekrecht

Mehr

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen.

Ich kann den SdP anwenden, um Seitenlängen in rechtwinkligen Dreiecken zu berechnen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.5.018 Themen: Stz des Pythgors, Qudrtische Gleichungen Checkliste Ws ich lles können soll Ich knn den Stz des Pythgors (SdP) in Worten formulieren.

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

WS 2005/06 Vorkurs: Mathematische Methoden der Physik Musterlösung von Blatt1. 2. Fall x < 2

WS 2005/06 Vorkurs: Mathematische Methoden der Physik Musterlösung von Blatt1. 2. Fall x < 2 WS 5/6 Vorkurs: Mtemtise Metode der Pysik Musterlösug vo Bltt Aufge : 6 < < 6 8 < > Lsg.: < 7 7. Fll > : < < < <

Mehr

Formelsammlung Mathematik 4. Klasse

Formelsammlung Mathematik 4. Klasse Formelsmmlung Mthemtik 4. Klsse Inhlt Rehtek... Qurt... llgemeines Dreiek... Rehtwinkeliges Dreiek... Gleihshenkliges Dreiek... 4 Gleihseitiges Dreiek... 4 Trpez... 5 Prllelogrmm... 5 Rute Rhomus... 6

Mehr

Flächenmaße : 1 m 2 = 100 dm 2 = cm 2. 1 a = 100 m 2 1 ha = 100 a = m 2. Dreieck. A = 1 2 g h. u = a+b+c+d. Trapez.

Flächenmaße : 1 m 2 = 100 dm 2 = cm 2. 1 a = 100 m 2 1 ha = 100 a = m 2. Dreieck. A = 1 2 g h. u = a+b+c+d. Trapez. Römische Zhlzeiche I õ V õ 5 X õ 0 L õ 50 C õ00 D õ 500 M õ 000 Zhlereiche z türliche Zhle z gze Zhle z rtiole Zhle Ø reelle Zhle griechische uchste Ø komplexe Zhle z lph z et g G z Gmm d D z Delt e E

Mehr

II Orientieren und Bewegen im Raum

II Orientieren und Bewegen im Raum Schüleruchseiten II Orientieren und ewegen im Rum Erkundungen Seite Seite ( ), ( ), D ( ), E ( ), F ( ), G ( ), H ( ) Ich sehe ws, ws Du nicht siehst Individuelle Lösungen Rechnen mit Vektoren uftrg )

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA . Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 016 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Haupttermi A 10 Die gleichscheklige Dreiecke ABC habe die Base AB

Mehr

Analysis II für Studierende der Ingenieurwissenschaften

Analysis II für Studierende der Ingenieurwissenschaften Fchbereich Mthemtik der Uiversität Hmburg SoSe 2015 Dr. K. Rothe Alysis II für Studierede der Igeieurwisseschfte Hörslübug mit Beispielufgbe zu Bltt 3 Recheregel für Potezreihe Stz: Die Potezreihe g(z

Mehr

A. Zahleneinteilung. r a b

A. Zahleneinteilung. r a b Aus FUNKSCHAU 14/1953 (Blatt 1+) ud 17/1953 (Blatt 3), im Origial -spaltig. Digitalisiert 07/016 vo Eike Grud für http://www.radiomuseum.org mit freudlicher Geehmigug der FUNKSCHAU- Redaktio. Die aktuelle

Mehr

Abschlussprüfung 2015 an den Realschulen in Bayern

Abschlussprüfung 2015 an den Realschulen in Bayern Prüfugsdauer: 50 Miute bschlussprüfug 05 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: ufgabe Haupttermi.0 Gegebe sid rechtwiklige Dreiecke BM mit M 4 cm ud de Hypoteuse

Mehr

Abschlussprüfung 2017 an den Realschulen in Bayern

Abschlussprüfung 2017 an den Realschulen in Bayern Prüfugsdauer: 50 Miute bschlussprüfug 07 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: ufgabe Haupttermi.0 Trapeze BD mit de parallele Seite D ud B rotiere um die Gerade

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Vektorrechnung. Ronny Harbich, 2003

Vektorrechnung. Ronny Harbich, 2003 Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

I PLANIMETRIE. 1 Winkel. 2 Dreiecke. Lösungen zu Übungen 1. Lösungen zu Übungen 2. Lösungen zu Übungen 1

I PLANIMETRIE. 1 Winkel. 2 Dreiecke. Lösungen zu Übungen 1. Lösungen zu Übungen 2. Lösungen zu Übungen 1 I PLANIMETRIE Winkel Lösungen zu Üungen. ) 8 β α + γ ) ϕ 8 β. ) α 7 ) α 5 ; β c) α 5 d) α ; β. α. ε 78 5. ) α 58 ; β ; γ 6 ) α ; γ 76 c) α 6 ; β d) α 6 6. ) β α ; β ) β α ; β 5 7. ) ε 8 α ) α + β ε 8.

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 00 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A A.0 I eiem Hadbuch zur Wetterkude fide Sie im Kapitel Erdatmosphäre die

Mehr

Lösungen Mathematik II

Lösungen Mathematik II Lösungen Mthemtik II Geometrie für Berufsmturitätsschulen,. Auflge Druckdtum: August I PLANIMETRIE Winkel Lösungen zu Üungen. ) 8 β α + γ ) ϕ 8 β. ) α 7 ) α 5 ; β c) α 5 d) α ; β. α. ε 78 5. ) α 58 ;

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

dominik erdmann ingenieurinformatik fh bingen

dominik erdmann ingenieurinformatik fh bingen INHALTSVERZEICHNIS ANALYSIS domiik erdm igeieuriformtik fh bige INHALTSVERZEICHNIS ANALYSIS domiik erdm igeieuriformtik fh bige I DIE REELLEN ZAHLEN Grudlge. Megelehre. Smbole der Mthemtik. Aiome der Alsis

Mehr

Großdruck. ohne Beispiele. (a + b) = a + 2ab + b. (a - b) = a - 2ab + b. (a + b) (a - b) = a - b. Zeitspannen: erste binomische Formel:

Großdruck. ohne Beispiele. (a + b) = a + 2ab + b. (a - b) = a - 2ab + b. (a + b) (a - b) = a - b. Zeitspannen: erste binomische Formel: 16 7 8 9 4 5 6 1 2 3 1 2 13 14 15 5 6 1 2 3 4 b c A B 3 4 5 6 7 8 9 10 11 12 17 18 19 20 21 22 23 24 25 C 13 14 15 16 9 10 11 12 7 8 2 2 2 erste binomische Formel: ( + b) + 2b + b 2 2 2 zweite binomische

Mehr

Aufgabensammlung der höheren Mathematik

Aufgabensammlung der höheren Mathematik Aufgbensmmlung der höheren Mthemtik von Vsili P. Minorski 5., ktulisierte Auflge Hnser München 2008 Verlg C.H. Beck im Internet: www.beck.de ISBN 978 3 446 466 Zu Inhltsverzeichnis schnell und portofrei

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 0 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A cos 6 A 0 Die Pfeile OP ( ) ud OQ ( ) cos cos spae für [0 ;80 ] Dreiecke

Mehr

0.1 E: Der Haupsatz der Mineralogie

0.1 E: Der Haupsatz der Mineralogie 0. E: Der Haupsatz der Mieralogie Satz: I eiem Kristall gibt es ur,,3,4 ud 6-zählige Symmetrie. Defiitio: Seie u, v 0 zwei Vektore, die icht auf eier Gerade liege. Die Mege heißt Gitter. Satz: Die Vektore

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Sinus- + Cosinus-Funktion und komplexe Wurzel

Sinus- + Cosinus-Funktion und komplexe Wurzel Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 6 Polarkoordiate Sius- + Cosius-Fuktio ud komplexe Wurzel 6.1 Im folgede seik 1 1 := {z C z = 1} der Kreis i C mit Radius 1 ud Mittelpukt 0. Wir defiiere

Mehr

Abschlussprüfung 2017 an den Realschulen in Bayern

Abschlussprüfung 2017 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 07 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A.0 Trapeze ABCD rotiere um die Achse AD. Die Wikel 45 ;90 DCB

Mehr

Abschlussprüfung 2016 an den Realschulen in Bayern

Abschlussprüfung 2016 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 06 a de Realschule i Bayer Mathematik I Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Nachtermi A 0 Gegebe sid der Pukt O0 0 ud die Pfeile OP 4si 5cos A Zeiche

Mehr

Vektorrechnung Produkte

Vektorrechnung Produkte Vektorrechnung Produkte Die Luft fliesst von ussen gegen ds Zentrum des Tiefdruckgeiets üer Islnd Wegen der Erdrottion eginnt die Luft zu rotieren Die ewegte Luft nimmt Wolken uf ihrem Weg mit zeigt uns

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Name: Abschlussprüfug 204 a de Realschule i Bayer Mathematik I Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Gegebe ist das rechtwiklige Dreieck ABC mit der Hypoteuse

Mehr