Zusammenfassung: Gleichungen und Ungleichungen

Größe: px
Ab Seite anzeigen:

Download "Zusammenfassung: Gleichungen und Ungleichungen"

Transkript

1 LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge Defiitio: Ei Term der Form a a a a ; a, a,, a heißt ei Polyom Ist a, da heißt der Grad des Polyoms Ist a, da heißt das Polyom ormiert Eie reelle Zahl heißt eie Nullstelle des Polyoms, we p ist Polyomdivisio: Feststellug (Divisio eies Polyoms durch eie Liearfaktor): Ist eie reelle Zahl, da gibt es ei (eideutig bestimmtes) Polyom p q p Beispiel: Die Polyomdivisio ergibt Also ist 3 : 3 3 p ei Polyom ud q mit : Der Rest ist der Wert des Polyoms p a der Stelle 3 Folgerug (Abspaltug eies Liearfaktors): Vo eiem Polyom Liearfaktor abspalte, d h es gibt ei Polyom q mit p q, we eie Nullstelle vo Beispiel: p ist 3 : Die Polyomdivisio geht auf, weil Merke: Eie Polyomdivisio p : p ist Satz: Ei Polyom vom Grad hat höchstes Nullstelle p lässt sich geau da ei 3 eie Nullstelle des Polyoms p ist geht geau da auf, we eie Nullstelle vo Beweis: Zu jeder Nullstelle gehört ei Liearfaktor, ud ma ka vo eiem Polyom vom Grad höchstes Liearfaktore abspalte zus_gleichugeudugleichuge /8

2 LGÖ Ks VMa Schuljahr 6/7 Für Eperte: Ma ka ei Polyom vom Grad durch ei beliebiges Polyom vom Grad höchstes dividiere Lösugsformel für Gleichuge -te Grades: Fall : Eie lieare Gleichug a a ( a ) bzw m c m c hat geau eie Lösug, ämlich m Fall : Eie quadratische Gleichug a a a bzw a b c bzw (ach Divisio beider Seite durch a) eie ormierte quadratische Gleichug pq hat zwei, geau eie oder keie Lösug, ämlich p p, q Hiweis: Reche mit Brüche ud icht mit Dezimalzahle Bemerkug: Hat eie ormierte quadratische Gleichug gazzahlige Koeffiziete, da ka ma die Nullstelle häufig rate, we diese gazzahlig sid (was ma allerdigs im Voraus icht weiß) Dazu rät ma die Liearfaktorzerlegug des Polyoms; siehe ute Fall 3 ud : Es gibt (komplizierte) Lösugsformel Fall 5 : Es ka keie (allgemeie) Lösugsformel gebe Soderfälle vo Gleichuge -te Grades: Potezgleichuge: a Fall a : Uterfall gerade: a Uterfall ugerade: a Fall a : Fall a : Uterfall gerade: Die Gleichug hat keie Lösug Uterfall ugerade: a Bemerkug: Die Schreibweise a wäre mathematisch icht korrekt Gleichuge, i dee die Variable ur eimal auftritt: Isoliere die Variable vo auße ach ie Beispiel: Achtug: Nicht ausmultipliziere! 3 Nullprodukt-Gleichuge: Eier der Faktore muss sei Achtug: Nicht ausmultipliziere! zus_gleichugeudugleichuge /8

3 LGÖ Ks VMa Schuljahr 6/7 Gleichuge, die durch Ausklammer zu Nullprodukt-Gleichuge werde: We die like Seite eie Summe bzw Differez ist ud i jedem Summade derselbe Teilterm auftritt: Klammere de Teilterm aus Da erhält ma eie Nullprodukt-Gleichug Beispiel: Achtug: Nicht durch oder durch dividiere! 5 Gleichuge, die durch Substitutio zu eier quadratische Gleichug werde: We die like Seite aus drei Summade besteht ud i zwei dieser Summade Teilterme auftrete, wobei ei Teilterm das Quadrat des adere Teilterms ist: Substituiere de Teilterm Da erhält ma eie quadratische Gleichug Beispiel: 3 Substituiere z Allgemeier Fall vo Gleichuge -te Grades: Feststellug: Ei Polyom ugerade Grades hat (midestes) eie Nullstelle Beweis: Eie gazratioale Fuktio f ugerade Grades: f a a aa ( a ) verhält sich für ud für wie die Fuktio a, d h im Fall a gilt: Für strebt f, ud für strebt f ; im Fall a gilt das Umgekehrte Also hat der Graph vo f (midestes) eie Pukt mit der -Achse gemeisam Für Eperte: Streg geomme fehle i diesem Beweis zwei Überleguge: Gazratioale Fuktioe sid stetig Der Nullstellesatz für stetige Fuktioe Bemerkug: Ei Polyom gerade Grades braucht keie Nullstelle zu habe, zum Beispiel das p Polyom Die eizige Möglichkeit, eie eakte Lösug zu fide, ist rate Der folgede Satz schräkt die mögliche Lösuge i viele Fälle etwas ei: Feststellug (ohe Beweis): Sid bei eiem ormierte Polyom p a aa alle Koeffiziete a, a, a gazzahlig, da gilt für eie ratioale Nullstelle: Die Nullstelle ist gazzahlig ud ei Teiler des kostate Koeffiziete a Beispiel: Die Gleichug ud hat als mögliche ratioale Lösuge,, 3 3 Achtug: Die Feststellug besagt icht, dass eie dieser Zahle tatsächlich eie Lösug ist! zus_gleichugeudugleichuge 3/8

4 LGÖ Ks VMa Schuljahr 6/7 Hat ma durch Rate eie Lösug eier Polyomgleichug p gefude, da ergibt eie Polyomdivisio p : q Die weitere Nullstelle vo p (falls vorhade) sid die Nullstelle des Polyoms Liearfaktorzerlegug quadratischer Polyome: Hat ei ormiertes quadratisches Polyom p q a) zwei verschiedee Nullstelle ud, da ist p q ; b) geau eie Nullstelle, da ist p q ; c) keie Nullstelle, da lässt es sich icht i Liearfaktore zerlege q Hat ei ormiertes quadratisches Polyom gazzahlige Koeffiziete, da ka ma die Liearfaktorzerlegug häufig rate, we das Polyom gazzahlige Nullstelle hat (was ma allerdigs im Voraus icht weiß) Aus der vermutete Zerlegug pq sieht ma, dass das Produkt der gesuchte Zahle der kostate Koeffiziet q ud die Summe der gesuchte Zahle der Koeffiziet p ist Beispiel: 3 Das Produkt der Zahle ist 3 Also sid die Zahle ud 3 Die Summe der Zahle ist Also sid die Zahle ud 3 Also 3 3 Also hat das Polyom 3 die Nullstelle ud 3 Achtug: I der (zum Rate güstige) Darstellug icht die Nullstelle, soder das Negative der Nullstelle! sid die gesuchte Zahle Liearfaktorzerlegug beliebiger Polyome: We das Polyom icht ormiert ist, da klammert ma de führede Koeffiziete aus ud zerlegt das restliche (ormierte) Polyom i Liearfaktore Die sich ergebede Zerlegug muss da mit dem ausgeklammerte Koeffiziete multipliziert werde Falls möglich: Klammere oder eie -Potez aus 3 Falls möglich: Faktorisiere mithilfe der dritte biomische Formel Bestimme eie Nullstelle ud mache Polyomdivisio Soderfälle vo Ugleichuge -te Grades: Potezugleichuge : a bzw a bzw a bzw Ist gerade ud a, da hat die Ugleichug a die Lösug a oder a ; die Ugleichug a die Lösug a a Ist ugerade ud a, da hat die Ugleichug a bzw a : ist ugerade ud a, da hat die Ugleichug a bzw a a bzw a bzw a a die Lösug a die Lösug zus_gleichugeudugleichuge /8

5 LGÖ Ks VMa Schuljahr 6/7 Lieare Ugleichuge: m c bzw m c : klar 3 Quadratische Ugleichuge: pq bzw pq Bestimme die Nullstelle der like Seite der Ugleichug (durch Rate der Liearfaktorzerlegug oder mithilfe der p-q-formel) Der wichtigste Fall ist, dass es zwei verschiedee Nullstelle ud gibt Der Graph der Fuktio p q ist ei ach obe geöffete Parabel: Ma ka die Lösugsmege der Ugleichug ablese: Die Ugleichug p q Die Ugleichug p q hat die Lösugsmege L ; ; hat die Lösugsmege L ; Bemerkug: Ma ka die Lösugsmege eier Ugleichug bzw ; auch dadurch bestimme, dass ma überlegt, für welche Werte vo beide Liearfaktore dasselbe Vorzeiche habe (ud das Produkt positiv ist) bzw beide Liearfaktore verschiedee Vorzeiche habe (ud das Produkt egativ ist) Davo ist abzurate, weil es sehr fehlerafällig ist! Allgemeier Fall vo Ugleichuge -te Grades: Defiitio: Ist die reelle Zahl eie Nullstelle des Polyoms bestimmte atürliche Zahl ud ei (eideutig bestimmtes) Polyom ud p q Die Zahl heißt die Vielfachheit der Nullstelle p, da gibt es eie eideutig q q mit der Eigeschaft Die Vielfachheit eier Nullstelle gibt also a, wie oft ma de Liearfaktor abspalte ka Feststellug (Beweis siehe Für Eperte ): Ist die reelle Zahl eie Nullstelle des Polyoms p, da hat ugerade ist p a der Stelle geau da eie VZW, we die Vielfachheit vo Lösugsverfahre für Polyomugleichuge: Gegebe ist eie Ugleichug mit eiem Polyom p bzw p bzw p bzw p p Zerlege das Polyom p so weit wie möglich i Liearfaktore Notiere die Nullstelle des Polyoms p mit Vielfachheit ud otiere, ob es Nullstelle mit oder ohe VZW sid Dadurch erhält ma die Itervalle, i dee p eiheitliches Vorzeiche hat 3 Bestimme das Vorzeiche vo p i eiem dieser Itervalle Am eifachste ist, ma überlegt das Verhalte der Fuktio p für zus_gleichugeudugleichuge 5/8

6 LGÖ Ks VMa Schuljahr 6/7 Skizziere grob (!) de Graphe der Fuktio p der Ugleichug ablese Jetzt ka ma die Lösugsmege Bruch-, Wurzel- ud Betragsgleichuge ud -ugleichuge Bruchgleichuge: Bestimme die Defiitiosmege der Bruchgleichug Das sid alle reelle Zahle, für die kei Neer ist Multipliziere beide Seite der Gleichug mit dem Neer bzw Haupteer 3 Löse die etstehede Gleichug Prüfe, ob die Lösuge i der Defiitiosmege ethalte sid Bruchugleichuge: Mache eie Falluterscheidug, ob der Neer bzw Haupteer positiv oder egativ ist Forme die etsprechede Ugleichug jeweils so um, dass ersichtlich ist, für welche Werte der Variable welcher Fall eitritt Im Fall, dass der Neer bzw Haupteer positiv ist: Multipliziere beide Seite der Ugleichug mit dem Neer bzw Haupteer ud löse die etstehede Gleichug Bestimme die Teilmege L der Lösugsmege aus der Lösug der Ugleichug ud der Bedigug a die Variable, dass der betrachtete Fall eitritt 3 Im Fall, dass der Neer bzw Haupteer egativ ist: Beim Multipliziere beider Seite der Gleichug mit dem Neer bzw Haupteer kehrt sich das Ugleichheitszeiche um Die Lösug der etstehede Ugleichug verläuft aalog Bestimme die Teilmege L der Lösug für de betrachtete Fall Die Lösugsmege der Ugleichug ist die Vereiigugsmege L L Wurzelgleichuge: Wir setze voraus, dass höchstes zwei Wurzel auftrete Bestimme die Defiitiosmege der Wurzelgleichug Das sid alle reelle Zahle, für die kei Radikad egativ ist Isoliere die Wurzel bzw eie Wurzel 3 Quadriere beide Seite der Gleichug Falls die etstehede Gleichug och eie Wurzel ethält: Isoliere die Wurzel ud quadriere ereut 5 Löse die etstehede Gleichug 6 Mache mit de Lösuge die Probe i der Ausgagsgleichug Die Probe ist immer erforderlich, we icht sicher ist, ob vor dem Quadriere beide Seite der Gleichug ichtegativ sid Im Zweifelsfall macht ma immer die Probe Feststellug: Quadriere beider Seite eier Gleichug bzw Ugleichug ist im Allgemeie ur da eie Äquivalezumformug, we beide Seite der Gleichug bzw Ugleichug ichtegativ sid Beweis: Die Fuktio ist für streg mooto wachsed zus_gleichugeudugleichuge 6/8

7 LGÖ Ks VMa Schuljahr 6/7 Wurzelugleichuge: Wir setze voraus, dass höchstes eie Wurzel auftritt Bestimme die Defiitiosmege der Wurzelugleichug Das sid alle reelle Zahle, für die der Radikad ichtegativ ist Isoliere die Wurzel Da gibt es u a folgede Fälle: a oder a mit eier reelle Zahl a : Quadriere beide Seite der Ugleichug ud löse die etstehede Ugleichug Daraus ud aus der Defiitiosmege ergibt sich die Lösugsmege a mit eier reelle Zahl a : Die Lösugsmege ist gleich der Defiitiosmege a mit eier reelle Zahl a : Die Lösugsmege ist leer Term oder Term : Mache eie Falluterscheidug, ob der Term positiv oder egativ ist Forme die etsprechede Ugleichug jeweils so um, dass ersichtlich ist, für welche Werte der Variable welcher Fall eitritt Im Fall, dass der Term positiv ist, quadriere beide Seite der Ugleichug ud löse die etstehede Ugleichug Bestimme die Teilmege L der Lösugsmege aus der Lösug der Ugleichug ud der Bedigug a die Variable, dass der betrachtete Fall eitritt, ud der Defiitiosmege Im Fall, dass der Term egativ ist, ist die Lösugsmege etweder leer oder gleich der Defiitiosmege Defiitio: Für zwei reelle Zahle a ud b heißt die Zahl a b das arithmetische Mittel vo a ud b Für zwei reelle Zahle a ud b heißt die Zahl ab das geometrische Mittel vo a ud b 3 Für zwei reelle Zahle a ud b heißt die Zahl das harmoische Mittel vo a a b ud b zus_gleichugeudugleichuge 7/8 Die Mittelwerte köe auch für mehr als zwei Zahle defiiert werde, siehe Für Eperte Satz (Ugleichug vom arithmetische ud geometrische Mittel): Für alle reelle Zahle ab, gilt ab ab, ud Gleichheit gilt geau da, we a b ist Beweis: ab ab ab ab a abb ab a abb ab

8 LGÖ Ks VMa Schuljahr 6/7 Die letzte Ugleichug ist wahr, ud es gilt Gleichheit geau da, we ab ist, also geau da, we a b ist qed Feststellug (Ugleichug vom geometrische ud harmoische Mittel; ohe Beweis): Für alle reelle Zahle ab, gilt ab, a b ud Gleichheit gilt geau da, we a b ist Betragsgleichuge ud ugleichuge: für Defiitio: für Notiere, a welche Stelle eier der Terme i eiem Betrag sei Vorzeiche wechselt Dadurch erhält ma die Itervalle, i dee die Terme i de Beträge eiheitliches Vorzeiche habe Schreibe die Gleichug bzw Ugleichug für jedes Itervall ohe Betragszeiche Für Eperte Beweis der Feststellug: Ist die reelle Zahl eie Nullstelle des Polyoms a der Stelle geau da eie VZW, we die Vielfachheit vo ugerade ist Beweis: Es ist p q mit q Da q eiheitliches Vorzeiche hat Also hat vo, i der VZW, we ugerade ist a der Stelle Streg geomme fehle i diesem Beweis drei Überleguge: Das Polyom q hat ur edlich viele Nullstelle Die Fuktio q ist stetig 3 Der Nullstellesatz für stetige Fuktioe Defiitio: Für reelle Zahle,,, Mittel vo,, Für ichtegative reelle Zahle,,, geometrische Mittel vo,, p, da hat p q ist, gibt es eie Umgebug p a der Stelle geau da eie eie VZW hat Das ist geau da der Fall, we heißt die Zahl 3 Für positive reelle Zahle,,, heißt die Zahl harmoische Mittel vo,, das arithmetische heißt die Zahl das das zus_gleichugeudugleichuge 8/8

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Gazratioale Fuktioe 9. Defiitio gazratioaler Fuktioe Im Folgede werde ebe lieare ud quadratische Fuktioe auch solche betrachtet, bei dee die Variable i der dritte, vierte oder auch i eier och höhere Potez

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2014 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2014 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir 2 Reelle Zahle 2.1 Körperstruktur vo (K1) Additio ud Multiplikatio kommutativ: a b b a, ab ba.

Mehr

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1 Kapitel 2 Terme Josef Leydold Auffrischugskurs Mathematik WS 207/8 2 Terme / 74 Terme Ei mathematischer Ausdruck wie B R q q (q ) oder (x + )(x ) x 2 heißt eie Gleichug. Die Ausdrücke auf beide Seite des

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Vorkurs Mathematik für Informatiker Potenzen und Polynome --

Vorkurs Mathematik für Informatiker Potenzen und Polynome -- Vorkurs Mathematik für Iformatiker -- Poteze ud Polyome -- Thomas Huckle Stefa Zimmer (Stuttgart) 6.0.06 Vorwort Es solle Arbeitstechike vermittelt werde für das Iformatikstudium Der wesetliche Teil ist

Mehr

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand:

sfg Quadratwurzeln a ist diejenige nichtnegative Zahl (a 0), die quadriert a ergibt: Die Zahl a unter der Wurzel heißt Radikand: M 9.1 Quadratwurzel a ist diejeige ichtegative Zahl (a 0), die quadriert a ergibt: a 2 = a Die Zahl a uter der Wurzel heißt Radikad: a Quadratwurzel sid ur für ichtegative Zahle defiiert: a 0 25 = 5; 81

Mehr

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013

Herzlich Willkommen zur Vorlesung. Analysis I SoSe 2013 Herzlich Willkomme zur Vorlesug Aalysis I SoSe 2013 Prof. Dr. Berd Dreseler Lebediges Lere: Aufgabe Ich Wir Überblick Mittelwertsatz Differetialrechug Natürliche Zahle Iduktiosprizip Kombiatorik Körper

Mehr

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch

1. Man zeige, daß (IR n, d i ), i = 1, 2, metrische Räume sind, wenn für x = (x 1,..., x n ), y = (y 1,..., y n ) IR n die Abstandsfunktionen durch Ma zeige, daß IR, d i ), i,, metrische Räume sid, we für x x,, x ), y y,, y ) IR die Abstadsfuktioe durch d x, y) x y, d x, y) x y ), d x, y) max x y gegebe sid Lösug: Ma muß für alle drei Fuktio d i x,

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Index. Majorante, 24 Minorante, 23. Partialsumme, 17

Index. Majorante, 24 Minorante, 23. Partialsumme, 17 Folge, Reihe Idex Kovergezkriterie Hauptkriterium, Leibiz-Kriterium, Majoratekriterium, 4 Mioratekriterium, otwediges Kriterium, 0 Quotietekriterium, teleskopierede Summe, Wurzelkriterium, Majorate, 4

Mehr

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt.

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt. Wurzel Wurzelexpoet Radikad oder auch Basis Die Wurzel eier Zahl a ist die Zahl, die mit sich selbst malgeomme wieder a ergibt. Die -te Wurzel et ma auch Quadratwurzel, dabei lässt ma die (als Wurzelexpoet)

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Christoph Hindermann. Vorkurs Mathematik Wichtige Rechenoperationen

Christoph Hindermann. Vorkurs Mathematik Wichtige Rechenoperationen Kapitel 2 Christoph Hiderma 1 2.1 Wiederholug: Die gebräuchlichste Zahlebegriffe Natürliche Zahle: N bzw. N 0 N ={1,2,3,...} N 0 ={0,1,2,3,...} Gaze Zahle: Z, Erweiterug der atürliche Zahle um die egative

Mehr

Komplexe Zahlen. Lernziele dieses Abschnitts sind:

Komplexe Zahlen. Lernziele dieses Abschnitts sind: KAPITEL 1 Komplexe Zahle Lerziele dieses Abschitts sid: (1) Aalytische ud geometrische Darstellug komplexer Zahle, () Grudrechearte fur komplexe Zahle, (3) Kojugatio ud Betrag komplexer Zahle, (4) Losug

Mehr

Tutorium Mathematik I, M Lösungen

Tutorium Mathematik I, M Lösungen Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)

Mehr

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben.

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben. Floria Häusler Ugleichuge. Grudsätzliches I folgede ist ur vo reelle Zahle die Rede, ohe daß dies im eizele betot wird. Es seie A, B, C,... Terme reeller Zahle, u. U. auch mit Variable. Für Ugleichuge

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Streifzug durch die Welt der Binome und darüber hinaus

Streifzug durch die Welt der Binome und darüber hinaus www.mathemati-etz.de Copyright, Page 1 of 6 Streifzug durch die Welt der Biome ud darüber hiaus Die biomische Formel sid ützliche Istrumete, welche i viele Gebiete der Mathemati gewibriged eigesetzt werde

Mehr

4-1 Elementare Zahlentheorie

4-1 Elementare Zahlentheorie 4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle

Mehr

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:

Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung: Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...

KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung... KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

Kapitel VII: Der Körper der komplexen Zahlen

Kapitel VII: Der Körper der komplexen Zahlen Lieare Algebra II SS 011 - Prof Dr Mafred Leit 3 Der Körper der komplexe Zahle 3 Der Körper der komplexe Zahle A Die Mege der komplexe Zahle B Grudrechearte im Bereich der komplexe Zahle C Realteil Imagiärteil

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 1

Technische Universität München Zentrum Mathematik. Übungsblatt 1 Techische Uiversität Müche Zetrum Mathematik Mathematik (Elektrotechik) Prof. Dr. Ausch Taraz Dr. Michael Ritter Übugsblatt Hausaufgabe Aufgabe. Bestimme Sie de Kovergezbereich M der folgede Reihe für

Mehr

KAPITEL 2. Zahlenfolgen

KAPITEL 2. Zahlenfolgen KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

5-1 Elementare Zahlentheorie

5-1 Elementare Zahlentheorie 5- Elemetare Zahletheorie 5 Noch eimal: Zahletheoretische Fuktioe 5 Der Rig Φ als Rig der formale Dirichlet-Reihe! Erierug: Ei Polyom mit Koeffiziete i eiem Körper K ist ach Defiitio ichts aderes als eie

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Verschiedenes, S. 2. (Das Element x wird mit a b bezeichnet. Gilt a = 0, so schreibt man kurz b.)

Verschiedenes, S. 2. (Das Element x wird mit a b bezeichnet. Gilt a = 0, so schreibt man kurz b.) Verschiedees Oktober 00 Das Kapitel Verschiedees des Skripts ethält Themegebiete, die sich schlecht eiorde lasse Die folgede Folie behadel Etwas elemetare Mathematik Edliche Summe ud Produkte Vollstädige

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Abb. 1: Woher kommen die schwarzen Quadrate?

Abb. 1: Woher kommen die schwarzen Quadrate? Has Walser, [0160916], [0161009] Umögliche pythagoreische Dreiecke Idee: Chr. Z., B. 1 Schwarze Quadrate Woher komme die beide schwarze Quadrate? Abb. 1: Woher komme die schwarze Quadrate? Sachverhalt

Mehr

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz Ihaltsverzeichis Biomialoeffiziete ud Biomischer Satz 1 Der biomische Lehrsatz wird als eie gaze Zahl vorausgesetzt, für die gilt: 0. a ud b werde als reelle Zahle vorausgesetzt, die icht Null sid. Bemerug:

Mehr

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln

Methoden: Heron-Verfahren, Erweiterung von Differenzen von Quadratwurzeln 6 Kovergete Folge Lerziele: Kozepte: Grezwertbegriff bei Folge, Wachstumsgeschwidigkeit vo Folge Resultat: Mootoe beschräkte Folge sid koverget. Methode: Hero-Verfahre, Erweiterug vo Differeze vo Quadratwurzel

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

Nachtrag. Alternatives Buch zum Satz von Fermat 1999 bei amazon nur noch gebraucht

Nachtrag. Alternatives Buch zum Satz von Fermat 1999 bei amazon nur noch gebraucht Nachtrag Alteratives Buch zum Satz vo Fermat 1999 bei amazo ur och gebraucht 1 Uedliche (Zahle-) Mege 2 Wiederholug Steuer Bei eiem Eikomme vo ud eiem Steuersatz vo 33% müsse Sie Steuer zahle. Da werde

Mehr

1 Elementare Zahlentheorie. 0. Grundbegriffe

1 Elementare Zahlentheorie. 0. Grundbegriffe Elemetare Zahletheorie 0 Grudbegriffe 0 Teilbarkeit i N Mit N (oder auch ur N, zumidest i dieser Vorlesug werde die Mege {,, } der gaze Zahle bezeichet; wir ee diese Zahle die atürliche Zahle Wir verwede

Mehr

Mathematik Funktionen Grundwissen und Übungen

Mathematik Funktionen Grundwissen und Übungen Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit

Mehr

Gebrochenrationale Funktionen

Gebrochenrationale Funktionen Gebrocheratioale Fuktioe Aufgabe Bestimme de Defiitiosbereich der Fuktio f() = ösug: Hier ist der maimale Defiitiosbereich icht R, de im der Neer wird für = Null ud ma würde durch Null teile. Aus diesem

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

Grundkurs Mathematik II

Grundkurs Mathematik II Prof. Dr. H. Breer Osabrück SS 2017 Grudkurs Mathematik II Vorlesug 48 Itervallschachteluge Eie weitere Möglichkeit, reelle Zahle zu beschreibe, eizuführe, zu approximiere ud recherisch zu hadhabe, wird

Mehr

1 a+ 5 a b + 5a b 5ab(a+ = 10 a + 10a b 10a (a+ 2 3a. b a ab a. a a ab+ ab b b

1 a+ 5 a b + 5a b 5ab(a+ = 10 a + 10a b 10a (a+ 2 3a. b a ab a. a a ab+ ab b b 8. Jahrgagsstufe (G8) Zahle Bruchterme sid um Beispiel: + a b,, a c+ d.. Erweiter ud Küre Ei Bruchterm wird erweitert (gekürt), idem ma Zähler ud Neer mit dem selbe Term multipliiert (durch de selbe Term

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

6 Grenzwerte von Zahlenfolgen

6 Grenzwerte von Zahlenfolgen 6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

Einführung in die Grenzwerte

Einführung in die Grenzwerte Eiführug i die Grezwerte Dieser Text folgt hauptsächlich der Notwedigkeit i sehr kurzer Zeit eie Idee ud Teile ihrer Awedug zu präsetiere, so dass relativ schell mit dieser Idee gerechet werde ka. Der

Mehr

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 =

n (n + 1) = 1(1 + 1)(1 + 2) 3 Induktionsschritt: Angenommen die Gleichung gilt für n N. Dann folgt: 1 2 = 2 = Aufgabe 1: (6 Pukte) Zeige Sie für alle N die Formel: 1 2 + 2 3 + 3 4 +... + ( + 1) = ( + 1)( + 2). 3 Lösug: Beweis durch vollstädige Iduktio. Iduktiosafag: Für = 1 gilt: 1 2 = 2 = 1(1 + 1)(1 + 2) 3 Iduktiosschritt:

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse

mathphys-online GANZRATIONALE FUNKTIONEN y-achse x-achse GANZRATIONALE FUNKTIONEN 7 0 7 7 Gazratioale Futioe Ihaltsverzeichis Kapitel Ihalt Seite Eiührug. Das Pascal sche Dreiec. Verschobee Potezutioe Verlau der Graphe gazratioaler Futioe im Koordiatesystem.

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Die Jensensche Ungleichung

Die Jensensche Ungleichung Die Jesesche Ugleichug Has-Gert Gräbe, Uiv Leipzig Februar 1998 1 Kovexe ud kokave Fuktioe Wir betrachte eie stetige Fuktio y = (x), die au eiem oee Itervall ]a, b[ deiiert sei möge Eie solche Fuktio köe

Mehr

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2 4 Adreas Gathma 1. Komplexe Zahle Bevor wir mit der komplexe Aalysis begie, wolle wir uächst die grudlegede Defiitioe ud Eigeschafte der komplexe Zahle och eimal kur wiederhole. Defiitio 1.1. Die Mege

Mehr

Grundbegriffe der Differentialrechnung

Grundbegriffe der Differentialrechnung Wirtschaftswisseschaftliches Zetrum Uiversität Basel Mathematik für Ökoome 1 Dr. Thomas Zehrt Grudbegriffe der Differetialrechug Referez: Gauglhofer, M. ud Müller, H.: Mathematik für Ökoome, Bad 1, 17.

Mehr

Die erste Zeile ("Nummerierung") denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen.

Die erste Zeile (Nummerierung) denkt man sich also dazu. Häufig wird eine Indexschreibweise benutzt um ein Folgenglied zu kennzeichnen. Folge ud Reihe (Izwische Stoff der Hochschule. ) Stad: 30.03.205. Folge Was sid Zahlefolge? Z.B. oder Das ist die vereifachte Wertetabelle eier Fuktio geschriebe wie üblich bei Fuktioe i eier Wertetabelle.

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6 65 Eric Müller Vollstädige Iduktio Nach GIUSEPPE PEANO (858-93) ka ma die Mege N der atürliche Zahle durch folgede Axiome defiiere []:. ist eie atürliche Zahl.. Zu jeder atürliche Zahl gibt es geau eie

Mehr

Aufgrund der Körperaxiome ist jedoch

Aufgrund der Körperaxiome ist jedoch Hiweise: Der Doppelstrich // steht für eie Kommetarzeile. Tipp- ud Rechtschreibfehler köe trotz mehrfacher Kotrolle icht hudertprozetig vermiede werde. Die selbst erstellte Lösugsasätze orietiere sich

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

: 3 2 ; (2 : (3+2)) 3 : (4 +2 : (7 3)) = 3. (2 : 5) 3 : (4 +2 : 4) 3 : (4 + )=

: 3 2 ; (2 : (3+2)) 3 : (4 +2 : (7 3)) = 3. (2 : 5) 3 : (4 +2 : 4) 3 : (4 + )= 0. Zahlemege Reelle Zahle IR IQ II, also alle Zahle, die wir kee.. Recheoperatioe Additio / Subtraktio Produkt / Quotiet Quadrat / Potez. Klammer Die Reihefolge, i der die Recheoperatioe durchgeführt werde

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

Repetitionsaufgaben Potenzfunktionen

Repetitionsaufgaben Potenzfunktionen Repetitiosaufgabe Potezfuktioe Ihaltsverzeichis A) Vorbemerkuge/Defiitio 1 B) Lerziele 1 C) Etdeckuge (Graphe) 2 D) Zusammefassug 7 E) Bedeutug der Parameter 7 F) Aufgabe mit Musterlösuge 9 A) Vorbemerkuge

Mehr

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ).

KAPITEL 11. Ungleichungen. g(x) g(x 0 ) + K 0 (x x 0 ). KAPITEL 11 Ugleichuge 111 Jese-Ugleichug Defiitio 1111 Eie Fuktio g : R R heißt kovex, we ma für jedes x R ei K = K (x ) R fide ka, so dass für alle x R gilt: g(x) g(x ) + K (x x ) Bemerkug 111 Eie Fuktio

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen

8. Die Exponentialfunktion und die trigonometrischen Funktionen 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8.1 Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: lim 1 w k 0 k w. k! Defiitio der Expoetialfuktio : k 2 3

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Mathematische Randbemerkungen 1. Binomialkoeffizienten

Mathematische Randbemerkungen 1. Binomialkoeffizienten Mathematische Radbemeruge Biomialoeffiiete Der biomische Lehrsat ist eies der etrale Resultate der Aalysis I meier Vorlesug über Differetial- ud Itegralrechug habe ich ih daher gleich u Begi ausführlich

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

Beispiellösungen zu Blatt 105

Beispiellösungen zu Blatt 105 µ κ Mathematisches Istitut Georg-August-Uiversität Göttige Aufgabe 1 Beispiellösuge zu Blatt 105 Alva liebt Advetskaleder. Aber sie hat keie Lust, die Türe vo 1 bis i der ormale Reihefolge zu öffe. Daher

Mehr

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n)

n gerade 0 n ungerade (c) x n = a 1 n, a R + (d) x 1 := 2, x n+1 = 2 + x n (e) x n = (f) x n = exp(exp(n)) (g) x n = sin(n) Übugsaufgabe Aalysis I Aufgabe. Beweise oder widerlege Sie: a Jede i R kovergete Folge ist beschräkt. b Es gibt Cauchy-Folge im R, die icht kovergiere. c Beschräkte Folge sid koverget. d Folge mit eiem

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Klausur zum Grundkurs Höhere Mathematik I

Klausur zum Grundkurs Höhere Mathematik I Korrektur 6.06.06:.,3. ; 7.07.06: 3. Name, Vorame: Studiegag: Matrikelummer: 3 4 5 6 Z Pukte Note Klausur zum Grudkurs Höhere Mathematik I für BNC, GtB, MB, EC, TeM, VT, KGB, WWT, ESM, FWK, BGi, WiW 0.

Mehr

1. Folgen ( Zahlenfolgen )

1. Folgen ( Zahlenfolgen ) . Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

6.3 Folgen und Reihen

6.3 Folgen und Reihen 63 Folge ud Reihe Folge sid ichts aderes als Fuktioe f vo der Mege N {,,, 3, } der atürliche Zahle oder vo eiem ihrer Edabschitte N m { m, m +, m +, } i irgedeie Mege Ma schreibt i diesem Fall meist f

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Tutorial zum Grenzwert reeller Zahlenfolgen

Tutorial zum Grenzwert reeller Zahlenfolgen MAE Mathematik: Aalysis für Igeieure Herbstsemester 206 Dr. Christoph Kirsch ZHAW Witerthur Tutorial zum Grezwert reeller Zahlefolge I diesem Tutorial lere Sie, die logische Aussage i der Defiitio des

Mehr