6. Übung - Differenzengleichungen
|
|
|
- Eike Bertold Schuster
- vor 9 Jahren
- Abrufe
Transkript
1 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf Seite 73 für die explizite Gleichug x + = ax + b hergeleitete Formel: { a x x = 0 + b a für a a x 0 + b für a = Um die Koeffiziete a ud b ablese zu köe, müsse wir also zuerst die beide gegebee Gleichuge auf die explizite Form brige: a) x + 3x + = 0 x + = 3 x a = 3 ud b = b) x + x + 7 = 0 x + = x 7 a = ud b = 7 We wir jetzt i obige Formel eisetze, da bekomme wir die Lösuge: ) 3 a) x = x ) ) [ ) ) = x 0 ] = b) x = x }{{} 0 + 7) =:C ) 3 x 0 ) } {{ + } =:C Da kei bestimmter Afagswert für x 0 gegebe ist, ka x 0 durch C ersetzt werde.
2 Beispiel 03 Gesucht ist die allgemeie Lösug vo x + = 3 x + 3 für 0. I diesem Fall habe wir es mit eier allgemeie lieare Differezegleichug erster Ordug der Form x + = a x + b zu tu, wobei a = 3 ud b = 3 der Störterm der Gleichug ist. Wir gehe ach folgedem Kochrezept vor:. Suche die allgemeie Lösug das ist eie gaze Lösugsschar) der homogee Gleichug x + = a x, die sogeate homogee Lösug x h).. Suche eie ud das heißt eie eizige, beliebige) Lösug der ihomogee Gleichug x + = a x + b, die sogeate partikuläre Lösug x p), z.b. mittels Variatio der Kostate oder mit der Methode des ubestimmte Asatzes. 3. Bilde die Lösugsgesamtheit durch x = x h) + x p). Homogee Lösug Wir möchte die homogee Gleichug x + = 3 x löse. Da folgt idem wir rückwärts immer wieder passed eisetze) aus x = a x = a a x = = x 0 a i, dass usere homogee Lösug x 0 wieder durch C ersetze) durch x h) = C i=0 3i gegebe ist. Wir müsse also och das Produkt ausreche. Dabei verwede wir die Gauß sche Summeformel i=0 i = i= i = ), um folgedes zu bereche: 3 i = ) = 3 i=0 i = 3 i=0 i = 3 ) = 3 i=0 Die homogee Lösug ist also x h) = C 3. Partikuläre Lösug Als ächstes betrachte wir die ihomogee Gleichug x + = 3 x + 3 ud suche eie partikuläre Lösug davo. We wir die Tabelle mit Störfuktioe auf Seite 8 zu Rate ziehe, so sehe wir, dass usere Störfuktio b keiem der ageführte Fälle etspricht, isbesodere icht dem Fall r, da usere Störfuktio vo der Form r ist ud die Versuchslösug icht eifach mal so a user Problem agepasst werde ka! Tatsächlich würde ma etwa mit dem Asatz x p) = Ar auf eie Ausdruck komme, der am Ede, we ma ih wieder i die Differezegleichug eisetzt, auf eie falsche Aussage führt, d.h. keie Lösug dieser ist. Da wir eie Lösug wolle, darf so etwas icht vorkomme! i=0
3 Wir versuche also user Glück mit eier Variatio der Kostate, d.h. wir ehme die homogee Lösug ud mache C ebefalls vo abhägig. User Asatz schaut also so aus: x p) = C 3. Diese Ausdruck setze wir jetzt i die ihomogee Differezegleichug ei ud erhalte beachte: auf der like Seite vom Gleichheitszeiche verwede wir de Idex +, auf der rechte Seite de Idex ): x h) + = 3 x h) + 3 eisetze C + 3 +) +) = 3 C C = C : 3 + C + = C + 3 zusammefasse Wir habe also eie eue, aber relativ eifach zu lösede Differezegleichug erhalte vo der wir irgedeie Lösug suche - speziell köe wir also de Startwert C 0 = 0 setze. Beachte, dass wir hier icht die Methode vo Beispiel 00 awede köe, weil dies ur für kostate Koeffiziete a ud b möglich war - hier hägt aber gaz 3 offesichtlich vo ab! Wir löse die Differezegleichug also durch Aufsummiere ud erkee, dass wir hier eie edliche geometrische Reihe vorliege habe, für die wir eie Summeformel kee oder achschlage): C = 3 i = 3 3 i=0 = 3 3 ) Also habe wir eie partikuläre Lösug der Gestalt x p) ) = C 3 = gefude. Lösugsgesamtheit Als allgemeie Lösug ergibt sich x = x h) + x p) = C ) 3 = 3 C )) Zusatz: Was passiert, we ei Afagswert x 0 gegebe ist? Ageomme, wir hätte och x 0 = α R gegebe. Da müsste wir i der allgemeie Lösug jetzt och C bestimme. Dazu betrachte wir die Gleichug α = x 0 = C )) = C 0 Wir müsste also ur das C durch usere Startwert x 0 ersetze.
4 Beispiel 3 Gesucht: Die Lösug folgeder Differezegleichug zweiter Ordug zu vorgegebee Afagsbediguge Homogee Lösug 4x + + x + 7x = 36, x 0 = 6, x = 3 I userem Fall lautet die zu lösede homogee Gleichug 4x + + x + 7x = 0 ) Setzt ma de Asatz x h) Gleichug = λ i Gleichug ) ei, erhält ma die charakteristische 4λ + + λ + 7λ = 0 4λ + λ 7 = 0 λ + 3λ 7 4 = 0 Löse dieser quadratische Gleichug mittels kleier Lösugsformel x + px + q = 0 x = p ± p q) ergibt folgede Lösuge: λ 4 =, λ = 7 Somit lautet die allgemeie Lösug der homogee Gleichug ) x h) = c + c 7. ) Partikuläre Lösug Da die Störfuktio s = 36 kostat ist, ka der Asatz x p) = A siehe Tabelle Seite 8) zur Bestimmug eier partikuläre Lösug verwedet werde. Eisetze des Asatzes i die Differezegleichug ergibt Eie partikuläre Lösug ist somit x p) = 4. 4A + A 7A = 36 = A = 4 Allgemeie Lösug Die Lösug der allgemeie Differezegleichug lautet ) x = x h) + x p) = c + c ) )
5 Afaswerte eisetze Das Eisetze der Afagswerte x 0 = 6 ud x = 3 i ) ergibt: x 0 = 6 = c x = 3 = c ) 0 + c 7 ) = c + c + 4 c = c ) + c 7 ) = c c c = + 7c = c = + 7c = c = = c = 3 Lösug Die gesuchte Lösug ist somit x = 3 ) )
6 Beispiel 38 Sei a die Azahl aller Teilmege der Mege {,,..., }, die keie zwei aufeiaderfolgede Zahle ethalte. Gesucht: Die Rekursio der gesuchte Zahle a ud die Lösug dieser. Gesuchte Rekursio Die gesuchte Rekursio mit dazugehörige Afagswerte lautet a + = a + + a, a 0 =, a =, Diese ist folgedermaße zu erkläre: Die Azahl aller gesuchte Teilmege der Mege {,,..., + } = Azahl aller gesuchte Teilmege ohe das Elemet +, dies etspricht geau der Azahl der gesuchte Teilmege der Mege {,,..., + }) + Azahl aller gesuchte Teilmege mit dem Elemet +, dies etpricht geau der Azahl der gesuchte Teilmege der Mege {,,..., }). Die leere Mege hat geau eie Teilmege sich selbst), dh. a 0 = 0, die eielemetige Mege hat die leere Mege ud sich selbst als Teilmege, daher a =. Lösug der Rekursio Die zu lösede Differezegleichug lautet a + a + a = 0 Es hadelt sich um eie homogee Differezegleichug zweiter Ordug. Das charakteristische Polyom dieser Gleichug ist λ λ = 0 = λ = ± 4 = λ = +, λ = Da es sich um eie homogee Differezegleichug hadelt, ist es icht otwedig eie partikuläre Lösug zu bereche, daher lautet die Lösug der allgemeie Gleichug + ) ) a = c + c Eisetze der Afagswerte ergibt: a 0 = = c + c = c = c + ) ) a = = c + c + ) = = c ) + c = c = 3 = c = 3 + ) = + ) + c + + )
7 Die gesuchte Lösug ist somit a = ) 3 ).
Folgen und Reihen. 23. Mai 2002
Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2
Lösungen zu Kapitel 4
Lösuge zu Kapitel 4 Lösug zu Aufgabe : Die folgede Grezwerte köe aalog zu Beispiel 4.(c bestimmt werde: (a lim + = 3 3. (b Die Folge a ist diverget. (c lim + = 0. 3 (d lim ( + 3 = 0. (e lim ( + = 0. Lösug
ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS
ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud
LGÖ Ks VMa 12 Schuljahr 2017/2018
LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge
Aufgaben zur Übung und Vertiefung
Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,
Diesen Grenzwert nennt man partielle Ableitung von f nach x i und
Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte
2 Vollständige Induktion
8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes
10 Aussagen mit Quantoren und
0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits
TECHNISCHE UNIVERSITÄT MÜNCHEN
TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes
Die vollständige Induktion - Lösungen 1. Aufgabe: Sind die folgenden Aussageformen in N allgemeingültig?
Start Mathematik Lektioe i Aalysis Aufgabe zur vollstädige Iduktio Die vollstädige Iduktio - Lösuge. Aufgabe: Sid die folgede Aussageforme i N allgemeigültig? a) We ei Vielfaches vo ist, da ist eie gerade
von solchen Abbildungen. Eine solche Folge bestimmt für jedes x M die Folge der Werte f n. Schreibt man dies noch einmal formal hin, so erhält man:
Gleichmäßige Kovergez Wir betrachte im Folgede Abbilduge f : M N, wobei M eie Mege ud N ei metrischer Raum ist. Isbesodere iteressiere ud Folge f vo solche Abbilduge. Eie solche Folge bestimmt für jedes
Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr
Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:
Zusammenfassung: Gleichungen und Ungleichungen
LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge
Analysis ZAHLENFOLGEN Teil 4 : Monotonie
Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik
Mathematik 1 für Informatik
Guter Ochs. Juli 203 Mathematik für Iformatik Probeklausur Lösugshiweise. a Bestimme Sie per NewtoIterpolatio ei Polyom px mit möglichst kleiem Grad, so dass p = p0 = p = sowie p2 = 7. i x i y i d i,i
1. Folgen ( Zahlenfolgen )
. Folge ( Zahlefolge Allgemeies Beispiel für eie regelmäßige Folge: /, /3, /4, /5, /6,... Das erste Glied ist a =/ Das ist das Glied mit dem Ide Das zweite Glied ist a =/3 Das ist das Glied mit dem Ide
Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel
Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe
und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.
Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie
Tutorium Mathematik I, M Lösungen
Tutorium Mathematik I, M Lösuge 16. November 2012 *Aufgabe 1. Ma utersuche die folgede Reihe auf Kovergez (a) ( 1) (1 ) (b) ( ) 2 +1 (c) (!) 3 10 (3)! (d) (e) (f) 2 +3 3 2 +1 3 ( 2 +1) 2 + 3 ( 2 +3) (g)
Methode der kleinsten Quadrate
Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit
Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt
UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt
1. Zahlenfolgen und Reihen
. Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,
Elemente der Mathematik - Winter 2016/2017
4 Elemete der Mathemati - Witer 201/2017 Prof. Dr. Peter Koepe, Regula Krapf Übugsblatt 8 Aufgabe 33 ( Pute). Beweise Sie folgede Idetitäte durch vollstädige Idutio: (a) 0 2 (1)(21), N. (b) 2 (1 1 ) 1
Höhere Mathematik für die Fachrichtung Physik
Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug
Gleichungen und Ungleichungen. Mathematische Grundlagen. Beispiel. Beispiel. Lösung einer quadratischen Gleichung:
Gleichuge ud Ugleichuge Mathematische Grudlage Das Hadout ist Bestadteil der Vortragsfolie zur Höhere Mathemati; siehe die Hiweise auf der Iteretseite wwwimgui-stuttgartde/lstnumgeomod/vhm/ für Erläuteruge
Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8
Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir
1 Vollständige Induktion
1 Vollstädige Idutio 1.1 Idutiosbeweise Das Beweisprizip der vollstädige Idutio ist eies der wichtigste Hilfsmittel der Mathemati icht ur der Aalysis. Es fidet Verwedug bei pratische alle Aussage, die
4. Reihen Definitionen
4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a
4. Die Menge der Primzahlen. Bertrands Postulat
O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p
Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I
Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik
Kombinatorik und Polynommultiplikation
Kombiatorik ud Polyommultiplikatio 3 Vorträge für Schüler SS 2004 W Pleske RWTH Aache, Lehrstuhl B für Mathematik 3 Eiige Zählprizipie ud Ausblicke Wir habe bislag gesehe, was die Multiomialkoeffiziete
Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1
Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme
Wir wiederholen zunächst das Majorantenkriterium aus Satz des Vorlesungsskripts Analysis von W. Kimmerle und M. Stroppel.
Uiversität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dr. D. Zimmerma MSc. J. Köller MSc. R. Marczizik FDSA 4 Höhere Mathematik II 30.04.2014 el, kyb, mecha, phys 1 Kovergezkriterie
5. Übungsblatt Aufgaben mit Lösungen
5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge
Abb. 1: Woher kommen die schwarzen Quadrate?
Has Walser, [0160916], [0161009] Umögliche pythagoreische Dreiecke Idee: Chr. Z., B. 1 Schwarze Quadrate Woher komme die beide schwarze Quadrate? Abb. 1: Woher komme die schwarze Quadrate? Sachverhalt
Das kollektive Risikomodell. 12. Mai 2009
Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer
4 Schwankungsintervalle Schwankungsintervalle 4.2
4 Schwakugsitervalle Schwakugsitervalle 4. Bemerkuge Die bekate Symmetrieeigeschaft Φ(x) = 1 Φ( x) bzw. Φ( x) = 1 Φ(x) für alle x R überträgt sich auf die Quatile N p der Stadardormalverteilug i der Form
Zusammenfassung: Folgen und Konvergenz
LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele
KAPITEL 7. Zahlenfolgen. 7.1 Konvergente Zahlenfolgen Grenzwertbestimmung Grenzwertbestimmung durch Abschätzung...
KAPITEL 7 Zahlefolge 7. Kovergete Zahlefolge.............................. 30 7.2 Grezwertbestimmug............................... 32 7.3 Grezwertbestimmug durch Abschätzug..................... 35 7.4
Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015
Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie
Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr
ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische
Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr
ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
4-1 Elementare Zahlentheorie
4-1 Elemetare Zahletheorie 4. Dirichlet s Satz über Primzahle i arithmetische Progressioe. Satz (Dirichlet 1837). Seie a, k atürliche Zahle. Sid die Zahle a, k teilerfremd, so gibt es uedlich viele Primzahle
Finanzmathematik. = K 0 (1+i) n = K 0 q n
Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das
Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.
ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede
1 Das Skalarprodukt und das Kreuzprodukt
Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t
Arbeitsblatt A 8-4 Polynom-& Wurzel-& Winkelfunktionen Teil 1/2
Schule Budesgymasiu um ür Berustätige Salzburg Modul Thema Mathematik 8 Arbeitsblatt A 8-4 Polyom-& Wurzel-& Wikeluktioe Teil 1/2 Polyomuktioe Eie wichtige Klasse vo Fuktioe bilde die Polyomuktioe (x =
D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2
D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c
4 Konvergenz von Folgen
4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder
Tests statistischer Hypothesen
KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir
Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln.
Systematisches Abzähle ud Aorde eier edliche Mege vo Objekte uter Beachtug vorgegebeer Regel Permutatioe Variatioe Kombiatioe Permutatioe: Eie eieideutige (bijektive) Abbildug eier edliche Mege i sich
Dritter Zirkelbrief: Ungleichungen
Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug
Ein Alternativsatz über die Disjunktheit punktierter konvexer Kegel
Ei Alterativsatz über die Disjuktheit puktierter kovexer Kegel Rudolf Pleier ui 2015 Mittels des Treugssatzes vo Eidelheit (beat ach dem polische Mathematiker Meier Eidelheit, 1910 1943), ach dem ei ichtleerer
$Id: reihen.tex,v /06/14 13:59:06 hk Exp $
Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,
ÜBUNGSBLATT 4 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS
ÜBUNGSBLATT 4 LÖSUNGEN MAT/MAT3 ANALYSIS I HERBSTSEMESTER 00 PROF. DR. AMILLO DE LELLIS Aufgabe. Etscheide Sie für folgede Folge (wobei N \ {0}), ob diese koverget sid, ud bereche sie gegebeefalls ihre
Nennenswertes zur Stetigkeit
Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit
KAPITEL 2. Zahlenfolgen
KAPITEL Zahlefolge. Kovergete Zahlefolge...................... 35. Grezwertbestimmug....................... 38.3 Grezwertbestimmug durch Abschätzug............. 4.4 Mootoe Folge..........................
1.2. Taylor-Reihen und endliche Taylorpolynome
1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg
Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen
. Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.
Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,
f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug
Klassische Theoretische Physik I WS 2013/2014
Karlsruher Istitut für Techologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 3/4 Prof. Dr. J. Schmalia Blatt 7 Dr. P. P. Orth Abgabe ud Besprechug 3..3. Tayloretwicklug I 5 + 5 + 5 + 5
6 Grenzwerte von Zahlenfolgen
6 Grezwerte vo Zahlefolge Ei zetraler Begriff der Aalysis ist der des Grezwertes. Wir begie mit der Betrachtug vo Grezwerte vo Zahlefolge. 6. Zahlefolge 6.. Grudbegriffe Defiitio 6... Eie Fuktio f : Z
Finanzmathematik. = K 0 (1+i) n = K 0 q n
Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das
Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx
Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per
Analysis I für M, LaG/M, Ph 4.Übungsblatt
Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:
Höhere Mathematik für die Fachrichtung Physik
Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe
Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable
Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex
Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.
Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,
Musterlösung zu Übungsblatt 2
Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.
